Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Letter Article

Meclofenoxate Inhibits Aggregation of Alpha-synuclein in vitro

Author(s): Adhuna Parui, Soumojit Biswas and Ipsita Roy*

Volume 30, Issue 5, 2023

Published on: 14 April, 2023

Page: [361 - 366] Pages: 6

DOI: 10.2174/0929866530666230307113055

Price: $65

Abstract

Background: α-Synuclein, a natively disordered protein, is a key component of Lewy bodies, the ubiquitinated protein aggregates which are the pathological hallmark of Parkinson’s disease (PD). Meclofenoxate (centrophenoxine) is a nootropic drug which has shown beneficial therapeutic effects in various neuronal diseases. Administration of meclofenoxate enhanced levels of dopamine and improved motor function in animal models of Parkinson’s disease (PD). Evidence suggested that dopamine interacts with and modulates α-synuclein aggregation.

Objective: The aim of this work was to investigate whether the observed positive effect of addition of meclofenoxate, a nootropic agent, on dopamine level, could be correlated with its effect on aggregation of α-synuclein.

Methods: Purification of recombinant human α-synuclein was performed by anion exchange chromatography. The purified protein was incubated in the absence and presence of meclofenoxate and was analyzed for aggregation by Thioflavin T fluorescence spectroscopy. Conformational changes in α-synuclein were monitored by fluorescence spectroscopy and fluorescence quenching studies using a neutral quencher. Secondary structure analysis of α-synuclein was monitored by circular dichroism spectroscopy.

Results: Recombinant human α-synuclein was expressed and purified by anion-exchange chromatography. Incubation of α-synuclein with meclofenoxate led to lowering aggregation in a concentration-dependent manner. Reduction in formation of oligomers was seen which suggested the formation of an off-pathway species which did not give rise to an aggregation-competent entity. Fluorescence quenching studies revealed that the additive distorted the native conformation of α- synuclein, leading to the formation of lower amounts of aggregation-prone species.

Conclusion: In the presence of higher concentrations of meclofenoxate, α-synuclein undergoes a change in its conformation. This change is not dependent on the concentration of the additive. This non-native conformer promotes the formation of a species which does not undergo further aggregation. Our study provides a mechanistic explanation of the earlier observation that meclofenoxate has a beneficial effect on progression of PD in animal models.

Keywords: Fluorescence quenching, meclofenoxate, oligomers, protein aggregation, α-synuclein, Parkinson’s disease (PD).

Next »
Graphical Abstract
[1]
Ghiglieri, V.; Calabrese, V.; Calabresi, P. Alpha-synuclein: From early synaptic dysfunction to neurodegeneration. Front. Neurol., 2018, 9, 295.
[http://dx.doi.org/10.3389/fneur.2018.00295] [PMID: 29780350]
[2]
Tozzi, A.; Sciaccaluga, M.; Loffredo, V.; Megaro, A.; Ledonne, A.; Cardinale, A.; Federici, M.; Bellingacci, L.; Paciotti, S.; Ferrari, E.; La Rocca, A.; Martini, A.; Mercuri, N.B.; Gardoni, F.; Picconi, B.; Ghiglieri, V.; De Leonibus, E.; Calabresi, P. Dopamine-dependent early synaptic and motor dysfunctions induced by α-synuclein in the nigrostriatal circuit. Brain, 2021, 144(11), 3477-3491.
[http://dx.doi.org/10.1093/brain/awab242] [PMID: 34297092]
[3]
Zhang, P.; Liu, T.; Xu, X.; Liu, S.; Chen, D. Determination of meclofenoxate content in meclofenoxate hydrochloride for injection by DSC and 1H-NMR. Am. J. Anal. Chem., 2016, 7(1), 92-98.
[http://dx.doi.org/10.4236/ajac.2016.71009]
[4]
Tammenmaa-Aho, I.; Asher, R.; Soares-Weiser, K.; Bergman, H. Cholinergic medication for antipsychotic-induced tardive dyskinesia. Cochrane Database Syst. Rev., 2018, 3(3)CD000207
[PMID: 29553158]
[5]
Zs-Nagy, I. A survey of the available data on a new nootropic drug, BCE-001. Ann. N. Y. Acad. Sci., 1994, 717(1), 102-114.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb12077.x] [PMID: 8030826]
[6]
Liao, Y.; Wang, R.; Tang, X.C. Centrophenoxine improves chronic cerebral ischemia induced cognitive deficit and neuronal degeneration in rats. Acta Pharmacol. Sin., 2004, 25(12), 1590-1596.
[PMID: 15569402]
[7]
Kramer, P.F.; Brill-Weil, S.G.; Cummins, A.C.; Zhang, R.; Camacho-Hernandez, G.A.; Newman, A.H.; Eldridge, M.A.G.; Averbeck, B.B.; Khaliq, Z.M. Synaptic-like axo-axonal transmission from striatal cholinergic interneurons onto dopaminergic fibers. Neuron, 2022, 110(18), 2949-2960.e4.
[http://dx.doi.org/10.1016/j.neuron.2022.07.011] [PMID: 35931070]
[8]
Bohnen, N.I.; Albin, R.L. The cholinergic system and Parkinson disease. Behav. Brain Res., 2011, 221(2), 564-573.
[http://dx.doi.org/10.1016/j.bbr.2009.12.048] [PMID: 20060022]
[9]
Wood, P.; Péloquin, A. Increases in choline levels in rat brain elicited by meclofenoxate. Neuropharmacology, 1982, 21(4), 349-354.
[http://dx.doi.org/10.1016/0028-3908(82)90099-5] [PMID: 6806676]
[10]
Petkov, V.D.; Stancheva, S.L.; Tocuschieva, L.; Petkov, V.V. Changes in brain biogenic monoamines induced by the nootropic drugs adafenoxate and meclofenoxate and by citicholine (experiments on rats). Gen. Pharmacol., 1990, 21(1), 71-75.
[http://dx.doi.org/10.1016/0306-3623(90)90598-G] [PMID: 2105261]
[11]
Nehru, B.; Verma, R.; Khanna, P.; Sharma, S.K. Behavioral alterations in rotenone model of Parkinson’s disease: Attenuation by co-treatment of centrophenoxine. Brain Res., 2008, 1201, 122-127.
[http://dx.doi.org/10.1016/j.brainres.2008.01.074] [PMID: 18308296]
[12]
Verma, R.; Nehru, B. Effect of centrophenoxine against rotenone-induced oxidative stress in an animal model of Parkinson’s disease. Neurochem. Int., 2009, 55(6), 369-375.
[http://dx.doi.org/10.1016/j.neuint.2009.04.001] [PMID: 19375462]
[13]
Leong, S.L.; Cappai, R.; Barnham, K.J.; Pham, C.L.L. Modulation of alpha-synuclein aggregation by dopamine: a review. Neurochem. Res., 2009, 34(10), 1838-1846.
[http://dx.doi.org/10.1007/s11064-009-9986-8] [PMID: 19444607]
[14]
Venda, L.L.; Cragg, S.J.; Buchman, V.L.; Wade-Martins, R. α-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci., 2010, 33(12), 559-568.
[http://dx.doi.org/10.1016/j.tins.2010.09.004] [PMID: 20961626]
[15]
Butler, B.; Sambo, D.; Khoshbouei, H. Alpha-synuclein modulates dopamine neurotransmission. J. Chem. Neuroanat., 2017, 83-84, 41-49.
[http://dx.doi.org/10.1016/j.jchemneu.2016.06.001] [PMID: 27334403]
[16]
Mor, D.E.; Daniels, M.J.; Ischiropoulos, H. The usual suspects, dopamine and alpha‐synuclein, conspire to cause neurodegene-ration. Mov. Disord., 2019, 34(2), 167-179.
[http://dx.doi.org/10.1002/mds.27607] [PMID: 30633814]
[17]
Cappai, R.; Leck, S.L.; Tew, D.J.; Williamson, N.A.; Smith, D.P.; Galatis, D.; Sharpies, R.A.; Curtain, C.C.; Ali, F.E.; Cherny, R.A.; Culvenor, J.G.; Bottomley, S.P.; Masters, C.L.; Barnham, K.J.; Hill, A.F. Dopamine promotes α‐synuclein aggregation into SDS‐resistant soluble oligomers via a distinct folding pathway. FASEB J., 2005, 19(10), 1377-1379.
[http://dx.doi.org/10.1096/fj.04-3437fje] [PMID: 15946991]
[18]
Jethva, P.N.; Kardani, J.R.; Roy, I. Modulation of α-synuclein aggregation by dopamine in the presence of MPTP and its metabolite. FEBS J., 2011, 278(10), 1688-1698.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08093.x] [PMID: 21410644]
[19]
Norris, E.H.; Giasson, B.I.; Hodara, R.; Xu, S.; Trojanowski, J.Q.; Ischiropoulos, H.; Lee, V.M.Y. Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome-mediated conforma-tional alterations. J. Biol. Chem., 2005, 280(22), 21212-21219.
[http://dx.doi.org/10.1074/jbc.M412621200] [PMID: 15817478]
[20]
Ninkina, N.N.; Tarasova, T.V.; Chaprov, K.D.; Goloborshcheva, V.V.; Bachurin, S.O.; Buchman, V.L. Synuclein deficiency decreases the efficiency of dopamine uptake by synaptic vesicles. Dokl. Biochem. Biophys., 2019, 486(1), 168-170.
[http://dx.doi.org/10.1134/S1607672919030025] [PMID: 31367813]
[21]
Mor, D.E.; Tsika, E.; Mazzulli, J.R.; Gould, N.S.; Kim, H.; Daniels, M.J.; Doshi, S.; Gupta, P.; Grossman, J.L.; Tan, V.X.; Kalb, R.G.; Caldwell, K.A.; Caldwell, G.A.; Wolfe, J.H.; Ischiropoulos, H. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nat. Neurosci., 2017, 20(11), 1560-1568.
[http://dx.doi.org/10.1038/nn.4641] [PMID: 28920936]
[22]
Kardani, J.; Roy, I. Understanding caffeine’s role in attenuating the toxicity of α-synuclein aggregates: implications for risk of Parkinson’s disease. ACS Chem. Neurosci., 2015, 6(9), 1613-1625.
[http://dx.doi.org/10.1021/acschemneuro.5b00158] [PMID: 26167732]
[23]
Apetri, M.M.; Maiti, N.C.; Zagorski, M.G.; Carey, P.R.; Anderson, V.E. Secondary structure of α-synuclein oligomers: characteri-zation by raman and atomic force microscopy. J. Mol. Biol., 2006, 355(1), 63-71.
[http://dx.doi.org/10.1016/j.jmb.2005.10.071] [PMID: 16303137]
[24]
Panuganti, V.; Roy, I. Oligomers, fibrils and aggregates formed by alpha-synuclein: role of solution conditions. J. Biomol. Struct. Dyn., 2022, 40(10), 4389-4398.
[http://dx.doi.org/10.1080/07391102.2020.1856721] [PMID: 33292065]
[25]
Lakowicz, J.R. Principles of fluorescence spectroscopy, 3rd ed; Springer: New York, 2006.
[http://dx.doi.org/10.1007/978-0-387-46312-4]
[26]
Uversky, V.N.; Oldfield, C.J.; Dunker, A.K. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys., 2008, 37(1), 215-246.
[http://dx.doi.org/10.1146/annurev.biophys.37.032807.125924] [PMID: 18573080]
[27]
Uversky, V.N. Intrinsically disordered proteins and their “mysterious” (meta) physics. Front. Phys., 2019, 7, 10.
[http://dx.doi.org/10.3389/fphy.2019.00010]
[28]
Fink, A.L. The aggregation and fibrillation of alpha-synuclein. Acc. Chem. Res., 2006, 39(9), 628-634.
[http://dx.doi.org/10.1021/ar050073t] [PMID: 16981679]
[29]
Fusco, G.; Chen, S.W.; Williamson, P.T.F.; Cascella, R.; Perni, M.; Jarvis, J.A.; Cecchi, C.; Vendruscolo, M.; Chiti, F.; Cremades, N.; Ying, L.; Dobson, C.M.; De Simone, A. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science, 2017, 358(6369), 1440-1443.
[http://dx.doi.org/10.1126/science.aan6160] [PMID: 29242346]
[30]
Uversky, V.N.; Li, J.; Fink, A.L. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J. Biol. Chem., 2001, 276(47), 44284-44296.
[http://dx.doi.org/10.1074/jbc.M105343200] [PMID: 11553618]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy