General Research Article

光甘草定及其衍生物对EGFR介导的乳腺癌抑制的有效活性

卷 31, 期 5, 2024

发表于: 07 July, 2023

页: [573 - 594] 页: 22

弟呕挨: 10.2174/0929867330666230303120942

价格: $65

摘要

背景:乳腺癌(BC)是全世界妇女癌症死亡的最典型原因之一。活化的表皮生长因子受体(EGFR)信号越来越多地与BC的发展和对细胞毒性药物的耐药性相关。由于其与肿瘤转移和不良预后的显著相关性,EGFR介导的信号传导已成为BC中一个有吸引力的治疗靶点。主要在所有BC病例中,突变细胞过度表达EGFR。某些合成药物已被用于抑制EGFR介导的途径以阻止转移,一些植物化合物也显示出很强的化学预防活性。 方法:本研究利用化学信息学方法从一些选定的植物化合物中预测出有效的药物。通过分子对接技术分别筛选合成药物和有机化合物的结合亲和力,以EGFR为靶蛋白。 结果:并与合成药物的结合能进行了比较。在植物化合物中,光甘草定(Glycyrrhiza glabra的植物化合物)的dock值最佳,为-7.63 Kcal/mol,与高效抗癌药物阿法替尼相当。光甘草定衍生物也显示出类似的dock值。 结论:AMES特性解释了预测化合物的无毒特征。药效团模型和硅细胞毒性预测也显示出优越的结果,确保其药物的可能性。因此,光甘草定可以被认为是抑制EGFR介导的BC的一种有前景的治疗方法。

关键词: 乳腺癌,酚类化合物,光甘草定,信号通路,表皮生长因子受体,分子动力学模拟。

[1]
Key, T.J.; Verkasalo, P.K.; Banks, E. Epidemiology of breast cancer. Lancet Oncol., 2001, 2(3), 133-140.
[http://dx.doi.org/10.1016/S1470-2045(00)00254-0] [PMID: 11902563]
[2]
Schroeder, J.A.; Lee, D.C. Transgenic mice reveal roles for TGFalpha and EGF receptor in mammary gland development and neoplasia. J. Mammary Gland Biol. Neoplasia, 1997, 2(2), 119-129.
[http://dx.doi.org/10.1023/A:1026347629876] [PMID: 10882298]
[3]
Hampton, K.K.; Craven, R.J. Pathways driving the endocytosis of mutant and wild-type EGFR in cancer. Oncoscience, 2014, 1(8), 504-512.
[http://dx.doi.org/10.18632/oncoscience.67] [PMID: 25594057]
[4]
Lo, H.W.; Hsu, S.C.; Hung, M.C. EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Res. Treat., 2006, 95(3), 211-218.
[http://dx.doi.org/10.1007/s10549-005-9011-0] [PMID: 16261406]
[5]
Bhargava, R.; Gerald, W.L.; Li, A.R.; Pan, Q.; Lal, P.; Ladanyi, M.; Chen, B. EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod. Pathol., 2005, 18(8), 1027-1033.
[http://dx.doi.org/10.1038/modpathol.3800438] [PMID: 15920544]
[6]
Dandawate, P.R.; Subramaniam, D.; Jensen, R.A.; Anant, S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin. Cancer Biol., 2016, 40-41(41), 192-208.
[http://dx.doi.org/10.1016/j.semcancer.2016.09.001] [PMID: 27609747]
[7]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[8]
Siddiqui, J.; Singh, A.; Chagtoo, M.; Singh, N.; Godbole, M.; Chakravarti, B. Phytochemicals for breast cancer therapy: current status and future implications. Curr. Cancer Drug Targets, 2015, 15(2), 116-135.
[http://dx.doi.org/10.2174/1568009615666141229152256] [PMID: 25544650]
[9]
Aggarwal, B.B.; Sethi, G.; Baladandayuthapani, V.; Krishnan, S.; Shishodia, S. Targeting cell signaling pathways for drug discovery: an old lock needs a new key. J. Cell Biochem., 2007, 102(3), 580-592.
[http://dx.doi.org/10.1002/jcb.21500] [PMID: 17668425]
[10]
Li, X.; Yang, C.; Wan, H.; Zhang, G.; Feng, J.; Zhang, L.; Chen, X.; Zhong, D.; Lou, L.; Tao, W.; Zhang, L. Discovery and development of pyrotinib: A novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur. J. Pharm. Sci., 2017, 110(110), 51-61.
[http://dx.doi.org/10.1016/j.ejps.2017.01.021] [PMID: 28115222]
[11]
Burris, H.A., III Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist, 2004, 9(S3)(Suppl. 3), 10-15.
[http://dx.doi.org/10.1634/theoncologist.9-suppl_3-10] [PMID: 15163842]
[12]
Bose, P.; Ozer, H. Neratinib: an oral, irreversible dual EGFR/HER2 inhibitor for breast and non-small cell lung cancer. Expert Opin. Investig. Drugs, 2009, 18(11), 1735-1751.
[http://dx.doi.org/10.1517/13543780903305428] [PMID: 19780706]
[13]
Liu, B.; Diaz Arguello, O.A.; Chen, D.; Chen, S.; Saber, A.; Haisma, H.J. CRISPR-mediated ablation of overexpressed EGFR in combination with sunitinib significantly suppresses renal cell carcinoma proliferation. PLoS One, 2020, 15(5), e0232985.
[http://dx.doi.org/10.1371/journal.pone.0232985] [PMID: 32413049]
[14]
Kulke, M.H.; Blaszkowsky, L.S.; Ryan, D.P.; Clark, J.W.; Meyerhardt, J.A.; Zhu, A.X.; Enzinger, P.C.; Kwak, E.L.; Muzikansky, A.; Lawrence, C.; Fuchs, C.S. Capecitabine plus erlotinib in gemcitabine-refractory advanced pancreatic cancer. J. Clin. Oncol., 2007, 25(30), 4787-4792.
[http://dx.doi.org/10.1200/JCO.2007.11.8521] [PMID: 17947726]
[15]
Janjigian, Y.Y.; Smit, E.F.; Groen, H.J.M.; Horn, L.; Gettinger, S.; Camidge, D.R.; Riely, G.J.; Wang, B.; Fu, Y.; Chand, V.K.; Miller, V.A.; Pao, W. Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Discov., 2014, 4(9), 1036-1045.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0326] [PMID: 25074459]
[16]
Hiscox, S.; Morgan, L.; Barrow, D.; Dutkowski, C.; Wakeling, A.; Nicholson, R.I. Tamoxifen resistance in breast cancer cells is accompanied by an enhanced motile and invasive phenotype: Inhibition by gefitinib (‘Iressa’, ZD1839). Clin. Exp. Metastasis, 2004, 21(3), 201-212.
[http://dx.doi.org/10.1023/B:CLIN.0000037697.76011.1d] [PMID: 15387370]
[17]
Waddell, T.; Chau, I.; Cunningham, D.; Gonzalez, D.; Okines, A.F.C.; Wotherspoon, A.; Saffery, C.; Middleton, G.; Wadsley, J.; Ferry, D.; Mansoor, W.; Crosby, T.; Coxon, F.; Smith, D.; Waters, J.; Iveson, T.; Falk, S.; Slater, S.; Peckitt, C.; Barbachano, Y.; Barbachano, Y. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): a randomised, open-label phase 3 trial. Lancet Oncol., 2013, 14(6), 481-489.
[http://dx.doi.org/10.1016/S1470-2045(13)70096-2] [PMID: 23594787]
[18]
Taurin, S.; Allen, K.M.; Scandlyn, M.J.; Rosengren, R.J. Raloxifene reduces triple-negative breast cancer tumor growth and decreases EGFR expression. Int. J. Oncol., 2013, 43(3), 785-792.
[http://dx.doi.org/10.3892/ijo.2013.2012] [PMID: 23842642]
[19]
Dittmann, K.H.; Mayer, C.; Ohneseit, P.A.; Raju, U.; Andratschke, N.H.; Milas, L.; Rodemann, H.P. Celecoxib induced tumor cell radiosensitization by inhibiting radiation induced nuclear EGFR transport and DNA-repair: a COX-2 independent mechanism. Int. J. Radiat. Oncol. Biol. Phys., 2008, 70(1), 203-212.
[http://dx.doi.org/10.1016/j.ijrobp.2007.08.065] [PMID: 17996386]
[20]
Balakrishnan, S.; Mukherjee, S.; Das, S.; Bhat, F.A.; Raja Singh, P.; Patra, C.R.; Arunakaran, J. Gold nanoparticles- conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem. Funct., 2017, 35(4), 217-231.
[http://dx.doi.org/10.1002/cbf.3266] [PMID: 28498520]
[21]
Starok, M.; Preira, P.; Vayssade, M.; Haupt, K.; Salomé, L.; Rossi, C. EGFR inhibition by curcumin in cancer cells: a dual mode of action. Biomacromolecules, 2015, 16(5), 1634-1642.
[http://dx.doi.org/10.1021/acs.biomac.5b00229] [PMID: 25893361]
[22]
Zhu, L.; Shen, X.B.; Yuan, P.C.; Shao, T.L.; Wang, G.D.; Liu, X.P. Arctigenin inhibits proliferation of ER-positive breast cancer cells through cell cycle arrest mediated by GSK3-dependent cyclin D1 degradation. Life Sci., 2020, 256, 117983.
[http://dx.doi.org/10.1016/j.lfs.2020.117983] [PMID: 32565252]
[23]
Lee, J.; Kim, J.H. Kim. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS One, 2016, 11(5), e0155264.
[http://dx.doi.org/10.1371/journal.pone.0155264] [PMID: 27175782]
[24]
Jaman, M.S.; Sayeed, M.A. Ellagic acid, sulforaphane, and ursolic acid in the prevention and therapy of breast cancer: current evidence and future perspectives. Breast Cancer, 2018, 25(5), 517-528.
[http://dx.doi.org/10.1007/s12282-018-0866-4] [PMID: 29725861]
[25]
Baraya, Y.S.; Wong, K.K.; Yaacob, N.S.; Nik, S.Y. The immunomodulatory potential of selected bioactive plant-based compounds in breast cancer: a review. Anticancer. Agents Med. Chem., 2017, 17(6), 770-783.
[PMID: 27539316]
[26]
Zhang, L.; Chen, H.; Wang, M.; Song, X.; Ding, F.; Zhu, J.; Li, X. Effects of glabridin combined with 5-fluorouracil on the proliferation and apoptosis of gastric cancer cells. Oncol. Lett., 2018, 15(5), 7037-7045.
[http://dx.doi.org/10.3892/ol.2018.8260] [PMID: 29725429]
[27]
Orry, A.J.W.; Abagyan, R.A.; Cavasotto, C.N. Structure-based development of target-specific compound libraries. Drug Discov. Today, 2006, 11(5-6), 261-266.
[http://dx.doi.org/10.1016/S1359-6446(05)03717-7] [PMID: 16580603]
[28]
Chandrika, B.B.; Steephan, M.; Kumar, T.R.S.; Sabu, A.; Haridas, M. Hesperetin and Naringenin sensitize HER2 positive cancer cells to death by serving as HER2 Tyrosine Kinase inhibitors. Life Sci., 2016, 160, 47-56.
[http://dx.doi.org/10.1016/j.lfs.2016.07.007] [PMID: 27449398]
[29]
Jung, S.K.; Kim, J.E.; Lee, S.Y.; Lee, M.H.; Byun, S.; Kim, Y.A.; Lim, T.G.; Reddy, K.; Huang, Z.; Bode, A.M.; Lee, H.J.; Lee, K.W.; Dong, Z. The P110 subunit of PI3-K is a therapeutic target of acacetin in skin cancer. Carcinogenesis, 2014, 35(1), 123-130.
[http://dx.doi.org/10.1093/carcin/bgt266] [PMID: 23913940]
[30]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[31]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[32]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[33]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[34]
Jiang, D.; Li, X.; Wang, H.; Shi, Y.; Xu, C.; Lu, S.; Huang, J.; Xu, Y.; Zeng, H.; Su, J.; Hou, Y.; Tan, L. The prognostic value of EGFR overexpression and amplification in Esophageal squamous cell Carcinoma. BMC Cancer, 2015, 15(1), 377.
[http://dx.doi.org/10.1186/s12885-015-1393-8] [PMID: 25953424]
[35]
Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; Salmon, J.K. Scalable algorithms for molecular dynamics simulations on commodity clusters. SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 2006, , pp. 43-43.
[http://dx.doi.org/10.1109/SC.2006.54]
[36]
Chow, E.; Rendleman, C.A.; Bowers, K.J.; Dror, R.O.; Hughes, D.H.; Gullingsrud, J.; Sacerdoti, F.D.; Shaw, D.E. Desmond performance on a cluster of multicore processors. DE Shaw Research Technical Report DESRES/TR--2008-01, 2008.
[37]
Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput., 2010, 6(5), 1509-1519.
[http://dx.doi.org/10.1021/ct900587b] [PMID: 26615687]
[38]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[39]
Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys., 1994, 101(5), 4177-4189.
[http://dx.doi.org/10.1063/1.467468]
[40]
Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 1992, 97(4), 2635-2643.
[http://dx.doi.org/10.1063/1.463940]
[41]
Toukmaji, A.Y.; Board, J.A., Jr Ewald summation techniques in perspective: A survey. Comput. Phys. Commun., 1996, 95(2-3), 73-92.
[http://dx.doi.org/10.1016/0010-4655(96)00016-1]
[42]
Kagami, L.P.; das Neves, G.M.; Timmers, L.F.S.M.; Caceres, R.A.; Eifler-Lima, V.L. Geo-Measures: A PyMOL plugin for protein structure ensembles analysis. Comput. Biol. Chem., 2020, 87, 107322.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107322] [PMID: 32604028]
[43]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[44]
Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem., 2016, 12(1), 2694-2718.
[http://dx.doi.org/10.3762/bjoc.12.267] [PMID: 28144341]
[45]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398.
[PMID: 12680238]
[46]
Aggarwal, B.B. Nuclear factor-κB. Cancer Cell, 2004, 6(3), 203-208.
[http://dx.doi.org/10.1016/j.ccr.2004.09.003] [PMID: 15380510]
[47]
Maadwar, S.; Galla, R. Cytotoxic oxindole derivatives: in vitro EGFR inhibition, pharmacophore modeling, 3D-QSAR and molecular dynamics studies. J. Recept. Signal Transduct. Res., 2019, 39(5-6), 460-469.
[http://dx.doi.org/10.1080/10799893.2019.1683865] [PMID: 31814499]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy