Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Research Progress on the Mechanism of Intestinal Barrier Damage and Drug Therapy in a High Altitude Environment

Author(s): Junfei Cheng, Yuemei Sun*, Yilan Zhao, Qianwen Guo, ZiHan Wang and Rong Wang*

Volume 21, Issue 6, 2024

Published on: 27 March, 2023

Page: [807 - 816] Pages: 10

DOI: 10.2174/1567201820666230309090241

Price: $65

Abstract

The plateau is a typical extreme environment with low temperature, low oxygen and high ultraviolet rays. The integrity of the intestinal barrier is the basis for the functioning of the intestine, which plays an important role in absorbing nutrients, maintaining the balance of intestinal flora, and blocking the invasion of toxins. Currently, there is increasing evidence that high altitude environment can enhance intestinal permeability and disrupt intestinal barrier integrity. This article mainly focuses on the regulation of the expression of HIF and tight junction proteins in the high altitude environment, which promotes the release of pro-inflammatory factors, especially the imbalance of intestinal flora caused by the high altitude environment. The mechanism of intestinal barrier damage and the drugs to protect the intestinal barrier are reviewed. Studying the mechanism of intestinal barrier damage in high altitude environment is not only conducive to understanding the mechanism of high altitude environment affecting intestinal barrier function, but also provides a more scientific medicine treatment method for intestinal damage caused by the special high altitude environment.

Keywords: High altitude, hypoxia, intestinal barrier, HIF, NF-κB, intestinal flora.

Graphical Abstract
[1]
Mukherjee, S.; Hooper, L.V. Antimicrobial defense of the intestine. Immunity, 2015, 42(1), 28-39.
[http://dx.doi.org/10.1016/j.immuni.2014.12.028] [PMID: 25607457]
[2]
Parada, V.D.; De la Fuente, M.K.; Landskron, G.; Gonzolez, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol., 2019, 10, 277.
[http://dx.doi.org/10.3389/fimmu.2019.00277] [PMID: 30915065]
[3]
Salvo, R.E.; Alonso, C.C.; Pardo, C.C.; Casado, B.M.; Vicario, M. The intestinal barrier function and its involvement in digestive disease. Rev. Esp. Enferm. Dig., 2015, 108(11), 686-696.
[http://dx.doi.org/10.17235/reed.2015.3846/2015] [PMID: 26541659]
[4]
Tianyi, W. Progress in plateau medicine research in China (congratulations on the 90th anniversary of the founding of the Chinese medical association). HMRJ, 2005, (01), 1-8.
[5]
Luks, A.M.; Auerbach, P.S.; Freer, L.; Grissom, C.K.; Keyes, L.E.; McIntosh, S.E.; Rodway, G.W.; Schoene, R.B.; Zafren, K.; Hackett, P.H. Wilderness medical society clinical practice guidelines for the prevention and treatment of acute altitude illness: 2019 update. Wilderness Environ. Med., 2019, 30(4), S3-S18.
[http://dx.doi.org/10.1016/j.wem.2019.04.006] [PMID: 31248818]
[6]
Fruehauf, H.; Vavricka, S.R.; Lutz, T.A.; Gassmann, M.; Wojtal, K.A.; Erb, A.; Maggiorini, M.; Schwizer, W.; Fried, M.; Fox, M.; Goetze, O.; Greuter, T. Evaluation of acute mountain sickness by unsedated transnasal esophagogastroduodenoscopy at high altitude. Clin. Gastroenterol. Hepatol., 2020, 18(10), 2218-2225.e2.
[http://dx.doi.org/10.1016/j.cgh.2019.11.036] [PMID: 31778804]
[7]
Karl, J.P.; Berryman, C.E.; Young, A.J.; Radcliffe, P.N.; Branck, T.A.; Pantoja-Feliciano, I.G.; Rood, J.C.; Pasiakos, S.M. Associations between the gut microbiota and host responses to high altitude. Am. J. Physiol. Gastrointest. Liver Physiol., 2018, 315(6), G1003-G1015.
[http://dx.doi.org/10.1152/ajpgi.00253.2018] [PMID: 30212253]
[8]
van Wijck, K.; Pennings, B.; van Bijnen, A.A.; Senden, J.M.G.; Buurman, W.A.; Dejong, C.H.C.; van Loon, L.J.C.; Lenaerts, K. Dietary protein digestion and absorption are impaired during acute postexercise recovery in young men. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2013, 304(5), R356-R361.
[http://dx.doi.org/10.1152/ajpregu.00294.2012] [PMID: 23283940]
[9]
Hassan, F.; El-Hiti, G.A.; Abd-Allateef, M.; Yousif, E. Cytotoxicity anticancer activities of anastrozole against breast, liver hepatocellular, and prostate cancer cells. Saudi Med. J., 2017, 38(4), 359-365.
[http://dx.doi.org/10.15537/smj.2017.4.17061] [PMID: 28397941]
[10]
Liu, Y.; Xu, Q.; Wang, Y.; Liang, T.; Li, X.; Wang, D.; Wang, X.; Zhu, H.; Xiao, K. Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge. Cell Death Dis., 2021, 12(1), 62.
[http://dx.doi.org/10.1038/s41419-020-03365-1] [PMID: 33431831]
[11]
Anand, A.C.; Sashindran, V.K.; Mohan, L. Gastrointestinal problems at high altitude. Trop. Gastroenterol., 2006, 27(4), 147-153.
[PMID: 17542291]
[12]
Murdoch, D.R. Symptoms of infection and altitude illness among hikers in the Mount Everest region of Nepal. Aviat. Space Environ. Med., 1995, 66(2), 148-151.
[PMID: 7726779]
[13]
Westerterp, K.R.; Kayser, B.; Wouters, L. Energy balance at high altitude of 6,542 m. J. Appl. Physiol., 1994, 77(2), 862-866.
[14]
Wiseman, C.; Freer, L.; Hung, E. Physical and medical characteristics of successful and unsuccessful summiteers of Mount Everest in 2003. Wilderness Environ. Med., 2006, 17(2), 103-108.
[http://dx.doi.org/10.1580/PR45-04.1] [PMID: 16805146]
[15]
Qiong, L. Effects of acute altitude hypoxia on digestive system and analysis of clinical symptoms. Xizang Sci. Technol., 2021, (11), 74-76.
[16]
Jiucong, Z.; Yonglin, Y.; Xiangzhi, M. Investigation on gastrointestinal stress response of soldiers stationed in Golmud Plateau. Northwest J. Defense Med., 2015, 36(08), 517-519.
[17]
Kuhn, C.; Apel, C.; Bertsch, D.; Grass, M.; Gschwandtl, C.; Hundt, N.; Muller-Ost, M.; Risse, J.; Schmitz, S.; Sherpa, K.; Timmermann, L.; van der Giet, M.; van der Giet, S.; Wernitz, K.; Morrison, A.; Kupper, T. Inpatient treatment of trekkers and Nepalese workers in the high-altitude environment of Mt. Everest Region 1996-2011: A retrospective analysis. Travel Med. Infect. Dis., 2019, 31, 101356.
[http://dx.doi.org/10.1016/j.tmaid.2018.11.012] [PMID: 30502547]
[18]
Xu, C.; Sun, R.; Qiao, X.; Xu, C.; Shang, X.; Niu, W.; Chao, Y. Effect of vitamin e supplementation on intestinal barrier function in rats exposed to high altitude hypoxia environment. Korean J. Physiol. Pharmacol., 2014, 18(4), 313-320.
[http://dx.doi.org/10.4196/kjpp.2014.18.4.313] [PMID: 25177163]
[19]
Amatya, B.; Lakhey, P.J.; Pandey, P. Perforation peritonitis at high altitude. JNMA J. Nepal Med. Assoc., 2018, 56(210), 625-628.
[http://dx.doi.org/10.31729/jnma.3488] [PMID: 30376009]
[20]
Shao, T.; Zhao, C.; Li, F.; Gu, Z.; Liu, L.; Zhang, L.; Wang, Y.; He, L.; Liu, Y.; Liu, Q.; Chen, Y.; Donde, H.; Wang, R.; Jala, V.R.; Barve, S.; Chen, S.Y.; Zhang, X.; Chen, Y.; McClain, C.J.; Feng, W. Intestinal HIF-1α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J. Hepatol., 2018, 69(4), 886-895.
[http://dx.doi.org/10.1016/j.jhep.2018.05.021] [PMID: 29803899]
[21]
Kim, Y.I.; Yi, E.J.; Kim, Y.D.; Lee, A.R.; Chung, J.; Ha, H.C.; Cho, J.M.; Kim, S.R.; Ko, H.J.; Cheon, J.H.; Hong, Y.R.; Chang, S.Y. Local stabilization of hypoxia-inducible factor-1α controls intestinal inflammation via enhanced gut barrier function and immune regulation. Front. Immunol., 2021, 11, 609689.
[http://dx.doi.org/10.3389/fimmu.2020.609689] [PMID: 33519819]
[22]
Zhang, F.; Wu, W.; Deng, Z.; Zheng, X.; Zhang, J.; Deng, S.; Chen, J.; Ma, Q.; Wang, Y.; Yu, X.; Kang, S.; Wang, X. High altitude increases the expression of hypoxia-inducible factor 1α and inducible nitric oxide synthase with intest-inal mucosal barrier failure in rats. Int. J. Clin. Exp. Pathol., 2015, 8(5), 5189-5195.
[PMID: 26191216]
[23]
Glover, L.E.; Bowers, B.E.; Saeedi, B.; Ehrentraut, S.F.; Campbell, E.L.; Bayless, A.J.; Dobrinskikh, E.; Kendrick, A.A.; Kelly, C.J.; Burgess, A.; Miller, L.; Kominsky, D.J.; Jedlicka, P.; Colgan, S.P. Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proc. Natl. Acad. Sci. USA, 2013, 110(49), 19820-19825.
[http://dx.doi.org/10.1073/pnas.1302840110] [PMID: 24248342]
[24]
Gunzel, D.; Fromm, M. Claudins and other tight junction proteins. Compr. Physiol., 2012, 2(3), 1819-1852.
[http://dx.doi.org/10.1002/cphy.c110045] [PMID: 23723025]
[25]
Al-Sadi, R.; Khatib, K.; Guo, S.; Ye, D.; Youssef, M.; Ma, T. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 300(6), G1054-G1064.
[http://dx.doi.org/10.1152/ajpgi.00055.2011] [PMID: 21415414]
[26]
Lian, P.; Braber, S.; Varasteh, S.; Wichers, H.J.; Folkerts, G. Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture. Sci. Rep., 2021, 11(1), 13186.
[http://dx.doi.org/10.1038/s41598-021-92574-5] [PMID: 34162953]
[27]
Lee, T.C.; Huang, Y.C.; Lu, Y.Z.; Yeh, Y.C.; Yu, L.C.H. Hypoxia-induced intestinal barrier changes in balloon-assisted enteroscopy. J. Physiol., 2018, 596(15), 3411-3424.
[http://dx.doi.org/10.1113/JP275277] [PMID: 29178568]
[28]
Saeedi, B.J.; Kao, D.J.; Kitzenberg, D.A.; Dobrinskikh, E.; Schwisow, K.D.; Masterson, J.C.; Kendrick, A.A.; Kelly, C.J.; Bayless, A.J.; Kominsky, D.J.; Campbell, E.L.; Kuhn, K.A.; Furuta, G.T.; Colgan, S.P.; Glover, L.E. HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight junction integrity. Mol. Biol. Cell, 2015, 26(12), 2252-2262.
[http://dx.doi.org/10.1091/mbc.E14-07-1194] [PMID: 25904334]
[29]
Dowdell, A.S.; Cartwright, I.M.; Goldberg, M.S.; Kostelecky, R.; Ross, T.; Welch, N.; Glover, L.E.; Colgan, S.P. The HIF target ATG9A is essential for epithelial barrier function and tight junction biogenesis. Mol. Biol. Cell, 2020, 31(20), 2249-2258.
[http://dx.doi.org/10.1091/mbc.E20-05-0291] [PMID: 32726170]
[30]
Zuhl, M.; Schneider, S.; Lanphere, K.; Conn, C.; Dokladny, K.; Moseley, P. Exercise regulation of intestinal tight junction proteins. Br. J. Sports Med., 2014, 48(12), 980-986.
[http://dx.doi.org/10.1136/bjsports-2012-091585] [PMID: 23134759]
[31]
Cosin-Roger, J.; Simmen, S.; Melhem, H.; Atrott, K.; Frey-Wagner, I.; Hausmann, M.; de Valliere, C.; Spalinger, M.R.; Spielmann, P.; Wenger, R.H.; Zeitz, J.; Vavricka, S.R.; Rogler, G.; Ruiz, P.A. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat. Commun., 2017, 8(1), 98.
[http://dx.doi.org/10.1038/s41467-017-00213-3] [PMID: 28740109]
[32]
Bowser, J.L.; Phan, L.H.; Eltzschig, H.K. The hypoxia adenosine link during intestinal inflammation. J. Immunol., 2018, 200(3), 897-907.
[http://dx.doi.org/10.4049/jimmunol.1701414] [PMID: 29358413]
[33]
Simmen, S.; Cosin-Roger, J.; Melhem, H.; Maliachovas, N.; Maane, M.; Baebler, K.; Weder, B.; Maeyashiki, C.; Spanaus, K.; Scharl, M.; de Valliere, C.; Zeitz, J.; Vavricka, S.R.; Hausmann, M.; Rogler, G.; Ruiz, P.A. Iron Prevents hypoxia-associated inflammation through the regulation of nuclear factor-κB in the intestinal epithelium. Cell. Mol. Gastroenterol. Hepatol., 2019, 7(2), 339-355.
[http://dx.doi.org/10.1016/j.jcmgh.2018.10.006] [PMID: 30704983]
[34]
Wang, Y.; Huo, L. Role of TLR4/NF-κB pathway in the damage of acute hypobaric hypoxia to small intestinal mucosa in rats. Gen. Physiol. Biophys., 2021, 40(1), 79-88.
[PMID: 33655893]
[35]
Cheng, J.; Sun, Y.; He, J.; Wang, Z.; Li, W.; Wang, R. The mechanism of colon tissue damage mediated by HIF-1α/NF-κB/STAT1 in high-altitude environment. Front. Physiol., 2022, 13, 933659.
[http://dx.doi.org/10.3389/fphys.2022.933659] [PMID: 36164339]
[36]
Wen, Y.A.; Li, X.; Goretsky, T.; Weiss, H.L.; Barrett, T.A.; Gao, T. Loss of PHLPP protects against colitis by inhibiting intestinal epithelial cell apoptosis. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(10), 2013-2023.
[http://dx.doi.org/10.1016/j.bbadis.2015.07.012] [PMID: 26187040]
[37]
Hoffmann, W. Trefoil factor family (TFF) peptides and their links to inflammation: A re-evaluation and new medical perspectives. Int. J. Mol. Sci., 2021, 22(9), 4909.
[http://dx.doi.org/10.3390/ijms22094909] [PMID: 34066339]
[38]
Fu, T.; Znalesniak, E.B.; Kalinski, T.; Mohle, L.; Biswas, A.; Salm, F.; Dunay, I.R.; Hoffmann, W. TFF peptides play a role in the immune response following oral infection of mice with toxoplasma gondii. Eur. J. Microbiol. Immunol., 2015, 5(3), 221-231.
[http://dx.doi.org/10.1556/1886.2015.00028] [PMID: 26495133]
[39]
Wu, Y.; Tang, L.; Wang, B.; Sun, Q.; Zhao, P.; Li, W. The role of autophagy in maintaining intestinal mucosal barrier. J. Cell. Physiol., 2019, 234(11), 19406-19419.
[http://dx.doi.org/10.1002/jcp.28722] [PMID: 31020664]
[40]
Larabi, A.; Barnich, N.; Nguyen, H.T.T. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy, 2020, 16(1), 38-51.
[http://dx.doi.org/10.1080/15548627.2019.1635384] [PMID: 31286804]
[41]
Zhang, F.; Deng, Z.; Li, W.; Zheng, X.; Zhang, J.; Deng, S.; Chen, J.; Ma, Q.; Wang, Y.; Yu, X.; Wang, X. Activation of autophagy in rats with plateau stress-induced intestinal failure. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1816-1821.
[PMID: 25973073]
[42]
Fagundes, R.R.; Taylor, C.T. Determinants of hypoxia-inducible factor activity in the intestinal mucosa. J. Appl. Physiol., 2017, 123(5), 1328-1334.
[43]
Angelucci, F.; Cechova, K.; Amlerova, J.; Hort, J. Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflammation, 2019, 16(1), 108.
[http://dx.doi.org/10.1186/s12974-019-1494-4] [PMID: 31118068]
[44]
Loshbaugh, J.E.; Loeppky, J.A.; Greene, E.R. Effects of acute hypobaric hypoxia on resting and postprandial superior mesenteric artery blood flow. High Alt. Med. Biol., 2006, 7(1), 47-53.
[http://dx.doi.org/10.1089/ham.2006.7.47] [PMID: 16544966]
[45]
Khanna, K.; Mishra, K.P.; Chanda, S.; Eslavath, M.R.; Ganju, L.; Kumar, B.; Singh, S.B. Effects of acute exposure to hypobaric hypoxia on mucosal barrier injury and the gastrointestinal immune axis in rats. High Alt. Med. Biol., 2019, 20(1), 35-44.
[http://dx.doi.org/10.1089/ham.2018.0031] [PMID: 30484710]
[46]
Li, M.; Han, T.; Zhang, W.; Li, W.; Hu, Y.; Lee, S.K. Simulated altitude exercise training damages small intestinal mucosa barrier in the rats. J. Exerc. Rehabil., 2018, 14(3), 341-348.
[http://dx.doi.org/10.12965/jer.1835128.064] [PMID: 30018916]
[47]
van Wijck, K.; Lenaerts, K.; van Loon, L.J.C.; Peters, W.H.M.; Buurman, W.A.; Dejong, C.H.C. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One, 2011, 6(7), e22366.
[http://dx.doi.org/10.1371/journal.pone.0022366] [PMID: 21811592]
[48]
Wang, Y.; Shi, Y.; Li, W.; Wang, S.; Zheng, J.; Xu, G.; Li, G.; Shen, X.; Yang, J. Gut microbiota imbalance mediates intestinal barrier damage in high-altitude exposed mice. FEBS J., 2022, 289(16), 4850-4868.
[http://dx.doi.org/10.1111/febs.16409] [PMID: 35188712]
[49]
Adak, A.; Maity, C.; Ghosh, K.; Pati, B.R.; Mondal, K.C. Dynamics of predominant microbiota in the human gastrointestinal tract and change in luminal enzymes and immunoglobulin profile during high-altitude adaptation. Folia Microbiol., 2013, 58(6), 523-528.
[http://dx.doi.org/10.1007/s12223-013-0241-y] [PMID: 23536261]
[50]
Zhang, J.; Chen, Y.; Sun, Y.; Wang, R.; Zhang, J.; Jia, Z. Plateau hypoxia attenuates the metabolic activity of intestinal flora to enhance the bioavailability of nifedipine. Drug Deliv., 2018, 25(1), 1175-1181.
[http://dx.doi.org/10.1080/10717544.2018.1469687] [PMID: 29790376]
[51]
Lamping, N.; Dettmer, R.; Schroder, N.W.; Pfeil, D.; Hallatschek, W.; Burger, R.; Schumann, R.R. LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria. J. Clin. Invest., 1998, 101(10), 2065-2071.
[http://dx.doi.org/10.1172/JCI2338] [PMID: 9593762]
[52]
Han, N.; Pan, Z.; Huang, Z.; Chang, Y.; Hou, F.; Liu, G.; Yang, R.; Bi, Y. Effects of myeloid Hif-1β deletion on the intestinal microbiota in mice under environmental hypoxia. Infect. Immun., 2020, 89(1), e00474-e20.
[http://dx.doi.org/10.1128/IAI.00474-20] [PMID: 33106294]
[53]
Kelly, C.J.; Zheng, L.; Campbell, E.L.; Saeedi, B.; Scholz, C.C.; Bayless, A.J.; Wilson, K.E.; Glover, L.E.; Kominsky, D.J.; Magnuson, A.; Weir, T.L.; Ehrentraut, S.F.; Pickel, C.; Kuhn, K.A.; Lanis, J.M.; Nguyen, V.; Taylor, C.T.; Colgan, S.P. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe, 2015, 17(5), 662-671.
[http://dx.doi.org/10.1016/j.chom.2015.03.005] [PMID: 25865369]
[54]
Zhou, D.; Pan, Q.; Xin, F.Z.; Zhang, R.N.; He, C.X.; Chen, G.Y.; Liu, C.; Chen, Y.W.; Fan, J.G. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World J. Gastroenterol., 2017, 23(1), 60-75.
[http://dx.doi.org/10.3748/wjg.v23.i1.60] [PMID: 28104981]
[55]
Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; Gonzolez, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Corrigendum: Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol., 2019, 10, 1486.
[http://dx.doi.org/10.3389/fimmu.2019.01486] [PMID: 31316522]
[56]
Dengler, F.; Kraetzig, A.; Gabel, G. Butyrate protects porcine colon epithelium from hypoxia-induced damage on a functional level. Nutrients, 2021, 13(2), 305.
[http://dx.doi.org/10.3390/nu13020305] [PMID: 33498991]
[57]
Jia, Z.; Zhao, X.; Liu, X.; Zhao, L.; Jia, Q.; Shi, J.; Xu, X.; Hao, L.; Xu, Z.; Zhong, Q.; Yu, K.; Cui, S.; Chen, H.; Guo, J.; Li, X.; Han, Y.; Song, X.; Zhao, C.; Bo, X.; Tian, Y.; Wang, W.; Xie, G.; Feng, Q.; He, K. Impacts of the plateau environment on the gut microbiota and blood clinical indexes in Han and Tibetan individuals. mSystems, 2020, 5(1), e00660-e19.
[http://dx.doi.org/10.1128/mSystems.00660-19] [PMID: 31964769]
[58]
Li, H.; Qu, J.; Li, T.; Wirth, S.; Zhang, Y.; Zhao, X.; Li, X. Diet simplification selects for high gut microbial diversity and strong fermenting ability in high-altitude pikas. Appl. Microbiol. Biotechnol., 2018, 102(15), 6739-6751.
[http://dx.doi.org/10.1007/s00253-018-9097-z] [PMID: 29862448]
[59]
Wu, Y.; Yao, Y.; Dong, M.; Xia, T.; Li, D.; Xie, M.; Wu, J.; Wen, A.; Wang, Q.; Zhu, G.; Ni, Q.; Zhang, M.; Xu, H. Characterisation of the gut microbial community of rhesus macaques in high-altitude environments. BMC Microbiol., 2020, 20(1), 68.
[http://dx.doi.org/10.1186/s12866-020-01747-1] [PMID: 32216756]
[60]
Zhou, C.; Li, L.; Li, T.; Sun, L.; Yin, J.; Guan, H.; Wang, L.; Zhu, H.; Xu, P.; Fan, X.; Sheng, B.; Xiao, W.; Qiu, Y.; Yang, H. SCFAs induce autophagy in intestinal epithelial cells and relieve colitis by stabilizing HIF-1α. J. Mol. Med., 2020, 98(8), 1189-1202.
[http://dx.doi.org/10.1007/s00109-020-01947-2] [PMID: 32696223]
[61]
Schmickl, C.N.; Owens, R.L.; Orr, J.E.; Edwards, B.A.; Malhotra, A. Side effects of acetazolamide: a systematic review and meta-analysis assessing overall risk and dose dependence. BMJ Open Respir. Res., 2020, 7(1), e000557.
[http://dx.doi.org/10.1136/bmjresp-2020-000557] [PMID: 32332024]
[62]
Cho, C.H.; Pfeiffer, C.J. Study of the damaging effects of acetazolamide on gastric mucosa in rats. Acta Physiol. Hung., 1984, 64(3-4), 279-285.
[PMID: 6442531]
[63]
Konturek, S.J.; Brzozowski, T.; Piastucki, I.; Radecki, T. Gastric cytoprotection by acetazolamide: Role of endogenous prostaglandins. Digestion, 1983, 28(2), 125-131.
[http://dx.doi.org/10.1159/000198975] [PMID: 6418600]
[64]
Fischer, A.; Gluth, M.; Weege, F.; Pape, U.F.; Wiedenmann, B.; Baumgart, D.C.; Theuring, F. Glucocorticoids regulate barrier function and claudin expression in intestinal epithelial cells viaMKP-1. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 306(3), G218-G228.
[http://dx.doi.org/10.1152/ajpgi.00095.2013] [PMID: 24309183]
[65]
Fischer, A.; Gluth, M.; Pape, U.F.; Wiedenmann, B.; Theuring, F.; Baumgart, D.C. Adalimumab prevents barrier dysfunction and antagonizes distinct effects of TNF-α on tight junction proteins and signaling pathways in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2013, 304(11), G970-G979.
[http://dx.doi.org/10.1152/ajpgi.00183.2012] [PMID: 23538493]
[66]
Liu, H.; Li, M.; Wang, P.; Wang, F. Blockade of hypoxia-inducible factor-1α by YC-1 attenuates interferon-γ and tumor necrosis factor-α-induced intestinal epithelial barrier dysfunction. Cytokine, 2011, 56(3), 581-588.
[http://dx.doi.org/10.1016/j.cyto.2011.08.023] [PMID: 21890376]
[67]
Nijiati, Y.; Maimaitiyiming, D.; Yang, T.; Li, H.; Aikemu, A. Research on the improvement of oxidative stress in rats with high-altitude pulmonary hypertension through the participation of irbesartan in regulating intestinal flora. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(13), 4540-4553.
[PMID: 34286497]
[68]
Lin, H.; Ding, B.; Chen, L.; Zhang, Z.; He, H.; Wang, J.; Wang, X.; Zhang, L.; Ni, X.; Fronte, B. The effect of Aspergillus niger as a dietary supplement on blood parameters, intestinal morphology, and gut microflora in Haidong chicks reared in a high altitude environment. Vet. World, 2020, 13(10), 2209-2215.
[http://dx.doi.org/10.14202/vetworld.2020.2209-2215] [PMID: 33281358]
[69]
Rao, R; Samak, G Role of glutamine in protection of intestinal epithelial tight junctions. J. Epithel. Biol. Pharmacol., 2012, 5(Suppl 1-M7), 47-54.
[70]
Kim, M.H.; Kim, H. The roles of glutamine in the intestine and its implication in intestinal diseases. Int. J. Mol. Sci., 2017, 18(5), 1051.
[http://dx.doi.org/10.3390/ijms18051051] [PMID: 28498331]
[71]
Cao, M.; Wang, P.; Sun, C.; He, W.; Wang, F. Amelioration of IFN-γ and TNF-α-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway. PLoS One, 2013, 8(5), e61944.
[http://dx.doi.org/10.1371/journal.pone.0061944] [PMID: 23671580]
[72]
Jun, Z.; Xian, Z.; Hui, W. Study on the regulatory effect and mechanism of ginsenoside on the tight junction of colonic epithelium in aged rats. Zhong Yao Cai, 2021, (10), 2429-2433.
[73]
Chunyan, X.; Gang, X.; Yuzhu, J. Naringenin inhibits NLRP3 inflammasome through miR-22 and reduces intestinal barrier damage in a rat model of ulcerative colitis. Chin. J. Pathol, 2021, 37(09), 1573-1581.
[74]
Rong, W. Effect of yinchensiling granules on intestinal barrier function in acute liver failure rats; Southwest Medical University, 2021.
[75]
Mingyan, C. Protective effect of polysaccharide from enteromorpha prolifera on intestinal barrier in mice with inflammatory bowel disease; Dalian Medical University: PA, 2021. https://kns.cnki.net/kcms2/article/abstract?v=pwDqugdn65GDPTnkd8pyrhh5BHKTFNq97t7RkcMHPNZqE3coO1ZPHUW8LDJdOaImGu1dZHet5MsW1EPFeO_hWKMvJwyu5L4Cpic2no32UkXEkMAgS_e9gg==&uniplatform=NZKPT&language=CHS
[76]
Li, C.; Lan, C.; Bojun, C. The effect of tong-fu-li-fei decoction on the expression of Claudin-1mRNA and protein in intestinal tissue of sepsis rats with intestinal barrier injury. Shizhen Guo Yi Guo Yao, 2020, 31(08), 1793-1795.
[77]
Hua, L.; Li, G.; Bin, H. Regulation of Shenling Baizhu powder on intestinal microflora, intestinal barrier and immune function in gastric cancer patients with chemotherapy after operation. Anti-tumor Pharmacy, 2020, 10(04), 477-482.
[78]
Burge, K.; Gunasekaran, A.; Eckert, J.; Chaaban, H. Curcumin and intestinal inflammatory diseases: Molecular mechanisms of protection. Int. J. Mol. Sci., 2019, 20(8), 1912.
[http://dx.doi.org/10.3390/ijms20081912] [PMID: 31003422]
[79]
Liu, X.; Zhu, H. Curcumin improved intestinal epithelial barrier integrity by up-regulating ZO-1/Occludin/Claudin-1 in septic rats. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/2884522] [PMID: 35711494]
[80]
Rui, Z. Emodin ameliorates intestinal dysfunction in septic mice by modulating gut barrier, gut microbiota, and immune homeostasis; Beijing University of Chinese Medicine: PA, 2020. https://kns.cnki.net/kcms2/article/abstract?v=pwDqugdn65EeRj3NDZ4KY1jOmNmM9swf8Ju6-LP6zJWxQ2khtzxzl4zrJnajO_EEktkSwdnpuJfdYLRyow7dCNfIf1USj4bS-rAErkhjbsRtWg9S_6sLpg==&uniplatform=NZKPT&language=CHS
[81]
Yuli, Z. Experimental study on the productive effect of "modified marching powder" on intestinal barrier in rats with heat stroke. Shandong University of Traditional Chinese medicine. PA 2018.https://kns.cnki.net/kcms2/article/abstract?v=pwDqugdn65HHV0eOUewVWrzgCKxh5ujtUZxgMASvJr2VJiN0UenvWyhffcKd8iOTpXXQIFcwb2waIORVIihtTDXyqd3rIqpPLNdNDOsIHtpGd15glybqRQ==&uniplatform=NZKPT&language=CHS
[82]
Yan, Q.; Chunping, W.; Xiaosi, L. Study on the influence of Kuijiekang Decoction on the inflammatory cytokines and proteins related to intestinal barrier function in mice with ulcerative colitis. Pharmacol. Clin. Chinese Materia Medica, 2017, 33(06), 120-124.
[83]
Khanna, K.; Mishra, K.P.; Chanda, S.; Ganju, L.; Singh, S.B.; Kumar, B. Effect of synbiotics on amelioration of intestinal inflammation under hypobaric hypoxia. High Alt. Med. Biol., 2021, 22(1), 32-44.
[http://dx.doi.org/10.1089/ham.2020.0062] [PMID: 33185493]
[84]
Hsieh, C.Y.; Osaka, T.; Moriyama, E.; Date, Y.; Kikuchi, J.; Tsuneda, S. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum. Physiol. Rep., 2015, 3(3), e12327.
[http://dx.doi.org/10.14814/phy2.12327] [PMID: 25780093]
[85]
Kurose, Y.; Minami, J.; Sen, A.; Iwabuchi, N.; Abe, F.; Xiao, J.; Suzuki, T. Bioactive factors secreted by Bifidobacterium breve B-3 enhance barrier function in human intestinal Caco-2 cells. Benef. Microbes, 2019, 10(1), 89-100.
[http://dx.doi.org/10.3920/BM2018.0062] [PMID: 30353739]
[86]
Guo, S.; Gillingham, T.; Guo, Y.; Meng, D.; Zhu, W.; Walker, W.A.; Ganguli, K. Secretions of Bifidobacterium infantis and Lactobacillus acidophilus Protect Intestinal Epithelial Barrier Function. J. Pediatr. Gastroenterol. Nutr., 2017, 64(3), 404-412.
[http://dx.doi.org/10.1097/MPG.0000000000001310] [PMID: 28230606]
[87]
Putt, K.K.; Pei, R.; White, H.M.; Bolling, B.W. Yogurt inhibits intestinal barrier dysfunction in Caco-2 cells by increasing tight junctions. Food Funct., 2017, 8(1), 406-414.
[http://dx.doi.org/10.1039/C6FO01592A] [PMID: 28091645]
[88]
Playford, R.J.; Macdonald, C.E.; Johnson, W.S. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am. J. Clin. Nutr., 2000, 72(1), 5-14.
[http://dx.doi.org/10.1093/ajcn/72.1.5] [PMID: 10871554]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy