Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

Metabolic Syndrome: The Constellation of Co-morbidities, A Global Threat

Author(s): Kirtika Madan*, Sarvesh Paliwal, Swapnil Sharma, Seema Kesar, Neha Chauhan and Mansi Madan

Volume 23, Issue 12, 2023

Published on: 05 May, 2023

Page: [1491 - 1504] Pages: 14

DOI: 10.2174/1871530323666230309144825

Price: $65

Abstract

Background: Metabolic syndrome, also referred to as Syndrome X or obesity syndrome is a cluster of diseases prevalent worldwide in both developed and developing countries. According to WHO, it is referred to as a pathological condition wherein multiple disorders are manifested in the same individual. These include hypertension, hyperglycemia, dyslipidemia and abdominal obesity.

Aims: Metabolic syndrome is one of the most serious non-communicable health hazards that have gained pivotal importance in the present scenario. The increasing prevalence affecting around 25 % of the world populace, mainly attributes to the acceptance of western culture, i.e. the intake of highcalorie food along with a substantial decrease in manual labor and adoption of sedentary lifestyles. Therefore, its timely prevention and management are the dire need in the present scenario.

Methods: For successful accomplishment of the present review, an exhaustive analysis was performed utilizing a pool of previous related literature. The terms used during the search included ‘metabolic syndrome, prevalence, etiology, current pharmacotherapy for metabolic syndrome, etc. PUBMED, Medline and SCOPUS were explored for the study of abstracts, research and review papers in the quest for related data. The articles were downloaded and utilized for a meta-analysis study approach.

Conclusion: In this review, an attempt was made to apprehend and summarize the epidemiology and treatment strategies for metabolic syndrome with a better understanding of its pathogenesis. It was postulated that an early diagnostic approach and subsequent line of treatment is required to prevent the deterioration of an individual’s health and life.

Keywords: Metabolic syndrome, obesity, type 2 diabetes, hypertension, dyslipidemia, co-morbidities.

Graphical Abstract
[1]
Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome- a new world-wide definition. A consensus statement from the international diabetes federation. Lancet, 2006, 366, 1059-1062.
[http://dx.doi.org/10.1016/S0140-6736(05)67402-8] [PMID: 16182882]
[2]
Reisinger, C.; Nkeh-Chungag, B.N.; Fredriksen, P.M.; Goswami, N. The prevalence of pediatric metabolic syndrome-a critical look on the discrepancies between definitions and its clinical importance. Int. J. Obes., 2021, 45(1), 12-24.
[http://dx.doi.org/10.1038/s41366-020-00713-1] [PMID: 33208861]
[3]
Belete, R.; Ataro, Z.; Abdu, A.; Sheleme, M. Global prevalence of metabolic syndrome among patients with type I diabetes mellitus: A systematic review and meta-analysis. Diabetol. Metab. Syndr., 2021, 13(1), 25.
[http://dx.doi.org/10.1186/s13098-021-00641-8] [PMID: 33653388]
[4]
Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr Harmonizing the metabolic syndrome. Circulation, 2009, 120(16), 1640-1645.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192644] [PMID: 19805654]
[5]
Alberti, K.G.M.M.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet. Med., 1998, 15(7), 539-553.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199807)15:7<539:AID-DIA668>3.0.CO;2-S] [PMID: 9686693]
[6]
Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr; Spertus, J.A.; Costa, F. Diagnosis and management of the metabolic syndrome: An American heart association/national heart, lung and blood institute scientific statement. Circulation, 2005, 112(17), 2735-2752.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.169404] [PMID: 16157765]
[7]
Wilson, P.W.F.; D’Agostino, R.B.; Parise, H.; Sullivan, L.; Meigs, J.B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation, 2005, 112(20), 3066-3072.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.539528] [PMID: 16275870]
[8]
Cameron, A.J.; Shaw, J.E.; Zimmet, P.Z. The metabolic syndrome: Prevalence in worldwide populations. Endocrinol. Metab. Clin. North Am., 2004, 33(2), 351-375.
[http://dx.doi.org/10.1016/j.ecl.2004.03.005] [PMID: 15158523]
[9]
Jing, Y.; Wu, F.; Li, D.; Yang, L.; Li, Q.; Li, R. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol. Cell. Endocrinol., 2017, 461, 256-264.
[10]
Shaw, J.E.; Chisholm, D.J. 1: Epidemiology and prevention of type 2 diabetes and the metabolic syndrome. Med. J. Aust., 2003, 179(7), 379-383.
[http://dx.doi.org/10.5694/j.1326-5377.2003.tb05599.x] [PMID: 14503906]
[11]
Kylin, E. Studienueberdas Hypertonie-Hyperglycamie-Hyperurikamie-syndrom. J. Med., 2018, 44, 105-127.
[12]
Vague, J. Sexual differentiation. A factor affecting the forms of obesity. Obes. Res., 1996, 30, S39-S40.
[13]
Crepaldi, G. Essential hyperlipidemia, obesity and diabetes. Diabetes, 1965, 49, 1512-1517.
[14]
Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 1988, 37(12), 1595-1607.
[http://dx.doi.org/10.2337/diab.37.12.1595] [PMID: 3056758]
[15]
Haffner, S.M.; Valdez, R.A.; Hazuda, H.P.; Mitchell, B.D.; Morales, P.A.; Stern, M.P. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes, 1992, 41(6), 715-722.
[http://dx.doi.org/10.2337/diab.41.6.715] [PMID: 1587398]
[16]
Palaniappan, L.P.; Wong, E.C.; Shin, J.J.; Fortmann, S.P.; Lauderdale, D.S. Asian Americans have greater prevalence of metabolic syndrome despite lower body mass index. Int. J. Obes., 2011, 35(3), 393-400.
[http://dx.doi.org/10.1038/ijo.2010.152] [PMID: 20680014]
[17]
Beltrán-Sánchez, H.; Harhay, M.O.; Harhay, M.M.; McElligott, S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999-2010. J. Am. Coll. Cardiol., 2013, 62(8), 697-703.
[http://dx.doi.org/10.1016/j.jacc.2013.05.064] [PMID: 23810877]
[18]
Ford, E.S.; Giles, W.H.; Dietz, W.H. Prevalence of the metabolic syndrome among US adults: Findings from the third national health and nutrition examination survey. JAMA, 2002, 287(3), 356-359.
[http://dx.doi.org/10.1001/jama.287.3.356] [PMID: 11790215]
[19]
Aguilar, M.; Bhuket, T.; Torres, S.; Liu, B.; Wong, R.J. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA, 2015, 313(19), 1973-1974.
[http://dx.doi.org/10.1001/jama.2015.4260] [PMID: 25988468]
[20]
Ponholzer, A.; Temml, C.; Rauchenwald, M.; Marszalek, M.; Madersbacher, S. Is the metabolic syndrome a risk factor for female sexual dysfunction in sexually active women? Int. J. Impot. Res., 2008, 20(1), 100-104.
[http://dx.doi.org/10.1038/sj.ijir.3901605] [PMID: 17882275]
[21]
Palaniappan, L.; Carnethon, M.R.; Wang, Y.; Hanley, A.J.G.; Fortmann, S.P.; Haffner, S.M.; Wagenknecht, L. Predictors of the incident metabolic syndrome in adults: The insulin resistance atherosclerosis study. Diabetes Care, 2004, 27(3), 788-793.
[http://dx.doi.org/10.2337/diacare.27.3.788] [PMID: 14988303]
[22]
Olijhoek, J.; van der Graaf, Y.; Banga, J.D.; Algra, A.; Rabelink, T.J.; Visseren, F.L.J. The metabolic syndrome is associated with advanced vascular damage in patients with coronary heart disease, stroke, peripheral arterial disease or abdominal aortic aneurysm. Eur. Heart J., 2004, 25(4), 342-348.
[http://dx.doi.org/10.1016/j.ehj.2003.12.007] [PMID: 14984924]
[23]
Saklayen, M.G. The global epidemic of metabolic syndrome. Curr. Hypertens. Rep., 2018, 20(2), 12.
[http://dx.doi.org/10.1007/s11906-018-0812-z] [PMID: 29480368]
[24]
Nolan, P.B.; Carrick-Ranson, G.; Stinear, J.W.; Reading, S.A.; Dalleck, L.C. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Prev. Med. Rep., 2017, 7, 211-215.
[http://dx.doi.org/10.1016/j.pmedr.2017.07.004] [PMID: 28794957]
[25]
Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci., 2022, 23(2), 786.
[http://dx.doi.org/10.3390/ijms23020786] [PMID: 35054972]
[26]
Bovolini, A.; Garcia, J.; Andrade, M.A.; Duarte, J.A. Metabolic syndrome pathophysiology and predisposing factors. Int. J. Sports Med., 2021, 42(3), 199-214.
[http://dx.doi.org/10.1055/a-1263-0898] [PMID: 33075830]
[27]
Tsimikas, S.; Willeit, J.; Knoflach, M.; Mayr, M.; Egger, G.; Notdurfter, M.; Witztum, J.L.; Wiedermann, C.J.; Xu, Q.; Kiechl, S.; Kiechl, S. Lipoprotein-associated phospholipase A2 activity, ferritin levels, metabolic syndrome, and 10-year cardiovascular and non-cardiovascular mortality: Results from the Bruneck study. Eur. Heart J., 2008, 30(1), 107-115.
[http://dx.doi.org/10.1093/eurheartj/ehn502] [PMID: 19019993]
[28]
Jacobs, M.; van Greevenbroek, M.M.J.; van der Kallen, C.J.H.; Ferreira, I.; Blaak, E.E.; Feskens, E.J.M.; Jansen, E.H.J.M.; Schalkwijk, C.G.; Stehouwer, C.D.A. Low-grade inflammation can partly explain the association between the metabolic syndrome and either coronary artery disease or severity of peripheral arterial disease: The CODAM study. Eur. J. Clin. Invest., 2009, 39(6), 437-444.
[http://dx.doi.org/10.1111/j.1365-2362.2009.02129.x] [PMID: 19397692]
[29]
Kawarazaki, W.; Fujita, T. The Role of aldosterone in obesity-related hypertension. Am. J. Hypertens., 2016, 29(4), 415-423.
[http://dx.doi.org/10.1093/ajh/hpw003] [PMID: 26927805]
[30]
Halberg, N.; Wernstedt-Asterholm, I.; Scherer, P.E. The adipocyte as an endocrine cell. Endocrinol. Metab. Clin. North Am., 2008, 37(3), 753-768.
[http://dx.doi.org/10.1016/j.ecl.2008.07.002] [PMID: 18775362]
[31]
Cinti, S.; Mitchell, G.; Barbatelli, G.; Murano, I.; Ceresi, E.; Faloia, E.; Wang, S.; Fortier, M.; Greenberg, A.S.; Obin, M.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res., 2005, 46(11), 2347-2355.
[http://dx.doi.org/10.1194/jlr.M500294-JLR200] [PMID: 16150820]
[32]
Kahn, C.R.; Wang, G.; Lee, K.Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Invest., 2019, 129(10), 3990-4000.
[http://dx.doi.org/10.1172/JCI129187] [PMID: 31573548]
[33]
Lau, D.C.W.; Dhillon, B.; Yan, H.; Szmitko, P.E.; Verma, S. Adipokines: Molecular links between obesity and atheroslcerosis. Am. J. Physiol. Heart Circ. Physiol., 2005, 288(5), H2031-H2041.
[http://dx.doi.org/10.1152/ajpheart.01058.2004] [PMID: 15653761]
[34]
Bergman, R.N.; Mittelman, S.D. Central role of the adipocyte in insulin resistance. J. Basic Clin. Physiol. Pharmacol., 1998, 9(2-4), 205-221.
[http://dx.doi.org/10.1515/JBCPP.1998.9.2-4.205] [PMID: 10212835]
[35]
Saltiel, A.R. You are what you secrete. Nat. Med., 2001, 7(8), 887-888.
[http://dx.doi.org/10.1038/90911] [PMID: 11479613]
[36]
Pyrzak, B.; Ruminska, M.; Popko, K.; Demkow, U. Adiponectin as a biomarker of the metabolic syndrome in children and adolescents. Eur. J. Med. Res., 2010, 15(Suppl. 2), 147-151.
[http://dx.doi.org/10.1186/2047-783X-15-S2-147] [PMID: 21147643]
[37]
Okamoto, Y.; Kihara, S.; Funahashi, T.; Matsuzawa, Y.; Libby, P. Adiponectin: A key adipocytokine in metabolic syndrome. Clin. Sci., 2006, 110(3), 267-278.
[http://dx.doi.org/10.1042/CS20050182] [PMID: 16464169]
[38]
Stefan, N.; Vozarova, B.; Funahashi, T.; Matsuzawa, Y.; Weyer, C.; Lindsay, R.S.; Youngren, J.F.; Havel, P.J.; Pratley, R.E.; Bogardus, C.; Tataranni, P.A. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes, 2002, 51(6), 1884-1888.
[http://dx.doi.org/10.2337/diabetes.51.6.1884] [PMID: 12031977]
[39]
Ryo, M.; Nakamura, T.; Kihara, S.; Kumada, M.; Shibazaki, S.; Takahashi, M.; Nagai, M.; Matsuzawa, Y.; Funahashi, T. Adiponectin as a biomarker of the metabolic syndrome. Circ. J., 2004, 68(11), 975-981.
[http://dx.doi.org/10.1253/circj.68.975] [PMID: 15502375]
[40]
Yatagai, T.; Nishida, Y.; Nagasaka, S.; Nakamura, T.; Tokuyama, K.; Shindo, M.; Tanaka, H.; Ishibashi, S. Relationship between exercise training-induced increase in insulin sensitivity and adiponectinemia in healthy men. Endocr. J., 2003, 50(2), 233-238.
[http://dx.doi.org/10.1507/endocrj.50.233] [PMID: 12803245]
[41]
Lindsay, R.S.; Funahashi, T.; Hanson, R.L.; Matsuzawa, Y.; Tanaka, S.; Tataranni, P.A.; Knowler, W.C.; Krakoff, J. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet, 2002, 360(9326), 57-58.
[http://dx.doi.org/10.1016/S0140-6736(02)09335-2] [PMID: 12114044]
[42]
Orchard, T.J.; Olson, J.C.; Erbey, J.R.; Williams, K.; Forrest, K.Y.Z.; Smithline Kinder, L.; Ellis, D.; Becker, D.J. Insulin resistance-related factors, but not glycemia, predict coronary artery disease in type 1 diabetes: 10-year follow-up data from the Pittsburgh epidemiology of diabetes complications study. Diabetes Care, 2003, 26(5), 1374-1379.
[http://dx.doi.org/10.2337/diacare.26.5.1374] [PMID: 12716791]
[43]
Isomaa, B.; Almgren, P.; Tuomi, T.; Forsén, B.; Lahti, K.; Nissén, M.; Taskinen, M.R.; Groop, L. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care, 2001, 24(4), 683-689.
[http://dx.doi.org/10.2337/diacare.24.4.683] [PMID: 11315831]
[44]
Weyer, C.; Funahashi, T.; Tanaka, S.; Hotta, K.; Matsuzawa, Y.; Pratley, R.E.; Tataranni, P.A. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab., 2001, 86(5), 1930-1935.
[http://dx.doi.org/10.1210/jcem.86.5.7463] [PMID: 11344187]
[45]
Zou, C.; Shao, J. Role of adipocytokines in obesity-associated insulin resistance. J. Nutr. Biochem., 2008, 19(5), 277-286.
[http://dx.doi.org/10.1016/j.jnutbio.2007.06.006] [PMID: 18054218]
[46]
Baden, M.Y.; Yamada, Y.; Takahi, Y.; Obata, Y.; Saisho, K.; Tamba, S.; Yamamoto, K.; Umeda, M.; Furubayashi, A.; Tsukamoto, Y.; Sakaguchi, K.; Matsuzawa, Y. Association of adiponectin with blood pressure in healthy people. Clin. Endocrinol., 2013, 78(2), 226-231.
[http://dx.doi.org/10.1111/j.1365-2265.2012.04370.x] [PMID: 22356115]
[47]
Blaslov, K.; Bulum, T.; Zibar, K.; Duvnjak, L. Relationship between adiponectin level, insulin sensitivity, and metabolic syndrome in type 1 diabetic patients. Int. J. Endocrinol., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/535906] [PMID: 23956744]
[48]
Chow, W.S.; Cheung, B.M.Y.; Tso, A.W.K.; Xu, A.; Wat, N.M.S.; Fong, C.H.Y.; Ong, L.H.Y.; Tam, S.; Tan, K.C.B.; Janus, E.D.; Lam, T.H.; Lam, K.S.L. Hypoadiponectinemia as a predictor for the development of hypertension: A 5-year prospective study. Hypertension, 2007, 49(6), 1455-1461.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.086835] [PMID: 17452504]
[49]
Wolf, G. Adiponectin: A regulator of energy homeostasis. Nutr. Rev., 2003, 61(8), 290-292.
[http://dx.doi.org/10.1301/nr.2003.aug.290-292] [PMID: 13677592]
[50]
Yamauchi, T.; Kamon, J.; Waki, H.; Terauchi, Y.; Kubota, N.; Hara, K.; Mori, Y.; Ide, T.; Murakami, K.; Tsuboyama-Kasaoka, N.; Ezaki, O.; Akanuma, Y.; Gavrilova, O.; Vinson, C.; Reitman, M.L.; Kagechika, H.; Shudo, K.; Yoda, M.; Nakano, Y.; Tobe, K.; Nagai, R.; Kimura, S.; Tomita, M.; Froguel, P.; Kadowaki, T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med., 2001, 7(8), 941-946.
[http://dx.doi.org/10.1038/90984] [PMID: 11479627]
[51]
Wakil, S.J.; Abu-Elheiga, L.A. Fatty acid metabolism: target for metabolic syndrome. J. Lipid Res., 2009, 50, S138-S143.
[http://dx.doi.org/10.1194/jlr.R800079-JLR200] [PMID: 19047759]
[52]
Yamauchi, T.; Kamon, J.; Minokoshi, Y.; Ito, Y.; Waki, H.; Uchida, S.; Yamashita, S.; Noda, M.; Kita, S.; Ueki, K.; Eto, K.; Akanuma, Y.; Froguel, P.; Foufelle, F.; Ferre, P.; Carling, D.; Kimura, S.; Nagai, R.; Kahn, B.B.; Kadowaki, T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med., 2002, 8(11), 1288-1295.
[http://dx.doi.org/10.1038/nm788] [PMID: 12368907]
[53]
López-Bermejo, A.; Botas, P.; Funahashi, T.; Delgado, E.; Kihara, S.; Ricart, W.; Fernández-Real, J.M. Adiponectin, hepatocellular dysfunction and insulin sensitivity. Clin. Endocrinol., 2004, 60(2), 256-263.
[http://dx.doi.org/10.1046/j.1365-2265.2004.01977.x] [PMID: 14725689]
[54]
Hutley, L.; Prins, J.B. Fat as an endocrine organ: Relationship to the metabolic syndrome. Am. J. Med. Sci., 2005, 330(6), 280-289.
[http://dx.doi.org/10.1097/00000441-200512000-00005] [PMID: 16355012]
[55]
Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R.; Ohannesian, J.P.; Marco, C.C.; McKee, L.J.; Bauer, T.L.; Caro, J.F. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med., 1996, 334(5), 292-295.
[http://dx.doi.org/10.1056/NEJM199602013340503] [PMID: 8532024]
[56]
Jamroz-Wiśniewska, A.; Gertler, A.; Solomon, G.; Wood, M.E.; Whiteman, M.; Bełtowski, J. Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: Role of nitric oxide and hydrogen sulfide. PLoS One, 2014, 9(1), e86744.
[http://dx.doi.org/10.1371/journal.pone.0086744] [PMID: 24475175]
[57]
Ghadge, A.A.; Khaire, A.A. Leptin as a predictive marker for metabolic syndrome. Cytokine, 2019, 121, 154735.
[http://dx.doi.org/10.1016/j.cyto.2019.154735] [PMID: 31154250]
[58]
Bravata, D.M.; Wells, C.K.; Concato, J.; Kernan, W.N.; Brass, L.M.; Gulanski, B.I. Two measures of insulin sensitivity provided similar information in a U.S. population. J. Clin. Epidemiol., 2004, 57(11), 1214-1217.
[http://dx.doi.org/10.1016/j.jclinepi.2004.05.001] [PMID: 15567640]
[59]
Carey, D.G.; Jenkins, A.B.; Campbell, L.V.; Freund, J.; Chisholm, D.J. Abdominal fat and insulin resistance in normal and overweight women: Direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes, 1996, 45(5), 633-638.
[http://dx.doi.org/10.2337/diab.45.5.633] [PMID: 8621015]
[60]
Shirasaka, T.; Takasaki, M.; Kannan, H. Cardiovascular effects of leptin and orexins. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2003, 284(3), R639-R651.
[http://dx.doi.org/10.1152/ajpregu.00359.2002] [PMID: 12571072]
[61]
Uysal, K.T.; Wiesbrock, S.M.; Marino, M.W.; Hotamisligil, G.S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature, 1997, 389(6651), 610-614.
[http://dx.doi.org/10.1038/39335] [PMID: 9335502]
[62]
Bastard, J.P.; Maachi, M.; Lagathu, C.; Kim, M.J.; Caron, M.; Vidal, H.; Capeau, J.; Feve, B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw., 2006, 17(1), 4-12.
[PMID: 16613757]
[63]
Xydakis, A.M.; Case, C.C.; Jones, P.H.; Hoogeveen, R.C.; Liu, M.Y.; Smith, E.O.B.; Nelson, K.W.; Ballantyne, C.M. Adiponectin, inflammation, and the expression of the metabolic syndrome in obese individuals: The impact of rapid weight loss through caloric restriction. J. Clin. Endocrinol. Metab., 2004, 89(6), 2697-2703.
[http://dx.doi.org/10.1210/jc.2003-031826] [PMID: 15181044]
[64]
Fried, S.K.; Bunkin, D.A.; Greenberg, A.S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: Depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab., 1998, 83(3), 847-850.
[http://dx.doi.org/10.1210/jc.83.3.847] [PMID: 9506738]
[65]
Bastard, J.P.; Jardel, C.; Bruckert, E.; Blondy, P.; Capeau, J.; Laville, M.; Vidal, H.; Hainque, B. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J. Clin. Endocrinol. Metab., 2000, 85(9), 3338-3342.
[PMID: 10999830]
[66]
Wisse, B.E. The inflammatory syndrome: The role of adipose tissue cytokines in metabolic disorders linked to obesity. J. Am. Soc. Nephrol., 2004, 15(11), 2792-2800.
[http://dx.doi.org/10.1097/01.ASN.0000141966.69934.21] [PMID: 15504932]
[67]
Alessi, M.C.; Juhan-Vague, I. PAI-1 and the metabolic syndrome: Links, causes, and consequences. Arterioscler. Thromb. Vasc. Biol., 2006, 26(10), 2200-2207.
[http://dx.doi.org/10.1161/01.ATV.0000242905.41404.68] [PMID: 16931789]
[68]
Kohler, H.P.; Grant, P.J. Plasminogen-activator inhibitor type 1 and coronary artery disease. N. Engl. J. Med., 2000, 342(24), 1792-1801.
[http://dx.doi.org/10.1056/NEJM200006153422406] [PMID: 10853003]
[69]
Clearfield, M.B. C-reactive protein: A new risk assessment tool for cardiovascular disease. J. Am. Osteopath. Assoc., 2005, 105(9), 409-416.
[PMID: 16239491]
[70]
González, A.S.; Guerrero, D.B.; Soto, M.B.; Díaz, S.P.; Martinez-Olmos, M.; Vidal, O. Metabolic syndrome, insulin resistance and the inflammation markers C-reactive protein and ferritin. Eur. J. Clin. Nutr., 2006, 60(6), 802-809.
[http://dx.doi.org/10.1038/sj.ejcn.1602384] [PMID: 16493453]
[71]
Deepa, R.; Velmurugan, K.; Arvind, K.; Sivaram, P.; Sientay, C.; Uday, S.; Mohan, V. Serum levels of interleukin 6, C-reactive protein, vascular cell adhesion molecule 1, and monocyte chemotactic protein 1 in relation to insulin resistance and glucose intolerance—the Chennai Urban Rural Epidemiology Study (CURES). Metabolism, 2006, 55(9), 1232-1238.
[http://dx.doi.org/10.1016/j.metabol.2006.05.008] [PMID: 16919544]
[72]
Pedersen, B.K.; Steensberg, A.; Fischer, C.; Keller, C.; Keller, P.; Plomgaard, P.; Febbraio, M.; Saltin, B. Searching for the exercise factor: Is IL-6 a candidate? J. Muscle Res. Cell Motil., 2003, 24(2/3), 113-119.
[http://dx.doi.org/10.1023/A:1026070911202] [PMID: 14609022]
[73]
Fain, J.N.; Tagele, B.M.; Cheema, P.; Madan, A.K.; Tichansky, D.S. Release of 12 adipokines by adipose tissue, nonfat cells, and fat cells from obese women. Obesity (Silver Spring), 2010, 18(5), 890-896.
[http://dx.doi.org/10.1038/oby.2009.335] [PMID: 19834460]
[74]
Barton, M.; Carmona, R.; Ortmann, J.; Krieger, J.E.; Traupe, T. Obesity-associated activation of angiotensin and endothelin in the cardiovascular system. Int. J. Biochem. Cell Biol., 2003, 35(6), 826-837.
[http://dx.doi.org/10.1016/S1357-2725(02)00307-2] [PMID: 12676169]
[75]
Kouvari, M.; D’Cunha, N.M.; Travica, N.; Sergi, D.; Zec, M.; Marx, W.; Naumovski, N. Metabolic syndrome, cognitive impairment and the role of diet: A narrative review. Nutrients, 2022, 14(2), 333.
[http://dx.doi.org/10.3390/nu14020333] [PMID: 35057514]
[76]
Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab. Res. Rev., 2022, 38(3), e3502.
[http://dx.doi.org/10.1002/dmrr.3502] [PMID: 34614543]
[77]
van Harmelen, V.; Eriksson, A.; Åström, G.; Wåhlén, K.; Näslund, E.; Karpe, F.; Frayn, K.; Olsson, T.; Andersson, J.; Rydén, M.; Arner, P. Vascular peptide endothelin-1 links fat accumulation with alterations of visceral adipocyte lipolysis. Diabetes, 2008, 57(2), 378-386.
[http://dx.doi.org/10.2337/db07-0893] [PMID: 18025413]
[78]
Morise, T.; Takeuchi, Y.; Kawano, M.; Koni, I.; Takeda, R. Increased plasma levels of immunoreactive endothelin and von Willebrand factor in NIDDM patients. Diabetes Care, 1995, 18(1), 87-89.
[http://dx.doi.org/10.2337/diacare.18.1.87] [PMID: 7698054]
[79]
da Silva, A.A.; Kuo, J.J.; Tallam, L.S.; Hall, J.E. Role of endothelin-1 in blood pressure regulation in a rat model of visceral obesity and hypertension. Hypertension, 2004, 43(2), 383-387.
[http://dx.doi.org/10.1161/01.HYP.0000111139.94378.74] [PMID: 14707164]
[80]
Ferrannini, E.; Natali, A. Essential hypertension, metabolic disorders, and insulin resistance. Am. Heart J., 1991, 121(4), 1274-1282.
[http://dx.doi.org/10.1016/0002-8703(91)90433-I] [PMID: 2008856]
[81]
Briones, A.M.; Nguyen Dinh Cat, A.; Callera, G.E.; Yogi, A.; Burger, D.; He, Y.; Corrêa, J.W.; Gagnon, A.M.; Gomez-Sanchez, C.E.; Gomez-Sanchez, E.P.; Sorisky, A.; Ooi, T.C.; Ruzicka, M.; Burns, K.D.; Touyz, R.M. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: Implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension, 2012, 59(5), 1069-1078.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.190223] [PMID: 22493070]
[82]
Maaten, J.C.T.; Voorburg, A.; Heine, R.J.; Wee, P.M.T.; Donker, A.J.M.; Gans, R.O.B. Renal handling of urate and sodium during acute physiological hyperinsulinaemia in healthy subjects. Clin. Sci., 1997, 92(1), 51-58.
[http://dx.doi.org/10.1042/cs0920051] [PMID: 9038591]
[83]
Hall, J. Mechanisms of abnormal renal sodium handling in obesity hypertension. Am. J. Hypertens., 1997, 10(12), 49S-55S.
[http://dx.doi.org/10.1016/S0895-7061(97)00075-7] [PMID: 9160781]
[84]
Aljada, A.; Mohanty, P.; Ghanim, H.; Abdo, T.; Tripathy, D.; Chaudhuri, A.; Dandona, P. Increase in intranuclear nuclear factor κB and decrease in inhibitor κB in mononuclear cells after a mixed meal: evidence for a proinflammatory effect. Am. J. Clin. Nutr., 2004, 79(4), 682-690.
[http://dx.doi.org/10.1093/ajcn/79.4.682] [PMID: 15051615]
[85]
Dandona, P.; Aljada, A.; Chaudhuri, A.; Mohanty, P.; Garg, R. Metabolic syndrome. Circulation, 2005, 111(11), 1448-1454.
[http://dx.doi.org/10.1161/01.CIR.0000158483.13093.9D] [PMID: 15781756]
[86]
Carlyle, M.; Jones, O.B.; Kuo, J.J.; Hall, J.E. Chronic cardiovascular and renal actions of leptin: Role of adrenergic activity. Hypertension, 2002, 39(2), 496-501.
[http://dx.doi.org/10.1161/hy0202.104398] [PMID: 11882597]
[87]
Mendizábal, Y.; Llorens, S.; Nava, E. Hypertension in metabolic syndrome: Vascular pathophysiology. Int. J. Hypertens., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/230868] [PMID: 23573411]
[88]
Shreiff, D. Leptin and hypertension- A perspective. EC. Endocrinol. Metabol. Res., 2018, 3(6), 225-229.
[89]
Kuo, C.H.; Lin, Y.L.; Lee, C.J.; Wang, C.H.; Lai, Y.H.; Liou, H.H.; Hsu, B.G. Hyperleptinemia positively associated with central arterial stiffness in hemodialysis patients. PLoS One, 2018, 13(1), e0190694.
[http://dx.doi.org/10.1371/journal.pone.0190694] [PMID: 29304064]
[90]
Goto, K.; Kitazono, T. The transient receptor potential vanilloid 4 channel and cardiovascular disease risk factors. Front. Physiol., 2021, 12(12), 728979.
[http://dx.doi.org/10.3389/fphys.2021.728979] [PMID: 34616307]
[91]
Boden, G.; Shulman, G.I. Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and β-cell dysfunction. Eur. J. Clin. Invest., 2002, 32(Suppl. 3), 14-23.
[http://dx.doi.org/10.1046/j.1365-2362.32.s3.3.x] [PMID: 12028371]
[92]
Tooke, J.E.; Hannemann, M.M. Adverse endothelial function and the insulin resistance syndrome. J. Intern. Med., 2000, 247(4), 425-431.
[http://dx.doi.org/10.1046/j.1365-2796.2000.00671.x] [PMID: 10792555]
[93]
Tripathy, D.; Mohanty, P.; Dhindsa, S.; Syed, T.; Ghanim, H.; Aljada, A.; Dandona, P. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes, 2003, 52(12), 2882-2887.
[http://dx.doi.org/10.2337/diabetes.52.12.2882] [PMID: 14633847]
[94]
Lewis, G.F.; Steiner, G. Acute effects of insulin in the control of VLDL production in humans. Implications for the insulin-resistant state. Diabetes Care, 1996, 19(4), 390-393.
[http://dx.doi.org/10.2337/diacare.19.4.390] [PMID: 8729170]
[95]
Juhan-Vague, I.; Alessi, M-C.; Mavri, A.; Morange, P.E. Plasminogen activator inhibitor-1, inflammation, obesity, insulin resistance and vascular risk. J. Thromb. Haemost., 2003, 1(7), 1575-1579.
[http://dx.doi.org/10.1046/j.1538-7836.2003.00279.x] [PMID: 12871293]
[96]
Pettman, T.L.; Misan, G.M.H.; Owen, K.; Warren, K.; Coates, A.M.; Buckley, J.D.; Howe, P.R.C. Self-management for obesity and cardio-metabolic fitness: Description and evaluation of the lifestyle modification program of a randomised controlled trial. Int. J. Behav. Nutr. Phys. Act., 2008, 5(1), 53.
[http://dx.doi.org/10.1186/1479-5868-5-53] [PMID: 18954466]
[97]
Lorig, K.R.; Sobel, D.S.; Ritter, P.L.; Laurent, D.; Hobbs, M. Effect of a self-management program on patients with chronic disease. Eff. Clin. Pract., 2001, 4(6), 256-262.
[PMID: 11769298]
[98]
Bird, S.R.; Hawley, J.A. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc. Med., 2017, 2(1), e000143.
[http://dx.doi.org/10.1136/bmjsem-2016-000143] [PMID: 28879026]
[99]
Hofmann, T.; Elbelt, U.; Stengel, A. Irisin as a muscle-derived hormone stimulating thermogenesis – A critical update. Peptides, 2014, 54, 89-100.
[http://dx.doi.org/10.1016/j.peptides.2014.01.016] [PMID: 24472856]
[100]
Yang, Q.; Cogswell, M.E.; Flanders, W.D.; Hong, Y.; Zhang, Z.; Loustalot, F.; Gillespie, C.; Merritt, R.; Hu, F.B. Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults. JAMA, 2012, 307(12), 1273-1283.
[http://dx.doi.org/10.1001/jama.2012.339] [PMID: 22427615]
[101]
National Diabetes Statistics Report, CDC publication. 2017.
[102]
Festa, A.; D’Agostino, R., Jr; Howard, G.; Mykkänen, L.; Tracy, R.P.; Haffner, S.M. Chronic subclinical inflammation as part of the insulin resistance syndrome: The insulin resistance atherosclerosis study (IRAS). Circulation, 2000, 102(1), 42-47.
[http://dx.doi.org/10.1161/01.CIR.102.1.42] [PMID: 10880413]
[103]
Pedersen, B.K. Anti-inflammatory effects of exercise: Role in diabetes and cardiovascular disease. Eur. J. Clin. Invest., 2017, 47(8), 600-611.
[http://dx.doi.org/10.1111/eci.12781] [PMID: 28722106]
[104]
King, D.S.; Dalsky, G.P.; Staten, M.A.; Clutter, W.E.; Van Houten, D.R.; Holloszy, J.O. Insulin action and secretion in endurance-trained and untrained humans. J. Appl. Physiol., 1987, 63(6), 2247-2252.
[http://dx.doi.org/10.1152/jappl.1987.63.6.2247] [PMID: 3325486]
[105]
Leung, F.P.; Yung, L.M.; Laher, I.; Yao, X.; Chen, Z.Y.; Huang, Y. Exercise, vascular wall and cardiovascular diseases: An update (Part 1). Sports Med., 2008, 38(12), 1009-1024.
[http://dx.doi.org/10.2165/00007256-200838120-00005] [PMID: 19026018]
[106]
Rahmouni, K.; Haynes, W.G.; Morgan, D.A.; Mark, A.L. Selective resistance to central neural administration of leptin in agouti obese mice. Hypertension, 2002, 39(2), 486-490.
[http://dx.doi.org/10.1161/hy0202.102836] [PMID: 11882595]
[107]
Andersen, C.J.; Fernandez, M.L. Dietary strategies to reduce metabolic syndrome. Rev. Endocr. Metab. Disord., 2013, 14(3), 241-254.
[http://dx.doi.org/10.1007/s11154-013-9251-y] [PMID: 23943309]
[108]
Volek, J.S.; Phinney, S.D.; Forsythe, C.E.; Quann, E.E.; Wood, R.J.; Puglisi, M.J.; Kraemer, W.J.; Bibus, D.M.; Fernandez, M.L.; Feinman, R.D. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids, 2009, 44(4), 297-309.
[http://dx.doi.org/10.1007/s11745-008-3274-2] [PMID: 19082851]
[109]
Willett, W.C. Dietary fats and coronary heart disease. J. Intern. Med., 2012, 272(1), 13-24.
[http://dx.doi.org/10.1111/j.1365-2796.2012.02553.x] [PMID: 22583051]
[110]
Kesse-Guyot, E.; Ahluwalia, N.; Lassale, C.; Hercberg, S.; Fezeu, L.; Lairon, D. Adherence to mediterranean diet reduces the risk of metabolic syndrome: A 6-year prospective study. Nutr. Metab. Cardiovasc. Dis., 2013, 23(7), 677-683.
[http://dx.doi.org/10.1016/j.numecd.2012.02.005] [PMID: 22633793]
[111]
Menegotto, G.; Moraes Silva, F.; de Azevedo, M.J.; de Almeida, J.C. Lunch energy density and the metabolic syndrome in patients with type 2 diabetes mellitus. Br. J. Nutr., 2013, 110(9), 1656-1663.
[http://dx.doi.org/10.1017/S0007114513000846] [PMID: 23611470]
[112]
Nguyen, H.D.; Oh, H.; Kim, M.S. Higher intakes of fruits, vegetables, and multiple individual nutrients is associated with a lower risk of metabolic syndrome among adults with comorbidities. Nutr. Res., 2022, 99, 1-12.
[http://dx.doi.org/10.1016/j.nutres.2021.11.004] [PMID: 35065371]
[113]
Hidayat, K.; Zhu, W.Z.; Peng, S.M.; Ren, J.J.; Lu, M.L.; Wang, H.P.; Xu, J.Y.; Zhou, H.; Yu, L.G.; Qin, L.Q. The association between meat consumption and the metabolic syndrome: A cross-sectional study and meta-analysis. Br. J. Nutr., 2022, 127(10), 1467-1481.
[http://dx.doi.org/10.1017/S0007114521002452] [PMID: 34420528]
[114]
Kuroki, Y.; Kanauchi, K.; Kanauchi, M. Adherence index to the American heart association diet and lifestyle recommendation is associated with the metabolic syndrome in Japanese male workers. Eur. J. Intern. Med., 2012, 23(8), e199-e203.
[http://dx.doi.org/10.1016/j.ejim.2012.08.002] [PMID: 22951435]
[115]
Coleman, K.J.; Huang, Y.C.; Koebnick, C.; Reynolds, K.; Xiang, A.H.; Black, M.H.; Alskaf, S. Metabolic syndrome is less likely to resolve in Hispanics and non-Hispanic blacks after bariatric surgery. Ann. Surg., 2014, 259(2), 279-285.
[http://dx.doi.org/10.1097/SLA.0000000000000258] [PMID: 24100336]
[116]
Takamiya, T.; Zaky, W.R.; Edmundowics, D.; Kadowaki, T.; Ueshima, H.; Kuller, L.H.; Sekikawa, A. World Health Organization-defined metabolic syndrome is a better predictor of coronary calcium than the adult treatment panel III criteria in American men aged 40-49 years. Diabetes Care, 2004, 27(12), 2977-2979.
[http://dx.doi.org/10.2337/diacare.27.12.2977] [PMID: 15562218]
[117]
Peeters, A.; Backholer, K. How to influence the obesity landscape using health policies. Int. J. Obes., 2017, 41(6), 835-839.
[http://dx.doi.org/10.1038/ijo.2017.24] [PMID: 28127043]
[118]
Barrès, R.; Zierath, J.R. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat. Rev. Endocrinol., 2016, 12(8), 441-451.
[http://dx.doi.org/10.1038/nrendo.2016.87] [PMID: 27312865]
[119]
Fletcher, J.M.; Frisvold, D.E.; Tefft, N. Non-linear effects of soda taxes on consumption and weight outcomes. Health Econ., 2015, 24(5), 566-582.
[http://dx.doi.org/10.1002/hec.3045] [PMID: 24615758]
[120]
Bray, G.A.; Nielsen, S.J.; Popkin, B.M. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr., 2004, 79(4), 537-543.
[http://dx.doi.org/10.1093/ajcn/79.4.537] [PMID: 15051594]
[121]
Bhardwaj, T. Evaluating a human rights approach to health in the Indian context. Emerging needs and challenges. J. Hum. Rights Soc. Work, 2020, 5(1), 3-11.
[http://dx.doi.org/10.1007/s41134-019-00099-9]
[122]
Tenorio-Jiménez, C.; Martínez-Ramírez, M.J.; Gil, Á.; Gómez-Llorente, C. Effects of probiotics on metabolic syndrome. A systemic review of randomized clinical trials. Nutrients, 2020, 12(1), 124.
[http://dx.doi.org/10.3390/nu12010124] [PMID: 31906372]
[123]
Newcomer, J.W. Metabolic considerations in the use of antipsychotic medications: A review of recent evidence. J. Clin. Psychiatry, 2007, 68(Suppl. 1), 20-27.
[PMID: 17286524]
[124]
Patel, P.J.; Hayward, K.L.; Rudra, R.; Horsfall, L.U.; Hossain, F.; Williams, S.; Johnson, T.; Brown, N.N.; Saad, N.; Clouston, A.D.; Stuart, K.A.; Valery, P.C.; Irvine, K.M.; Russell, A.W.; Powell, E.E. Multimorbidity and polypharmacy in diabetic patients with NAFLD. Medicine, 2017, 96(26), e6761.
[http://dx.doi.org/10.1097/MD.0000000000006761] [PMID: 28658094]
[125]
Swislocki, A.L.; Siegel, D.; Jialal, I. Pharmacotherapy for the metabolic syndrome. Curr. Vasc. Pharmacol., 2012, 10(2), 187-205.
[http://dx.doi.org/10.2174/157016112799305003] [PMID: 22022773]
[126]
Lim, S.; Eckel, R.H. Pharmacological treatment and therapeutic perspectives of metabolic syndrome. Rev. Endocr. Metab. Disord., 2014, 15(4), 329-341.
[http://dx.doi.org/10.1007/s11154-014-9298-4] [PMID: 25342235]
[127]
Misra, A.; Singh, S.; Gupta, A. Pharmacotherapy in metabolic syndrome. J. Rational. Pharmacother. Res. Vol., 2017, 3(1), 20-37.
[128]
Heffron, S.P.; Parham, J.S.; Pendse, J.; Alemán, J.O. Treatment of obesity in mitigating metabolic risk. Circ. Res., 2020, 126(11), 1646-1665.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315897] [PMID: 32437303]
[129]
Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis., 2017, 11(8), 215-225.
[http://dx.doi.org/10.1177/1753944717711379] [PMID: 28639538]
[130]
Vafaeipour, Z.; Razavi, B.M.; Hosseinzadeh, H. Effects of turmeric (Curcuma longa) and its constituent (curcumin) on the metabolic syndrome: An updated review. J. Integr. Med., 2022, 20(3), 193-203.
[http://dx.doi.org/10.1016/j.joim.2022.02.008] [PMID: 35292209]
[131]
Panchal, S.K.; Brown, L. Tropical fruits from Australia as potential treatments for metabolic syndrome. Curr. Opin. Pharmacol., 2022, 63, 102182.
[http://dx.doi.org/10.1016/j.coph.2022.102182] [PMID: 35149297]
[132]
Jungbauer, A.; Medjakovic, S. Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome. Maturitas, 2012, 71(3), 227-239.
[http://dx.doi.org/10.1016/j.maturitas.2011.12.009] [PMID: 22226987]
[133]
Lee, H.S. Cuminaldehyde: Aldose reductase and α-glucosidase inhibitor derived from Cuminumcyminum L. seeds. J. Agric. Food Chem., 2005, 53(7), 2446-2450.
[http://dx.doi.org/10.1021/jf048451g] [PMID: 15796577]
[134]
Majeed, M.; Majeed, S.; Nagabhushanam, K.; Lawrence, L.; Mundkur, L. Garcinia indica extract standardized for 20% Garcinol reduces adipogenesis and high fat diet-induced obesity in mice by alleviating endoplasmic reticulum stress. J. Funct. Foods, 2020, 67, 103863.
[http://dx.doi.org/10.1016/j.jff.2020.103863]
[135]
Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agric. Food Chem., 2005, 53(20), 7749-7759.
[http://dx.doi.org/10.1021/jf051513y] [PMID: 16190627]
[136]
Aggarwal, B.B. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu. Rev. Nutr., 2010, 30(1), 173-199.
[http://dx.doi.org/10.1146/annurev.nutr.012809.104755] [PMID: 20420526]
[137]
Singh, S.; Aggarwal, B.B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). J. Biol. Chem., 1995, 270(42), 24995-25000.
[http://dx.doi.org/10.1074/jbc.270.42.24995] [PMID: 7559628]
[138]
Pendurthi, U.R.; Rao, L.V.M. Suppression of transcription factor Egr-1 by curcumin. Thromb. Res., 2000, 97(4), 179-189.
[http://dx.doi.org/10.1016/S0049-3848(99)00148-6] [PMID: 10674404]
[139]
Pfeuffer, M.; Auinger, A.; Bley, U.; Kraus-Stojanowic, I.; Laue, C.; Winkler, P.; Rüfer, C.E.; Frank, J.; Bösch-Saadatmandi, C.; Rimbach, G.; Schrezenmeir, J. Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammation in men with different APOE isoforms. Nutr. Metab. Cardiovasc. Dis., 2013, 23(5), 403-409.
[http://dx.doi.org/10.1016/j.numecd.2011.08.010] [PMID: 22118955]
[140]
Padiya, R.; Khatua, T.N.; Bagul, P.K.; Kuncha, M.; Banerjee, S.K. Garlic improves insulin sensitivity and associated metabolic syndromes in fructose fed rats. Nutr. Metab., 2011, 8(53), 7075.
[http://dx.doi.org/10.1186/1743-7075-8-53]
[141]
Reinhart, K.M.; Talati, R.; White, C.M.; Coleman, C.I. The impact of garlic on lipid parameters: A systematic review and meta-analysis. Nutr. Res. Rev., 2009, 22(1), 39-48.
[http://dx.doi.org/10.1017/S0954422409350003] [PMID: 19555517]
[142]
Bhat, M.; Kothiwale, S.K.; Tirmale, A.R.; Bhargava, S.Y.; Joshi, B.N. Antidiabetic properties of Azardiractaindica and Bougainvillea spectabilis: In vivo studies in murine diabetes model. Evid. Based Complement. Alternat. Med., 2011, 2009, 561-625.
[143]
Mollace, V.; Ragusa, S.; Sacco, I.; Muscoli, C.; Sculco, F.; Visalli, V.; Palma, E.; Muscoli, S.; Mondello, L.; Dugo, P.; Rotiroti, D.; Romeo, F. The protective effect of bergamot oil extract on lecitine-like oxyLDL receptor-1 expression in balloon injury-related neointima formation. J. Cardiovasc. Pharmacol. Ther., 2008, 13(2), 120-129.
[http://dx.doi.org/10.1177/1074248407313821] [PMID: 18413898]
[144]
Pérez-Rubio, K.G.; González-Ortiz, M.; Martínez-Abundis, E.; Robles-Cervantes, J.A.; Espinel-Bermúdez, M.C. Effect of berberine administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metab. Syndr. Relat. Disord., 2013, 11(5), 366-369.
[http://dx.doi.org/10.1089/met.2012.0183] [PMID: 23808999]
[145]
Sharma, R.D.; Raghuram, T.C.; Rao, N.S. Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes. Eur. J. Clin. Nutr., 1990, 44(4), 301-306.
[PMID: 2194788]
[146]
Gillies, P.J.; Bhatia, S.K.; Belcher, L.A.; Hannon, D.B.; Thompson, J.T.; Vanden Heuvel, J.P. Regulation of inflammatory and lipid metabolism genes by eicosapentaenoic acid-rich oil. J. Lipid Res., 2012, 53(8), 1679-1689.
[http://dx.doi.org/10.1194/jlr.M022657] [PMID: 22556214]
[147]
Chen, S.; Zhao, X.; Ran, L.; Wan, J.; Wang, X.; Qin, Y.; Shu, F.; Gao, Y.; Yuan, L.; Zhang, Q.; Mi, M. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Dig. Liver Dis., 2015, 47(3), 226-232.
[http://dx.doi.org/10.1016/j.dld.2014.11.015] [PMID: 25577300]
[148]
Song, M.Y.; Kim, E.K.; Moon, W.S.; Park, J.W.; Kim, H.J.; So, H.S.; Park, R.; Kwon, K.B.; Park, B.H. Sulforaphane protects against cytokine- and streptozotocin-induced β-cell damage by suppressing the NF-κB pathway. Toxicol. Appl. Pharmacol., 2009, 235(1), 57-67.
[http://dx.doi.org/10.1016/j.taap.2008.11.007] [PMID: 19071154]
[149]
Ziegenfuss, T.N.; Hofheins, J.E.; Mendel, R.W.; Landis, J.; Anderson, R.A. Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in pre-diabetic men and women. J. Int. Soc. Sports Nutr., 2006, 3(2), 45-53.
[http://dx.doi.org/10.1186/1550-2783-3-2-45] [PMID: 18500972]
[150]
Grzanna, R.; Lindmark, L.; Frondoza, C.G. Ginger-an herbal medicinal product with broad anti-inflammatory actions. J. Med. Food, 2005, 8(2), 125-132.
[http://dx.doi.org/10.1089/jmf.2005.8.125] [PMID: 16117603]
[151]
Peng, N.; Prasain, J.K.; Dai, Y.; Moore, R.; Arabshahi, A.; Barnes, S.; Carlson, S.; Wyss, J.M. Chronic dietary kudzu isoflavones improve components of metabolic syndrome in stroke-prone spontaneously hypertensive rats. J. Agric. Food Chem., 2009, 57(16), 7268-7273.
[http://dx.doi.org/10.1021/jf901169y] [PMID: 19938872]
[152]
Beydoun, M.A.; Chen, X.; Jha, K.; Beydoun, H.A.; Zonderman, A.B.; Canas, J.A. Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis. Nutr. Rev., 2019, 77(1), 32-45.
[http://dx.doi.org/10.1093/nutrit/nuy044] [PMID: 30202882]
[153]
Suliman, S.; Elmahdi, B.; Abuelgasim, A. The effect of feeding Coriander sativum fruits powder on the plasma lipids profile in cholesterol-fed rats. Res. J. Ani & Vet. Sci., 2008, 3, 24-28.
[154]
Kim, K.Y.; Lee, H.N.; Kim, Y.J.; Park, T. Garcinia cambogia extract ameliorates visceral adiposity in C57BL/6J mice fed on a high-fat diet. Biosci. Biotechnol. Biochem., 2008, 72(7), 1772-1780.
[http://dx.doi.org/10.1271/bbb.80072] [PMID: 18603810]
[155]
Mohan, R.; Jose, S.; Mulakkal, J.; Karpinsky-Semper, D.; Swick, A.G.; Krishnakumar, I.M. Water-soluble polyphenol-rich clove extract lowers pre- and post-prandial blood glucose levels in healthy and prediabetic volunteers: An open label pilot study. BMC Complement. Altern. Med., 2019, 19(1), 99.
[http://dx.doi.org/10.1186/s12906-019-2507-7] [PMID: 31064377]
[156]
Zhang, Q.; Li, J.; Luo, M.; Xie, G.Y.; Zeng, W.; Wu, Y.; Zhu, Y.; Yang, X.; Guo, A.Y. Systematic transcriptome and regulatory network analyses reveal the hypoglycemic mechanism of Dendrobium fimbriatum. Mol. Ther. Nucleic Acids, 2020, 19, 1-14.
[http://dx.doi.org/10.1016/j.omtn.2019.10.033] [PMID: 31790971]
[157]
Li, J.; Luo, M.; Luo, Z.; Guo, A.Y.; Yang, X.; Hu, M.; Zhang, Q.; Zhu, Y. Transcriptome profiling reveals the anti-diabetic molecular mechanism of Cyclocarya paliurus polysaccharides. J. Funct. Foods, 2019, 55, 1-8.
[http://dx.doi.org/10.1016/j.jff.2018.12.039]
[158]
Alqunai, M.S.; Alrashid, F.F. Bariatric surgery for the management of type 2 diabetes mellitus-current trends and challenges: A review article. Am. J. Transl. Res., 2022, 14(2), 1160-1171.
[159]
Pareek, M.; Bhatt, D.L.; Schiavon, C.A.; Schauer, P.R. Metabolic surgery for hypertension in patients with obesity. Circ. Res., 2019, 124(7), 1009-1024.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313320] [PMID: 30920920]
[160]
Cummings, D.E.; Rubino, F. Metabolic surgery for the treatment of type 2 diabetes in obese individuals. Diabetologia, 2018, 61(2), 257-264.
[http://dx.doi.org/10.1007/s00125-017-4513-y] [PMID: 29224190]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy