Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Effect of Synthetic Curcumin Analogues on Obesity, Diabetes and Cardiovascular Disease: A Literature Review

Author(s): Salime Lavian, Pegah Mardaneh, Mohammad Bagherniya*, Seyed Ahmad Emami, Alexandra E. Butler and Amirhossein Sahebkar*

Volume 30, Issue 35, 2023

Published on: 14 April, 2023

Page: [3979 - 3992] Pages: 14

DOI: 10.2174/0929867330666230302114522

Price: $65

Open Access Journals Promotions 2
Abstract

Obesity, as an unfavorable consequence of our modern lifestyle, can promote the emergence of other disorders, like diabetes and cardiovascular disease, that negatively impact quality of life. Therefore, prevention and treatment of obesity and its related comorbidities are critical. Lifestyle modification is the first and most important step but, in practical terms, presents a major challenge to many patients. So, the development of new strategies and therapies is critical for these patients. Although herbal bioactive compounds have recently gained attention for their ability to prevent and treat conditions related to obesity, no ideal pharmacological treatment has been found to treat obesity. Curcumin, one of the compounds extracted from turmeric, is a well-studied active herbal extract; however, its poor bioavailability and solubility in water, instability against temperature, light and pH fluctuations and rapid excretion limit its therapeutic application. Curcumin modification can, however, provide novel analogues with better performance and fewer disadvantages in comparison to the original structure. In the past few years, the positive effects of synthetic analogues of curcumin for the treatment of obesity, diabetes and cardiovascular disorders have been reported. In this review, we evaluate the strengths and weaknesses of the reported artificial derivatives and assess their practicality as therapeutic agents.

Keywords: Curcumin, synthetic analogue, obesity, diabetes, cardiovascular disease, treatment.

[1]
Cicero, A.F.; Sahebkar, A.; Fogacci, F.; Bove, M.; Giovannini, M.; Borghi, C. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: a double-blind, placebo-controlled clinical trial. Eur. J. Nutr., 2019, 59(2), 477-483.
[http://dx.doi.org/10.1177/0272684X15569487] [PMID: 30796508]
[2]
Bagherniya, M.; Sharma, M.; Mostafavi, F.; Keshavarz, S.A. Application of social cognitive theory in predicting childhood obesity prevention behaviors in overweight and obese Iranian adolescents. Int. Q. Community Health Educ., 2015, 35(2), 133-147.
[http://dx.doi.org/10.1177/0272684X15569487] [PMID: 25856805]
[3]
Kazemipoor, M.; Radzi, C.W.J.W.M.; Cordell, G.A.; Yaze, I. Potential of traditional medicinal plants for treating obesity: a review. arXiv, 2012, 2012, 1208-1923.
[http://dx.doi.org/10.48550/arXiv.1208.1923]
[4]
Hasani-Ranjbar, S.; Jouyandeh, Z.; Abdollahi, M. A systematic review of anti-obesity medicinal plants - an update. J. Diabetes Metab. Disord., 2013, 12(1), 28.
[http://dx.doi.org/10.1186/2251-6581-12-28] [PMID: 23777875]
[5]
Wadden, T.A.; Webb, V.L.; Moran, C.H.; Bailer, B.A. Lifestyle modification for obesity: new developments in diet, physical activity, and behavior therapy. Circulation, 2012, 125(9), 1157-1170.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.039453] [PMID: 22392863]
[6]
Bagherniya, M.; Nobili, V.; Blesso, C.N.; Sahebkar, A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacol. Res., 2018, 130, 213-240.
[http://dx.doi.org/10.1016/j.phrs.2017.12.020] [PMID: 29287685]
[7]
Bahrami, H.; Bluemke, D.A.; Kronmal, R.; Bertoni, A.G.; Lloyd-Jones, D.M.; Shahar, E.; Szklo, M.; Lima, J.A.C. Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J. Am. Coll. Cardiol., 2008, 51(18), 1775-1783.
[http://dx.doi.org/10.1016/j.jacc.2007.12.048] [PMID: 18452784]
[8]
Andreasen, K.R.; Andersen, M.L.; Schantz, A.L. Obesity and pregnancy. Acta Obstet. Gynecol. Scand., 2004, 83(11), 1022-1029.
[http://dx.doi.org/10.1111/j.0001-6349.2004.00624.x] [PMID: 15488115]
[9]
Pasquali, R.; Patton, L.; Gambineri, A. Obesity and infertility. Curr. Opin. Endocrinol. Diabetes Obes., 2007, 14(6), 482-487.
[http://dx.doi.org/10.1097/MED.0b013e3282f1d6cb] [PMID: 17982356]
[10]
Van Gaal, L.F.; Mertens, I.L.; De Block, C.E. Mechanisms linking obesity with cardiovascular disease. Nature, 2006, 444(7121), 875-880.
[http://dx.doi.org/10.1038/nature05487] [PMID: 17167476]
[11]
Bagherniya, M.; Khayyatzadeh, S.S.; Avan, A.; Safarian, M.; Nematy, M.; Ferns, G.A.; Mokhber, N.; Ghayour-Mobarhan, M. Metabolic syndrome and its components are related to psychological disorders: A population based study. Diabetes Metab. Syndr., 2017, 11(S2), S561-S566.
[http://dx.doi.org/10.1016/j.dsx.2017.04.005] [PMID: 28420578]
[12]
Haris, P.; Mary, V.; Aparna, P.; Dileep, K.V.; Sudarsanakumar, C. A comprehensive approach to ascertain the binding mode of curcumin with DNA. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 175, 155-163.
[http://dx.doi.org/10.1016/j.saa.2016.11.049] [PMID: 28033562]
[13]
Bhunchu, S.; Rojsitthisak, P.; Rojsitthisak, P. Effects of preparation parameters on the characteristics of chitosan–alginate nanoparticles containing curcumin diethyl disuccinate. J. Drug Deliv. Sci. Technol., 2015, 28, 64-72.
[http://dx.doi.org/10.1016/j.jddst.2015.05.010]
[14]
Bahrani, S.; Ghaedi, M.; Khoshnood Mansoorkhani, M.J.; Ostovan, A. A highly selective nanocomposite based on MIP for curcumin trace levels quantification in food samples and human plasma following optimization by central composite design. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1040, 129-135.
[http://dx.doi.org/10.1016/j.jchromb.2016.12.011] [PMID: 27978467]
[15]
Basnet, P.; Skalko-Basnet, N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules, 2011, 16(6), 4567-4598.
[http://dx.doi.org/10.3390/molecules16064567] [PMID: 21642934]
[16]
Abrahams, S.; Haylett, W.L.; Johnson, G.; Carr, J.A.; Bardien, S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience, 2019, 406, 1-21.
[http://dx.doi.org/10.1016/j.neuroscience.2019.02.020] [PMID: 30825584]
[17]
Shafabakhsh, R.; Pourhanifeh, M.H.; Mirzaei, H.R.; Sahebkar, A.; Asemi, Z.; Mirzaei, H. Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy. Pharmacol. Res., 2019, 147, 104353.
[http://dx.doi.org/10.1016/j.phrs.2019.104353] [PMID: 31306775]
[18]
Pivari, F.; Mingione, A.; Brasacchio, C.; Soldati, L. Curcumin and type 2 diabetes mellitus: Prevention and treatment. Nutrients, 2019, 11(8), 1837.
[http://dx.doi.org/10.3390/nu11081837] [PMID: 31398884]
[19]
Bianconi, V.; Pirro, M.; Moallem, S.M.H.; Majeed, M.; Bronzo, P.; D’Abbondanza, M.; Jamialahmadi, T.; Sahebkar, A. The multifaceted actions of curcumin in obesity. Adv. Exp. Med. Biol., 2021, 1328, 81-97.
[http://dx.doi.org/10.1007/978-3-030-73234-9_6] [PMID: 34981472]
[20]
Li, C.; Miao, X.; Li, F.; Adhikari, B.K.; Liu, Y.; Sun, J.; Zhang, R.; Cai, L.; Liu, Q.; Wang, Y. Curcuminoids: Implication for inflammation and oxidative stress in cardiovascular diseases. Phytother. Res., 2019, 33(5), 1302-1317.
[http://dx.doi.org/10.1002/ptr.6324] [PMID: 30834628]
[21]
Alidadi, M.; Jamialahmadi, T.; Cicero, A.F.G.; Bianconi, V.; Pirro, M.; Banach, M.; Sahebkar, A. The potential role of plant-derived natural products in improving arterial stiffness: A review of dietary intervention studies. Trends Food Sci. Technol., 2020, 99, 426-440.
[http://dx.doi.org/10.1016/j.tifs.2020.03.026]
[22]
Ganjali, S.; Blesso, C.N.; Banach, M.; Pirro, M.; Majeed, M.; Sahebkar, A. Effects of curcumin on HDL functionality. Pharmacol. Res., 2017, 119, 208-218.
[http://dx.doi.org/10.1016/j.phrs.2017.02.008] [PMID: 28192240]
[23]
Mohajeri, M.; Bianconi, V.; Ávila-Rodriguez, M.F.; Barreto, G.E.; Jamialahmadi, T.; Pirro, M.; Sahebkar, A. Curcumin: A phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol. Res., 2020, 156, 104765.
[http://dx.doi.org/10.1016/j.phrs.2020.104765] [PMID: 32217147]
[24]
Panahi, Y.; Ghanei, M.; Bashiri, S.; Hajihashemi, A.; Sahebkar, A. Short-term curcuminoid supplementation for chronic pulmonary complications due to sulfur mustard intoxication: Positive results of a randomized double-blind placebo-controlled trial. Drug Res., 2015, 65(11), 567-573.
[http://dx.doi.org/10.1055/s-0034-1389986] [PMID: 25268878]
[25]
Parsamanesh, N.; Moossavi, M.; Bahrami, A.; Butler, A.E.; Sahebkar, A. Therapeutic potential of curcumin in diabetic complications. Pharmacol. Res., 2018, 136, 181-193.
[http://dx.doi.org/10.1016/j.phrs.2018.09.012] [PMID: 30219581]
[26]
Sahebkar, A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil. Steril., 2010, 94(5), e75-e76.
[http://dx.doi.org/10.1016/j.fertnstert.2010.07.1071] [PMID: 20797714]
[27]
Afshari, A.R.; Jalili-Nik, M.; Abbasinezhad-Moud, F.; Javid, H.; Karimi, M.; Mollazadeh, H.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. Anti-tumor effects of curcuminoids in glioblastoma multiforme: An updated literature review. Curr. Med. Chem., 2021, 28(39), 8116-8138.
[http://dx.doi.org/10.2174/1875533XMTExtNDA8x] [PMID: 33176632]
[28]
Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Reiner, Ž.; Majeed, M.; Sahebkar, A. Curcuminoids modify lipid profile in type 2 diabetes mellitus: A randomized controlled trial. Complement. Ther. Med., 2017, 33, 1-5.
[http://dx.doi.org/10.1016/j.ctim.2017.05.006] [PMID: 28735818]
[29]
Iranshahi, M.; Sahebkar, A.; Takasaki, M.; Konoshima, T.; Tokuda, H. Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo. Eur. J. Cancer Prev., 2009, 18(5), 412-415.
[http://dx.doi.org/10.1097/CEJ.0b013e32832c389e] [PMID: 19531956]
[30]
Vahedian-Azimi, A.; Abbasifard, M.; Rahimi-Bashar, F.; Guest, P.C.; Majeed, M.; Mohammadi, A.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Effectiveness of curcumin on outcomes of hospitalized COVID-19 patients: A systematic review of clinical trials. Nutrients, 2022, 14(2), 256.
[http://dx.doi.org/10.3390/nu14020256] [PMID: 35057437]
[31]
Mohammed, E.; El-Beih, N.; El-Hussieny, E.; El-Ahwany, E.; Hassan, M.; Zoheiry, M. Effects of free and nanoparticulate curcumin on chemically induced liver carcinoma in an animal model. Arch. Med. Sci., 2021, 17(1), 218-227.
[http://dx.doi.org/10.5114/aoms.2020.93739] [PMID: 33488874]
[32]
Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: An inflammasome silencer. Pharmacol. Res., 2020, 159, 104921.
[http://dx.doi.org/10.1016/j.phrs.2020.104921] [PMID: 32464325]
[33]
Heidari, Z.; Daei, M.; Boozari, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother. Res., 2022, 36(4), 1442-1458.
[http://dx.doi.org/10.1002/ptr.7350] [PMID: 34904764]
[34]
Khayatan, D.; Razavi, S.M.; Arab, Z.N.; Niknejad, A.H.; Nouri, K.; Momtaz, S.; Gumpricht, E.; Jamialahmadi, T.; Abdolghaffari, A.H.; Barreto, G.E.; Sahebkar, A. Protective effects of curcumin against traumatic brain injury. Biomed. Pharmacother., 2022, 154, 113621.
[http://dx.doi.org/10.1016/j.biopha.2022.113621] [PMID: 36055110]
[35]
Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135.
[http://dx.doi.org/10.1016/j.autrev.2017.11.016] [PMID: 29180127]
[36]
Sahebkar, A.; Henrotin, Y. Analgesic efficacy and safety of curcuminoids in clinical practice: A systematic review and meta-analysis of randomized controlled trials. Pain Med., 2016, 17(6), 1192-1202.
[http://dx.doi.org/10.1093/pm/pnv024] [PMID: 26814259]
[37]
Bukhari, S.N.A.; Jantan, I.; Unsal Tan, O.; Sher, M.; Naeem-ul-Hassan, M.; Qin, H.L. Biological activity and molecular docking studies of curcumin-related α,β-unsaturated carbonyl-based synthetic compounds as anticancer agents and mushroom tyrosinase inhibitors. J. Agric. Food Chem., 2014, 62(24), 5538-5547.
[http://dx.doi.org/10.1021/jf501145b] [PMID: 24901506]
[38]
Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M.C. Curcumin and health. Molecules, 2016, 21(3), 264.
[http://dx.doi.org/10.3390/molecules21030264] [PMID: 26927041]
[39]
Lin, C.C.; Lin, H.Y.; Chi, M.H.; Shen, C.M.; Chen, H.W.; Yang, W.J.; Lee, M.H. Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line. Food Chem., 2014, 154, 282-290.
[http://dx.doi.org/10.1016/j.foodchem.2014.01.012] [PMID: 24518344]
[40]
Manohar, C.M.; Prabhawathi, V.; Sivakumar, P.M.; Doble, M. Design of a papain immobilized antimicrobial food package with curcumin as a crosslinker. PLoS One, 2015, 10(4), e0121665.
[http://dx.doi.org/10.1371/journal.pone.0121665] [PMID: 25906061]
[41]
Delivery carrier of curcumin based on nanotechnology: A review. IOP Conf. Ser.: Earth Environ. Sci., 2019, 332, p. 032016.
[http://dx.doi.org/10.1088/1755-1315/332/3/032016]
[42]
Pan, J.; Xu, T.; Xu, F.; Zhang, Y.; Liu, Z.; Chen, W.; Fu, W.; Dai, Y.; Zhao, Y.; Feng, J.; Liang, G. Development of resveratrol-curcumin hybrids as potential therapeutic agents for inflammatory lung diseases. Eur. J. Med. Chem., 2017, 125, 478-491.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.033] [PMID: 27689730]
[43]
Joye, I.J.; McClements, D.J. Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends Food Sci. Technol., 2013, 34(2), 109-123.
[http://dx.doi.org/10.1016/j.tifs.2013.10.002]
[44]
Devendra, D.; Liu, E.; Eisenbarth, G.S. Type 1 diabetes: Recent developments. BMJ, 2004, 328(7442), 750-754.
[http://dx.doi.org/10.1136/bmj.328.7442.750] [PMID: 15044291]
[45]
King, H.; Aubert, R.E.; Herman, W.H. Global burden of diabetes, 1995–2025: Prevalence, numerical estimates, and projections. Diabetes Care, 1998, 21(9), 1414-1431.
[http://dx.doi.org/10.2337/diacare.21.9.1414] [PMID: 9727886]
[46]
Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 1988, 37(12), 1595-1607.
[http://dx.doi.org/10.2337/diab.37.12.1595] [PMID: 3056758]
[47]
Kameswara Rao, B.; Appa Rao, C. Hypoglycemic and antihyperglycemic activity of Syzygium alternifolium (Wt.) Walp. seed extracts in normal and diabetic rats. Phytomedicine, 2001, 8(2), 88-93.
[http://dx.doi.org/10.1078/0944-7113-00015] [PMID: 11315761]
[48]
Ali Hussain, H.E.M. Hypoglycemic, hypolipidemic and antioxidant properties of combination ofCurcumin fromCurcuma longa, Linn, and partially purified product fromAbroma augusta, Linn. in streptozotocin induced diabetes. Indian J. Clin. Biochem., 2002, 17(2), 33-43.
[http://dx.doi.org/10.1007/BF02867969] [PMID: 23105348]
[49]
Arun, N.; Nalini, N. Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods Hum. Nutr., 2002, 57(1), 41-52.
[http://dx.doi.org/10.1023/A:1013106527829] [PMID: 11855620]
[50]
Babu, P.S.; Srinivasan, K. Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa/) in streptozotocin induced diabetic rats. Mol. Cell. Biochem., 1997, 166(1/2), 169-175.
[http://dx.doi.org/10.1023/A:1006819605211] [PMID: 9046034]
[51]
Babu, P.S.; Srinivasan, K. Amelioration of renal lesions associated with diabetes by dietary curcumin in streptozotocin diabetic rats. Mol. Cell. Biochem., 1998, 181(1/2), 87-96.
[http://dx.doi.org/10.1023/A:1006821828706] [PMID: 9562245]
[52]
Majeed, M.; Badmaev, V.; Shivakumar, U.; Rajendran, R. Curcuminoids: Antioxidant phytonutrients. Piscataway Inc: New York, 1995.
[53]
Sugiyama, Y.; Kawakishi, S.; Osawa, T. Involvement of the β-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem. Pharmacol., 1996, 52(4), 519-525.
[http://dx.doi.org/10.1016/0006-2952(96)00302-4] [PMID: 8759023]
[54]
Pari, L.; Murugan, P. Effect of tetrahydrocurcumin on blood glucose, plasma insulin and hepatic key enzymes in streptozotocin induced diabetic rats. J. Basic Clin. Physiol. Pharmacol., 2005, 16(4), 257-274.
[http://dx.doi.org/10.1515/JBCPP.2005.16.4.257] [PMID: 16438392]
[55]
Lott, J.A.; Turner, K. Evaluation of trinder’s glucose oxidase method for measuring glucose in serum and urine. Clin. Chem., 1975, 21(12), 1754-1760.
[http://dx.doi.org/10.1093/clinchem/21.12.1754] [PMID: 1237363]
[56]
du Vigneaud, V.; Karr, W.G. Carbohydrate utilization I. rate of disappearance of d-glucose from the blood. J. Biol. Chem., 1925, 66(1), 281-300.
[http://dx.doi.org/10.1016/S0021-9258(18)84814-1]
[57]
Sudhakar Nayak, S.; Pattabiraman, T.N. A new colorimetric method for the estimation of glycosylated hemoglobin. Clin. Chim. Acta, 1981, 109(3), 267-274.
[http://dx.doi.org/10.1016/0009-8981(81)90312-0] [PMID: 7226519]
[58]
Seo, K.I.; Choi, M.S.; Jung, U.J.; Kim, H.J.; Yeo, J.; Jeon, S.M.; Lee, M.K. Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol. Nutr. Food Res., 2008, 52(9), 995-1004.
[http://dx.doi.org/10.1002/mnfr.200700184] [PMID: 18398869]
[59]
Shao, W.; Yu, Z.; Chiang, Y.; Yang, Y.; Chai, T.; Foltz, W.; Lu, H.; Fantus, I.G.; Jin, T. Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS One, 2012, 7(1), e28784.
[http://dx.doi.org/10.1371/journal.pone.0028784] [PMID: 22253696]
[60]
Panzhinskiy, E.; Hua, Y.; Lapchak, P.A.; Topchiy, E.; Lehmann, T.E.; Ren, J.; Nair, S. Novel curcumin derivative CNB-001 mitigates obesity-associated insulin resistance. J. Pharmacol. Exp. Ther., 2014, 349(2), 248-257.
[http://dx.doi.org/10.1124/jpet.113.208728] [PMID: 24549372]
[61]
Liu, Y.; Dargusch, R.; Maher, P.; Schubert, D. A broadly neuroprotective derivative of curcumin. J. Neurochem., 2008, 105(4), 1336-1345.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05236.x] [PMID: 18208543]
[62]
Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A.L.; Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C.C.; Ramachandran, C.; Gresser, M.J.; Tremblay, M.L.; Kennedy, B.P. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 1999, 283(5407), 1544-1548.
[http://dx.doi.org/10.1126/science.283.5407.1544] [PMID: 10066179]
[63]
Kenner, K.A.; Anyanwu, E.; Olefsky, J.M.; Kusari, J. Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J. Biol. Chem., 1996, 271(33), 19810-19816.
[http://dx.doi.org/10.1074/jbc.271.33.19810] [PMID: 8702689]
[64]
Brichard, S.M.; Ongemba, L.N.; Henquin, J.C. Oral vanadate decreases muscle insulin resistance in obese fa/fa rats. Diabetologia, 1992, 35(6), 522-527.
[http://dx.doi.org/10.1007/BF00400479] [PMID: 1612224]
[65]
Woo, L.C.Y.; Yuen, V.G.; Thompson, K.H.; McNeill, J.H.; Orvig, C. Vanadyl–biguanide complexes as potential synergistic insulin mimics. J. Inorg. Biochem., 1999, 76(3-4), 251-257.
[http://dx.doi.org/10.1016/S0162-0134(99)00152-X] [PMID: 10605840]
[66]
Sakurai, H.; Sano, H.; Takino, T.; Yasui, H. An orally active antidiabetic vanadyl complex, bis(1-oxy-2-pyridinethiolato)oxovanadium(IV), with VO(S2O2) coordination mode; in vitro and in vivo evaluations in rats. J. Inorg. Biochem., 2000, 80(1-2), 99-105.
[http://dx.doi.org/10.1016/S0162-0134(00)00045-3] [PMID: 10885469]
[67]
Posner, B.I.; Faure, R.; Burgess, J.W.; Bevan, A.P.; Lachance, D.; Zhang-Sun, G.; Fantus, I.G.; Ng, J.B.; Hall, D.A.; Lum, B.S. Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J. Biol. Chem., 1994, 269(6), 4596-4604.
[http://dx.doi.org/10.1016/S0021-9258(17)41818-7] [PMID: 8308031]
[68]
Bevan, AP; Drake, PG; Yale, J-F; Shaver, A; Posner, BI Peroxovanadium compounds: Biological actions and mechanism of insulin-mimesis. Vanadium Comp., 1995, 1995, 49-58.
[http://dx.doi.org/10.1007/978-1-4613-1251-2_6]
[69]
Ramanadham, S.; Mongold, J.J.; Brownsey, R.W.; Cros, G.H.; McNeill, J.H. Oral vanadyl sulfate in treatment of diabetes mellitus in rats. Am. J. Physiol., 1989, 257(3 Pt 2), H904-H911.
[PMID: 2675634]
[70]
Llobet, J.M.; Domingo, J.L. Acute toxicity of vanadium compounds in rats and mice. Toxicol. Lett., 1984, 23(2), 227-231.
[http://dx.doi.org/10.1016/0378-4274(84)90131-0] [PMID: 6334379]
[71]
Yuen, V.G.; Orvig, C.; McNeill, J.H. Glucose-lowering effects of a new organic vanadium complex, bis(maltolato)oxovanadium(IV). Can. J. Physiol. Pharmacol., 1993, 71(3-4), 263-269.
[http://dx.doi.org/10.1139/y93-041] [PMID: 8402390]
[72]
Majithiya, J.B.; Balaraman, R.; Giridhar, R.; Yadav, M.R. Effect of bis[curcumino]oxovanadium complex on non-diabetic and streptozotocin-induced diabetic rats. J. Trace Elem. Med. Biol., 2005, 18(3), 211-217.
[http://dx.doi.org/10.1016/j.jtemb.2004.12.001] [PMID: 15966569]
[73]
Srinivasan, M. Effect of curcumin on blood sugar as seen in a diabetic subject. Indian J. Med. Sci., 1972, 26(4), 269-270.
[PMID: 4637293]
[74]
Das, K.K.; Razzaghi-Asl, N.; Tikare, S.N.; Di Santo, R.; Costi, R.; Messore, A.; Pescatori, L.; Crucitti, G.C.; Jargar, J.G.; Dhundasi, S.A.; Saso, L. Hypoglycemic activity of curcumin synthetic analogues in alloxan-induced diabetic rats. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 99-105.
[http://dx.doi.org/10.3109/14756366.2015.1004061] [PMID: 25683079]
[75]
Oberley, L.W. Free radicals and diabetes. Free Radic. Biol. Med., 1988, 5(2), 113-124.
[http://dx.doi.org/10.1016/0891-5849(88)90036-6] [PMID: 3075947]
[76]
Deng, S.; Chen, W.; Zhou, B.; Yang, L.; Liu, Z. Protective effects of curcumin and its analogues against free radical-induced oxidative haemolysis of human red blood cells. Food Chem., 2006, 98(1), 112-119.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.063]
[77]
Otterbein, L.E.; Choi, A.M.K. Heme oxygenase: Colors of defense against cellular stress. Am. J. Physiol. Lung Cell. Mol. Physiol., 2000, 279(6), L1029-L1037.
[http://dx.doi.org/10.1152/ajplung.2000.279.6.L1029] [PMID: 11076792]
[78]
Abdel Aziz, M.T.; El-Asmar, M.F.; El-Ibrashy, I.N.; Rezq, A.M.; Al-Malki, A.L.; Wassef, M.A.; Fouad, H.H.; Ahmed, H.H.; Taha, F.M.; Hassouna, A.A.; Morsi, H.M. Effect of novel water soluble curcumin derivative on experimental type- 1 diabetes mellitus (short term study). Diabetol. Metab. Syndr., 2012, 4(1), 30.
[http://dx.doi.org/10.1186/1758-5996-4-30] [PMID: 22762693]
[79]
Costi, R.; Santo, R.D.; Artico, M.; Massa, S.; Ragno, R.; Loddo, R.; La Colla, M.; Tramontano, E.; La Colla, P.; Pani, A. 2,6-Bis(3,4,5-trihydroxybenzylydene) derivatives of cyclohexanone. Bioorg. Med. Chem., 2004, 12(1), 199-215.
[http://dx.doi.org/10.1016/j.bmc.2003.10.005] [PMID: 14697785]
[80]
Artico, M.; Di Santo, R.; Costi, R.; Novellino, E.; Greco, G.; Massa, S.; Tramontano, E.; Marongiu, M.E.; De Montis, A.; La Colla, P. Geometrically and conformationally restrained cinnamoyl compounds as inhibitors of HIV-1 integrase: synthesis, biological evaluation, and molecular modeling. J. Med. Chem., 1998, 41(21), 3948-3960.
[http://dx.doi.org/10.1021/jm9707232] [PMID: 9767632]
[81]
Ahn, C.M.; Park, B.G.; Woo, H.B.; Ham, J.; Shin, W.S.; Lee, S. Synthesis of sulfonyl curcumin mimics exerting a vasodilatation effect on the basilar artery of rabbits. Bioorg. Med. Chem. Lett., 2009, 19(5), 1481-1483.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.019] [PMID: 19179077]
[82]
Robinson, T.P.; Ehlers, T.; Hubbard, R.B., IV; Bai, X.; Arbiser, J.L.; Goldsmith, D.J.; Bowen, J.P. Design, synthesis, and biological evaluation of angiogenesis inhibitors: Aromatic enone and dienone analogues of curcumin. Bioorg. Med. Chem. Lett., 2003, 13(1), 115-117.
[http://dx.doi.org/10.1016/S0960-894X(02)00832-6] [PMID: 12467629]
[83]
Woo, H.B.; Shin, W.S.; Lee, S.; Ahn, C.M. Synthesis of novel curcumin mimics with asymmetrical units and their anti-angiogenic activity. Bioorg. Med. Chem. Lett., 2005, 15(16), 3782-3786.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.064] [PMID: 15993583]
[84]
Kim, Y.K.; Song, Y.J.; Seo, D.W.; Kang, D.W.; Lee, H.Y.; Rhee, D.K.; Han, J.W.; Ahn, C.M.; Lee, S.; Kim, S.N. Reversal of multidrug resistance by 4-chloro-N-(3-((E)-3-(4-hydroxy-3-methoxyphenyl)acryloyl)phenyl)benzamide through the reversible inhibition of P-glycoprotein. Biochem. Biophys. Res. Commun., 2007, 355(1), 136-142.
[http://dx.doi.org/10.1016/j.bbrc.2007.01.117] [PMID: 17286965]
[85]
Um, Y.; Cho, S.; Woo, H.B.; Kim, Y.K.; Kim, H.; Ham, J.; Kim, S.N.; Ahn, C.M.; Lee, S. Synthesis of curcumin mimics with multidrug resistance reversal activities. Bioorg. Med. Chem., 2008, 16(7), 3608-3615.
[http://dx.doi.org/10.1016/j.bmc.2008.02.012] [PMID: 18295490]
[86]
Park, B.G.; Shin, W.S.; Um, Y.; Cho, S.; Park, G.M.; Yeon, D.S.; Kwon, S.C.; Ham, J.; Choi, B.W.; Lee, S. Selective vasodilatation effect of sargahydroquinoic acid, an active constituent of Sargassum micracanthum, on the basilar arteries of rabbits. Bioorg. Med. Chem. Lett., 2008, 18(8), 2624-2627.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.034] [PMID: 18372174]
[87]
Xu, P.H.; Long, Y.; Dai, F.; Liu, Z.L. The relaxant effect of curcumin on porcine coronary arterial ring segments. Vascul. Pharmacol., 2007, 47(1), 25-30.
[http://dx.doi.org/10.1016/j.vph.2007.03.003] [PMID: 17459781]
[88]
Sasaki, Y.; Goto, H.; Tohda, C.; Hatanaka, F.; Shibahara, N.; Shimada, Y.; Terasawa, K.; Komatsu, K. Effects of curcuma drugs on vasomotion in isolated rat aorta. Biol. Pharm. Bull., 2003, 26(8), 1135-1143.
[http://dx.doi.org/10.1248/bpb.26.1135] [PMID: 12913265]
[89]
Karaki, H.; Ozaki, H.; Hori, M.; Mitsui-Saito, M.; Amano, K.; Harada, K.; Miyamoto, S.; Nakazawa, H.; Won, K.J.; Sato, K. Calcium movements, distribution, and functions in smooth muscle. Pharmacol. Rev., 1997, 49(2), 157-230.
[PMID: 9228665]
[90]
Karaki, H.; Weiss, G.B. Calcium release in smooth muscle. Life Sci., 1988, 42(2), 111-122.
[http://dx.doi.org/10.1016/0024-3205(88)90674-1] [PMID: 2447464]
[91]
Versari, D.; Daghini, E.; Virdis, A.; Ghiadoni, L.; Taddei, S. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care, 2009, 32(S2), S314-S321.
[http://dx.doi.org/10.2337/dc09-S330] [PMID: 19875572]
[92]
Böhm, F.; Pernow, J. The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc. Res., 2007, 76(1), 8-18.
[http://dx.doi.org/10.1016/j.cardiores.2007.06.004] [PMID: 17617392]
[93]
Park, C.B.; Ahn, C.M.; Oh, S.; Kwon, D.; Cho, W.C.; Shin, W.S.; Cui, Y.; Um, Y.S.; Park, B.G.; Lee, S. Synthesis of alkylsulfonyl and substituted benzenesulfonyl curcumin mimics as dual antagonist of L-type Ca2+ channel and endothelin A/B2 receptor. Bioorg. Med. Chem., 2015, 23(20), 6673-6682.
[http://dx.doi.org/10.1016/j.bmc.2015.09.004] [PMID: 26386817]
[94]
Borghi, C.; Rossi, F.; Rossi, F.; Force, S.T. Role of the renin-angiotensin-aldosterone system and its pharmacological inhibitors in cardiovascular diseases: complex and critical issues. High Blood Press. Cardiovasc. Prev., 2015, 22(4), 429-444.
[http://dx.doi.org/10.1007/s40292-015-0120-5] [PMID: 26403596]
[95]
Aggarwal, B.B.; Sung, B. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets. Trends Pharmacol. Sci., 2009, 30(2), 85-94.
[http://dx.doi.org/10.1016/j.tips.2008.11.002] [PMID: 19110321]
[96]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[97]
Zhuang, X.D.; Liao, L.Z.; Dong, X.B.; Hu, X.; Guo, Y.; Du, Z.M.; Liao, X.X.; Wang, L.C. Design, synthesis, and antihypertensive activity of curcumin-inspired compounds via ACE inhibition and vasodilation, along with a bioavailability study for possible benefit in cardiovascular diseases. Drug Des. Devel. Ther., 2016, 10, 129-139.
[PMID: 26792980]
[98]
Skrzypiec-Spring, M.; Grotthus, B.; Szeląg, A.; Schulz, R. Isolated heart perfusion according to Langendorff-Still viable in the new millennium. J. Pharmacol. Toxicol. Methods, 2007, 55(2), 113-126.
[http://dx.doi.org/10.1016/j.vascn.2006.05.006] [PMID: 16844390]
[99]
Angulo, P. Nonalcoholic fatty liver disease. N. Engl. J. Med., 2002, 346(16), 1221-1231.
[http://dx.doi.org/10.1056/NEJMra011775] [PMID: 11961152]
[100]
Wieckowska, A.; Papouchado, B.G.; Li, Z.; Lopez, R.; Zein, N.N.; Feldstein, A.E. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am. J. Gastroenterol., 2008, 103(6), 1372-1379.
[http://dx.doi.org/10.1111/j.1572-0241.2007.01774.x]
[101]
Dowman, J.K.; Tomlinson, J.W.; Newsome, P.N. Pathogenesis of non-alcoholic fatty liver disease. QJM, 2010, 103(2), 71-83.
[http://dx.doi.org/10.1093/qjmed/hcp158] [PMID: 19914930]
[102]
Neuschwander-Tetri, B.A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: The central role of nontriglyceride fatty acid metabolites. Hepatology, 2010, 52(2), 774-788.
[http://dx.doi.org/10.1002/hep.23719] [PMID: 20683968]
[103]
Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol., 2010, 221(1), 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[104]
Quan, W.; Lee, M.S. Role of autophagy in the control of body metabolism. Endocrinol. Metab., 2013, 28(1), 6-11.
[http://dx.doi.org/10.3803/EnM.2013.28.1.6] [PMID: 24396643]
[105]
Rahmani, S.; Asgary, S.; Askari, G.; Keshvari, M.; Hatamipour, M.; Feizi, A.; Sahebkar, A. Treatment of non-alcoholic fatty liver disease with curcumin: A randomized placebo-controlled trial. Phytother. Res., 2016, 30(9), 1540-1548.
[http://dx.doi.org/10.1002/ptr.5659] [PMID: 27270872]
[106]
Lee, E.S.; Kwon, M.H.; Kim, H.M.; Woo, H.B.; Ahn, C.M.; Chung, C.H. Curcumin analog CUR5–8 ameliorates nonalcoholic fatty liver disease in mice with high-fat diet-induced obesity. Metabolism, 2020, 103, 154015.
[http://dx.doi.org/10.1016/j.metabol.2019.154015] [PMID: 31758951]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy