Review Article

纳米微粒在癌症细胞中高效递送槲皮素的应用

卷 31, 期 9, 2024

发表于: 18 April, 2023

页: [1107 - 1141] 页: 35

弟呕挨: 10.2174/0929867330666230301121611

价格: $65

摘要

槲皮素(Qu,3,5,7,3',4'-五羟基黄烷酮)是一种天然多酚化合物,广泛存在于健康食品或植物性产品中。近几十年来,屈因其广泛的有益治疗特性,如抗氧化、抗炎和抗癌活性,在食品、化妆品和制药行业引起了极大的关注。尽管Qu在癌症治疗中因其对细胞信号轴的众多影响而发挥着有利作用,但其化学稳定性和生物利用度差、水溶性低以及生物半衰期短,限制了其临床应用。最近,基于纳米技术的药物递送系统已经被开发出来,以克服这些限制,并在给药后增强曲的生物分布。多项研究表明,Qu的纳米制剂比其游离形式具有更显著的抗癌作用。此外,在各种纳米递送系统中加入曲可以提高其持续释放和稳定性,延长其循环时间,增强其在靶位点的积累,并提高其治疗效率。本研究的目的是对各种屈纳米制剂的抗癌特性进行全面综述,以增强其对不同恶性肿瘤的作用。本文讨论了改善Qu递送的各种靶向策略,包括纳米脂质体、脂质、聚合物、胶束和无机纳米颗粒NPs。目前的研究结果表明,将适当的纳米封装方法与肿瘤定向靶向递送相结合,可能会建立QU纳米颗粒,这可能是癌症治疗的一种有前途的技术。

关键词: 槲皮素,癌症,纳米颗粒,靶向递送,类黄酮,细胞凋亡。

[1]
Seyfried, T.N.; Shelton, L.M. Cancer as a metabolic disease. Nutr. Metab., 2010, 7(1), 7.
[http://dx.doi.org/10.1186/1743-7075-7-7] [PMID: 20181022]
[2]
Jing, Z.; Du, Q.; Zhang, X.; Zhang, Y. Nanomedicines and nanomaterials for cancer therapy: Progress, challenge and perspectives. Chem. Eng. J., 2022, 446, 137147.
[http://dx.doi.org/10.1016/j.cej.2022.137147]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[5]
Ghanbari-Movahed, M.; Mondal, A.; Farzaei, M.H.; Bishayee, A. Quercetin- and rutin-based nano-formulations for cancer treatment: A systematic review of improved efficacy and molecular mechanisms. Phytomedicine, 2022, 97, 153909.
[http://dx.doi.org/10.1016/j.phymed.2021.153909] [PMID: 35092896]
[6]
Yafout, M.; Ousaid, A.; Khayati, Y.; El Otmani, I.S. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Sci. Am., 2021, 11, e00685.
[7]
Sanati, M.; Afshari, A.R.; Amini, J.; Mollazadeh, H.; Jamialahmadi, T.; Sahebkar, A. Targeting angiogenesis in gliomas: Potential role of phytochemicals. J. Funct. Foods, 2022, 96, 105192.
[http://dx.doi.org/10.1016/j.jff.2022.105192]
[8]
Chikara, S.; Nagaprashantha, L.D.; Singhal, J.; Horne, D.; Awasthi, S.; Singhal, S.S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett., 2018, 413, 122-134.
[http://dx.doi.org/10.1016/j.canlet.2017.11.002] [PMID: 29113871]
[9]
Cragg, G.M.; Pezzuto, J.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract., 2016, 25(Suppl 2), 41-59.
[http://dx.doi.org/10.1159/000443404] [PMID: 26679767]
[10]
Mohapatra, P.; Singh, P.; Singh, D.; Sahoo, S.; Sahoo, S.K. Phytochemical based nanomedicine: A panacea for cancer treatment, present status and future prospective. OpenNano, 2022, 7, 100055.
[11]
Hashemi Goradel, N.; Ghiyami-Hour, F.; Jahangiri, S.; Negahdari, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. Nanoparticles as new tools for inhibition of cancer angiogenesis. J. Cell. Physiol., 2018, 233(4), 2902-2910.
[http://dx.doi.org/10.1002/jcp.26029] [PMID: 28543172]
[12]
Schroeder, A.; Heller, D.A.; Winslow, M.M.; Dahlman, J.E.; Pratt, G.W.; Langer, R.; Jacks, T.; Anderson, D.G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer, 2012, 12(1), 39-50.
[http://dx.doi.org/10.1038/nrc3180] [PMID: 22193407]
[13]
Davis, ME; Chen, Z; Shin, DM Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov, 2010, 7(9), 771-82.
[14]
Tran, T.T.D.; Tran, P.H.L. Nanoconjugation and encapsulation strategies for improving drug delivery and therapeutic efficacy of poorly water-soluble drugs. Pharmaceutics, 2019, 11(7), 325.
[http://dx.doi.org/10.3390/pharmaceutics11070325] [PMID: 31295947]
[15]
Jindal, A.B. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int. J. Pharm., 2017, 532(1), 450-465.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.028] [PMID: 28917985]
[16]
Feng, L.; Mumper, R.J. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett., 2013, 334(2), 157-175.
[http://dx.doi.org/10.1016/j.canlet.2012.07.006] [PMID: 22796606]
[17]
Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Seminars in cancer biology., 2021.
[18]
Zang, X.; Cheng, M.; Zhang, X.; Chen, X. Quercetin nanoformulations: A promising strategy for tumor therapy. Food Funct., 2021, 12(15), 6664-6681.
[http://dx.doi.org/10.1039/D1FO00851J] [PMID: 34152346]
[19]
Wang, G.; Wang, J.J.; Chen, X.L.; Du, L.; Li, F. Quercetin-loaded freeze-dried nanomicelles: Improving absorption and anti-glioma efficiency in vitro and in vivo. J. Control. Release, 2016, 235, 276-290.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.045] [PMID: 27242199]
[20]
Williams, R.J.; Spencer, J.P.E.; Rice-Evans, C. Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med., 2004, 36(7), 838-849.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001] [PMID: 15019969]
[21]
Beecher, G.R. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J. Nutr., 2003, 133(10), 3248S-3254S.
[http://dx.doi.org/10.1093/jn/133.10.3248S] [PMID: 14519822]
[22]
Mariani, C.; Braca, A.; Vitalini, S.; De Tommasi, N.; Visioli, F.; Fico, G. Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L. (Ranunculaceae). Phytochemistry, 2008, 69(5), 1220-1226.
[http://dx.doi.org/10.1016/j.phytochem.2007.12.009] [PMID: 18226822]
[23]
Thangasamy, T.; Sittadjody, S.; Burd, R. Chapter 27 - Quercetin: A Potential Complementary and Alternative Cancer Therapy. In: Complementary and Alternative Therapies and the Aging Population Elsvier: Amsterdam; , 2009; pp. 563-584.
[24]
Lee, T.J.; Kim, O.H.; Kim, Y.H.; Lim, J.H.; Kim, S.; Park, J.W.; Kwon, T.K. Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells. Cancer Lett., 2006, 240(2), 234-242.
[http://dx.doi.org/10.1016/j.canlet.2005.09.013] [PMID: 16274926]
[25]
Jeong, J.H.; An, J.Y.; Kwon, Y.T.; Rhee, J.G.; Lee, Y.J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. J. Cell. Biochem., 2009, 106(1), 73-82.
[http://dx.doi.org/10.1002/jcb.21977] [PMID: 19009557]
[26]
Zhang, Q.; Zhao, X.H.; Wang, Z.J. Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis. Toxicol. In Vitro, 2009, 23(5), 797-807.
[http://dx.doi.org/10.1016/j.tiv.2009.04.007] [PMID: 19397994]
[27]
Catanzaro, D.; Ragazzi, E.; Vianello, C.; Caparrotta, L.; Montopoli, M. Effect of quercetin on cell cycle and cyclin expression in ovarian carcinoma and osteosarcoma cell lines. Nat. Prod. Commun., 2015, 10(8), 1365-8.
[http://dx.doi.org/10.1177/1934578X1501000813]
[28]
Chou, C.C.; Yang, J.S.; Lu, H.F.; Ip, S.W.; Lo, C.; Wu, C.C.; Lin, J.P.; Tang, N.Y.; Chung, J.G.; Chou, M.J.; Teng, Y.H.; Chen, D.R. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch. Pharm. Res., 2010, 33(8), 1181-1191.
[http://dx.doi.org/10.1007/s12272-010-0808-y] [PMID: 20803121]
[29]
Vidya Priyadarsini, R.; Senthil Murugan, R.; Maitreyi, S.; Ramalingam, K.; Karunagaran, D.; Nagini, S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur. J. Pharmacol., 2010, 649(1-3), 84-91.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.020] [PMID: 20858478]
[30]
Hisaka, T.; Sakai, H.; Sato, T.; Goto, Y.; Nomura, Y.; Fukutomi, S.; Fujita, F.; Mizobe, T.; Nakashima, O.; Tanigawa, M.; Naito, Y.; Akiba, J.; Ogasawara, S.; Nakashima, K.; Akagi, Y.; Okuda, K.; Yano, H. Quercetin suppresses proliferation of liver cancer cell lines in vitro. Anticancer Res., 2020, 40(8), 4695-4700.
[http://dx.doi.org/10.21873/anticanres.14469] [PMID: 32727794]
[31]
Al-Ghamdi, M.A.; AL-Enazy, A.; Huwait, E.A.; Albukhari, A.; Harakeh, S.; Moselhy, S.S. Enhancement of Annexin V in response to combination of epigallocatechin gallate and quercetin as a potent arrest the cell cycle of colorectal cancer. Braz. J. Biol., 2023, 83, e248746.
[http://dx.doi.org/10.1590/1519-6984.248746] [PMID: 34495165]
[32]
Azizi, E.; Fouladdel, S.; Komeili Movahhed, T.; Modaresi, F.; Barzegar, E.; Ghahremani, M.H.; Ostad, S.N.; Atashpour, S. Quercetin effects on cell cycle arrest and apoptosis and doxorubicin activity in T47D cancer stem cells. Asian Pac. J. Cancer Prev., 2022, 23(12), 4145-4154.
[http://dx.doi.org/10.31557/APJCP.2022.23.12.4145] [PMID: 36579996]
[33]
Fernald, K.; Kurokawa, M. Evading apoptosis in cancer. Trends Cell Biol., 2013, 23(12), 620-633.
[http://dx.doi.org/10.1016/j.tcb.2013.07.006] [PMID: 23958396]
[34]
Ghobrial, I.M.; Witzig, T.E.; Adjei, A.A. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin., 2005, 55(3), 178-194.
[http://dx.doi.org/10.3322/canjclin.55.3.178] [PMID: 15890640]
[35]
Fulda, S.; Debatin, K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 2006, 25(34), 4798-4811.
[http://dx.doi.org/10.1038/sj.onc.1209608] [PMID: 16892092]
[36]
Zhang, X.A.; Zhang, S.; Yin, Q.; Zhang, J. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway. Pharmacogn. Mag., 2015, 11(42), 404-409.
[http://dx.doi.org/10.4103/0973-1296.153096] [PMID: 25829782]
[37]
Teekaraman, D.; Elayapillai, S.P.; Viswanathan, M.P.; Jagadeesan, A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem. Biol. Interact., 2019, 300, 91-100.
[http://dx.doi.org/10.1016/j.cbi.2019.01.008] [PMID: 30639267]
[38]
Shang, H.S.; Lu, H.F.; Lee, C.H.; Chiang, H.S.; Chu, Y.L.; Chen, A.; Lin, Y.F.; Chung, J.G. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. Environ. Toxicol., 2018, 33(11), 1168-1181.
[http://dx.doi.org/10.1002/tox.22623] [PMID: 30152185]
[39]
Psahoulia, F.H.; Drosopoulos, K.G.; Doubravska, L.; Andera, L.; Pintzas, A. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol. Cancer Ther., 2007, 6(9), 2591-2599.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0001] [PMID: 17876056]
[40]
Yi, L.; Zongyuan, Y.; Cheng, G.; Lingyun, Z.; GuiLian, Y.; Wei, G. Quercetin enhances apoptotic effect of tumor necrosis factor related apoptosis inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer-binding protein homologous protein (CHOP)-death receptor 5 pathway. Cancer Sci., 2014, 105(5), 520-527.
[http://dx.doi.org/10.1111/cas.12395] [PMID: 24612139]
[41]
Jung, Y.H.; Heo, J.; Lee, Y.J.; Kwon, T.K.; Kim, Y.H. Quercetin enhances TRAIL-induced apoptosis in prostate cancer cells via increased protein stability of death receptor 5. Life Sci., 2010, 86(9-10), 351-357.
[http://dx.doi.org/10.1016/j.lfs.2010.01.008] [PMID: 20096292]
[42]
Tummala, R.; Lou, W.; Gao, A.C.; Nadiminty, N. Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells. Mol. Cancer Ther., 2017, 16(12), 2770-2779.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0030] [PMID: 28729398]
[43]
Wong, M.L.H.; Prawira, A.; Kaye, A.H.; Hovens, C.M. Tumour angiogenesis: Its mechanism and therapeutic implications in malignant gliomas. J. Clin. Neurosci., 2009, 16(9), 1119-1130.
[http://dx.doi.org/10.1016/j.jocn.2009.02.009] [PMID: 19556134]
[44]
Adams, R.H.; Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol., 2007, 8(6), 464-478.
[http://dx.doi.org/10.1038/nrm2183] [PMID: 17522591]
[45]
Kashyap, D.; Mittal, S.; Sak, K.; Singhal, P.; Tuli, H.S. Molecular mechanisms of action of quercetin in cancer: Recent advances. Tumour Biol., 2016, 37(10), 12927-12939.
[http://dx.doi.org/10.1007/s13277-016-5184-x] [PMID: 27448306]
[46]
Tang, S.M.; Deng, X.T.; Zhou, J.; Li, Q.P.; Ge, X.X.; Miao, L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother., 2020, 121, 109604.
[http://dx.doi.org/10.1016/j.biopha.2019.109604] [PMID: 31733570]
[47]
Klagsbrun, M.; Moses, M.A. Molecular angiogenesis. Chem. Biol., 1999, 6(8), R217-R224.
[http://dx.doi.org/10.1016/S1074-5521(99)80081-7] [PMID: 10421764]
[48]
Liu, Y.; Tang, Z.G.; Yang, J.Q.; Zhou, Y.; Meng, L.H.; Wang, H.; Li, C.L. Low concentration of quercetin antagonizes the invasion and angiogenesis of human glioblastoma U251 cells. OncoTargets Ther., 2017, 10, 4023-4028.
[http://dx.doi.org/10.2147/OTT.S136821] [PMID: 28860810]
[49]
Zhao, X.; Wang, Q.; Yang, S.; Chen, C.; Li, X.; Liu, J.; Zou, Z.; Cai, D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur. J. Pharmacol., 2016, 781, 60-68.
[http://dx.doi.org/10.1016/j.ejphar.2016.03.063] [PMID: 27041643]
[50]
Pratheeshkumar, P.; Budhraja, A.; Son, Y.-O.; Wang, X.; Zhang, Z.; Ding, S. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One, 2012, 7(10), e47516.
[51]
Liu, Y.; Li, C.L.; Xu, Q.Q.; Cheng, D.; Liu, K.D.; Sun, Z.Q. Quercetin inhibits invasion and angiogenesis of esophageal cancer cells. Pathol. Res. Pract., 2021, 222, 153455.
[http://dx.doi.org/10.1016/j.prp.2021.153455] [PMID: 33962176]
[52]
Kee, J.Y.; Han, Y.H.; Kim, D.S.; Mun, J.G.; Park, J.; Jeong, M.Y.; Um, J.Y.; Hong, S.H. Inhibitory effect of quercetin on colorectal lung metastasis through inducing apoptosis, and suppression of metastatic ability. Phytomedicine, 2016, 23(13), 1680-1690.
[http://dx.doi.org/10.1016/j.phymed.2016.09.011] [PMID: 27823633]
[53]
Chang, J.H.; Lai, S.L.; Chen, W.S.; Hung, W.Y.; Chow, J.M.; Hsiao, M.; Lee, W.J.; Chien, M.H. Quercetin suppresses the metastatic ability of lung cancer through inhibiting Snail-dependent Akt activation and Snail-independent ADAM9 expression pathways. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(10), 1746-1758.
[http://dx.doi.org/10.1016/j.bbamcr.2017.06.017] [PMID: 28648644]
[54]
García-Prat, L.; Martínez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodríguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; Sandri, M.; Muñoz-Cánoves, P. Autophagy maintains stemness by preventing senescence. Nature, 2016, 529(7584), 37-42.
[http://dx.doi.org/10.1038/nature16187] [PMID: 26738589]
[55]
Mulcahy Levy, J.M.; Thorburn, A. Autophagy in cancer: Moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ., 2020, 27(3), 843-857.
[http://dx.doi.org/10.1038/s41418-019-0474-7] [PMID: 31836831]
[56]
Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis, 2013, 4(10), 838.
[http://dx.doi.org/10.1038/cddis.2013.350]
[57]
Marinković, M.; Šprung, M.; Buljubašić, M.; Novak, I. Autophagy modulation in cancer: Current knowledge on action and therapy. Oxid. Med. Cell Longev., 2018, 2018, 8023821.
[http://dx.doi.org/10.1155/2018/8023821]
[58]
Bhagya, N.; Chandrashekar, K.R. Autophagy and cancer: Can tetrandrine be a potent anticancer drug in the near future? Biomed. Pharmacother., 2022, 148, 112727.
[http://dx.doi.org/10.1016/j.biopha.2022.112727] [PMID: 35219119]
[59]
Wang, K.; Liu, R.; Li, J.; Mao, J.; Lei, Y.; Wu, J.; Zeng, J.; Zhang, T.; Wu, H.; Chen, L.; Huang, C.; Wei, Y. Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy, 2011, 7(9), 966-978.
[http://dx.doi.org/10.4161/auto.7.9.15863] [PMID: 21610320]
[60]
Chang, J.L.; Chow, J.M.; Chang, J.H.; Wen, Y.C.; Lin, Y.W.; Yang, S.F.; Lee, W.J.; Chien, M.H. Quercetin simultaneously induces G0 /G1 -phase arrest and caspase-mediated crosstalk between apoptosis and autophagy in human leukemia HL-60 cells. Environ. Toxicol., 2017, 32(7), 1857-1868.
[http://dx.doi.org/10.1002/tox.22408] [PMID: 28251795]
[61]
Luo, C.; Liu, Y.; Wang, P.; Song, C.; Wang, K.; Dai, L.; Zhang, J.; Ye, H. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed. Pharmacother., 2016, 82, 595-605.
[http://dx.doi.org/10.1016/j.biopha.2016.05.029] [PMID: 27470402]
[62]
Wang, Y.; Zhang, W.; Lv, Q.; Zhang, J.; Zhu, D. The critical role of quercetin in autophagy and apoptosis in HeLa cells. Tumour Biol., 2016, 37(1), 925-929.
[http://dx.doi.org/10.1007/s13277-015-3890-4] [PMID: 26260273]
[63]
Jia, L.; Huang, S.; Yin, X.; Zan, Y.; Guo, Y.; Han, L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci., 2018, 208, 123-130.
[http://dx.doi.org/10.1016/j.lfs.2018.07.027] [PMID: 30025823]
[64]
Lee, P.I.; Li, J.X. Evolution of Oral Controlled Release Dosage Forms. In: Oral Controlled Release Formulation Design and Drug Delivery: Theory to Practice Wiley: Hoboken, New Jersey; , 2010; pp. 21-31.
[http://dx.doi.org/10.1002/9780470640487.ch2]
[65]
Yun, Y.H.; Lee, B.K.; Park, K. Controlled Drug Delivery: Historical perspective for the next generation. J. Control. Release, 2015, 219, 2-7.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.005] [PMID: 26456749]
[66]
Ye, M.; Kim, S.; Park, K. Issues in long-term protein delivery using biodegradable microparticles. J. Control. Release, 2010, 146(2), 241-260.
[http://dx.doi.org/10.1016/j.jconrel.2010.05.011] [PMID: 20493221]
[67]
Lee, B.K.; Yun, Y.H.; Park, K. Smart nanoparticles for drug delivery: Boundaries and opportunities. Chem. Eng. Sci., 2015, 125, 158-164.
[http://dx.doi.org/10.1016/j.ces.2014.06.042] [PMID: 25684780]
[68]
Park, K. Controlled drug delivery systems: Past forward and future back. J. Control. Release, 2014, 190, 3-8.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.054] [PMID: 24794901]
[69]
Dadwal, A.; Baldi, A.; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(S2), 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039]
[70]
Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 2017, 190, 64-83.
[http://dx.doi.org/10.1016/j.imlet.2017.07.015] [PMID: 28760499]
[71]
Sultana, A.; Zare, M.; Thomas, V.; Kumar, T.S.; Ramakrishna, S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Med. Drug Discovery, 2022, 15, 100134.
[72]
Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm., 2019, 570, 118642.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118642] [PMID: 31446024]
[73]
Chen, X.; Yin, O.Q.P.; Zuo, Z.; Chow, M.S.S. Pharmacokinetics and modeling of quercetin and metabolites. Pharm. Res., 2005, 22(6), 892-901.
[http://dx.doi.org/10.1007/s11095-005-4584-1] [PMID: 15948033]
[74]
Chabane, M.N.; Ahmad, A.A.; Peluso, J.; Muller, C.D.; Ubeaud-Séquier, G. Quercetin and naringenin transport across human intestinal Caco-2 cells. J. Pharm. Pharmacol., 2010, 61(11), 1473-1483.
[http://dx.doi.org/10.1211/jpp.61.11.0006] [PMID: 19903372]
[75]
Burak, C.; Brüll, V.; Langguth, P.; Zimmermann, B.F.; Stoffel-Wagner, B.; Sausen, U.; Stehle, P.; Wolffram, S.; Egert, S. Higher plasma quercetin levels following oral administration of an onion skin extract compared with pure quercetin dihydrate in humans. Eur. J. Nutr., 2017, 56(1), 343-353.
[http://dx.doi.org/10.1007/s00394-015-1084-x] [PMID: 26482244]
[76]
Guo, Y.; Bruno, R.S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem., 2015, 26(3), 201-210.
[http://dx.doi.org/10.1016/j.jnutbio.2014.10.008] [PMID: 25468612]
[77]
Sharma, G.; Park, J.; Sharma, A.R.; Jung, J.S.; Kim, H.; Chakraborty, C.; Song, D.K.; Lee, S.S.; Nam, J.S. Methoxy poly(ethylene glycol)-poly(lactide) nanoparticles encapsulating quercetin act as an effective anticancer agent by inducing apoptosis in breast cancer. Pharm. Res., 2015, 32(2), 723-735.
[http://dx.doi.org/10.1007/s11095-014-1504-2] [PMID: 25186442]
[78]
Chen, L-C.; Chen, Y-C.; Su, C-Y.; Hong, C-S.; Ho, H-O.; Sheu, M-T. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study. Int. J. Nanomedicine, 2016, 11, 1557-1566.
[PMID: 27143878]
[79]
Mero, A.; Campisi, M. Hyaluronic acid bioconjugates for the delivery of bioactive molecules. Polymers (Basel), 2014, 6(2), 346-369.
[http://dx.doi.org/10.3390/polym6020346]
[80]
De Leo, V.; Maurelli, A.M.; Giotta, L.; Catucci, L. Liposomes containing nanoparticles: preparation and applications. Colloids Surf. B Biointerfaces, 2022, 218, 112737.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112737] [PMID: 35933888]
[81]
Dymek, M.; Sikora, E. Liposomes as biocompatible and smart delivery systems – the current state. Adv. Colloid Interface Sci., 2022, 309, 102757.
[http://dx.doi.org/10.1016/j.cis.2022.102757] [PMID: 36152374]
[82]
Aguilar-Pérez, K.M.; Avilés-Castrillo, J.I.; Medina, D.I.; Parra-Saldivar, R.; Iqbal, H.M.N. Insight into nanoliposomes as smart nanocarriers for greening the twenty-first century biomedical settings. Front. Bioeng. Biotechnol., 2020, 8, 579536.
[http://dx.doi.org/10.3389/fbioe.2020.579536] [PMID: 33384988]
[83]
Hynynen, K. Hyperthermia-induced drug delivery in humans. Nat. Biomed. Eng., 2018, 2(9), 637-639.
[http://dx.doi.org/10.1038/s41551-018-0297-8] [PMID: 31015680]
[84]
Deng, W.; Chen, W.; Clement, S.; Guller, A.; Zhao, Z.; Engel, A.; Goldys, E.M. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nat. Commun., 2018, 9(1), 2713.
[http://dx.doi.org/10.1038/s41467-018-05118-3] [PMID: 30006596]
[85]
Hao, J.; Guo, B.; Yu, S.; Zhang, W.; Zhang, D.; Wang, J.; Wang, Y. Encapsulation of the flavonoid quercetin with chitosan-coated nano-liposomes. Lebensm. Wiss. Technol., 2017, 85, 37-44.
[http://dx.doi.org/10.1016/j.lwt.2017.06.048]
[86]
Li, J.; Shi, M.; Ma, B.; Niu, R.; Zhang, H.; Kun, L. Antitumor activity and safety evaluation of nanaparticle-based delivery of quercetin through intravenous administration in mice. Mater. Sci. Eng. C, 2017, 77, 803-810.
[http://dx.doi.org/10.1016/j.msec.2017.03.191] [PMID: 28532095]
[87]
Jiang, M.; Zhang, E.; Liang, Z.; Zhao, Y.; Zhang, S.; Xu, H.; Wang, H.; Shu, X.; Kang, X.; Sun, L.; Zhen, Y. Liposome-based co-delivery of 7-O-geranyl-quercetin and IGF-1R siRNA for the synergistic treatment of non-small cell lung cancer. J. Drug Deliv. Sci. Technol., 2019, 54, 101316.
[http://dx.doi.org/10.1016/j.jddst.2019.101316]
[88]
Yu, J.; Chen, H.; Jiang, L.; Wang, J.; Dai, J.; Wang, J. Codelivery of adriamycin and P-gp inhibitor quercetin using PEGylated liposomes to overcome cancer drug resistance. J. Pharm. Sci., 2019, 108(5), 1788-1799.
[http://dx.doi.org/10.1016/j.xphs.2018.12.016] [PMID: 30610857]
[89]
Patel, G.; Thakur, N.S.; Kushwah, V.; Patil, M.D.; Nile, S.H.; Jain, S.; Banerjee, U.C.; Kai, G. Liposomal delivery of mycophenolic acid with quercetin for improved breast cancer therapy in SD rats. Front. Bioeng. Biotechnol., 2020, 8, 631.
[http://dx.doi.org/10.3389/fbioe.2020.00631] [PMID: 32612988]
[90]
Cai, H.; Tan, P.; Chen, X.; Kopytynski, M.; Pan, D.; Zheng, X.; Gu, L.; Gong, Q.; Tian, X.; Gu, Z.; Zhang, H.; Chen, R.; Luo, K. Stimuli sensitive linear–dendritic block copolymer–drug prodrug as a nanoplatform for tumor combination therapy. Adv. Mater., 2022, 34(8), 2108049.
[http://dx.doi.org/10.1002/adma.202108049] [PMID: 34875724]
[91]
Li, Z.; Cai, H.; Li, Z.; Ren, L.; Ma, X.; Zhu, H.; Gong, Q.; Zhang, H.; Gu, Z.; Luo, K. A tumor cell membrane-coated self-amplified nanosystem as a nanovaccine to boost the therapeutic effect of anti-PD-L1 antibody. Bioact. Mater., 2023, 21, 299-312.
[http://dx.doi.org/10.1016/j.bioactmat.2022.08.028] [PMID: 36157245]
[92]
Xiao, X.; Cai, H.; Huang, Q.; Wang, B.; Wang, X.; Luo, Q.; Li, Y.; Zhang, H.; Gong, Q.; Ma, X.; Gu, Z.; Luo, K. Polymeric dual-modal imaging nanoprobe with two-photon aggregation-induced emission for fluorescence imaging and gadolinium-chelation for magnetic resonance imaging. Bioact. Mater., 2023, 19, 538-549.
[http://dx.doi.org/10.1016/j.bioactmat.2022.04.026] [PMID: 35600977]
[93]
Hemati, M.; Haghiralsadat, F.; Yazdian, F.; Jafari, F.; Moradi, A.; Malekpour-Dehkordi, Z. Development and characterization of a novel cationic PEGylated niosome-encapsulated forms of doxorubicin, quercetin and siRNA for the treatment of cancer by using combination therapy. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1295-1311.
[http://dx.doi.org/10.1080/21691401.2018.1489271] [PMID: 30033768]
[94]
Aditya, N.P.; Ko, S. Solid lipid nanoparticles (SLNs): Delivery vehicles for food bioactives. RSC Advances, 2015, 5(39), 30902-30911.
[http://dx.doi.org/10.1039/C4RA17127F]
[95]
Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm., 2017, 6, 37-56.
[http://dx.doi.org/10.1016/j.scp.2017.07.002]
[96]
Nasirizadeh, S.; Malaekeh-Nikouei, B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J. Drug Deliv. Sci. Technol., 2020, 55, 101458.
[http://dx.doi.org/10.1016/j.jddst.2019.101458]
[97]
da Silva Santos, V.; Badan Ribeiro, A.P.; Andrade Santana, M.H. Solid lipid nanoparticles as carriers for lipophilic compounds for applications in foods. Food Res. Int., 2019, 122, 610-626.
[http://dx.doi.org/10.1016/j.foodres.2019.01.032] [PMID: 31229120]
[98]
Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Siva Kumar, N.; Vekariya, R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Advances, 2020, 10(45), 26777-26791.
[http://dx.doi.org/10.1039/D0RA03491F] [PMID: 35515778]
[99]
Hu, K.; Miao, L.; Goodwin, T.J.; Li, J.; Liu, Q.; Huang, L. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano, 2017, 11(5), 4916-4925.
[http://dx.doi.org/10.1021/acsnano.7b01522] [PMID: 28414916]
[100]
Hu, X.; Ning, P.; Zhang, R.; Yang, Y.; Li, L.; Xiao, X. Anticancer effect of folic acid modified tumor-targeting quercetin lipid nanoparticle. Int. J. Clin. Exp. Med., 2016, 9(9), 17195-17202.
[101]
Weiss, J.; Decker, E.A.; McClements, D.J.; Kristbergsson, K.; Helgason, T.; Awad, T. Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys., 2008, 3(2), 146-154.
[http://dx.doi.org/10.1007/s11483-008-9065-8]
[102]
Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[103]
Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[104]
Huang, Z.; Hua, S.; Yang, Y.; Fang, J. Development and evaluation of lipid nanoparticles for camptothecin delivery: A comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacol. Sin., 2008, 29(9), 1094-1102.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00829.x] [PMID: 18718178]
[105]
Zhu, B.; Yu, L.; Yue, Q. Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy. Biomed. Pharmacother., 2017, 91, 287-294.
[http://dx.doi.org/10.1016/j.biopha.2017.02.112] [PMID: 28463792]
[106]
Kumar, R.; Choudhary, D.K.; Debnath, M. Development of BSA conjugated on modified surface of quercetin- loaded lipid nanocarriers for breast cancer treatment. Mater. Res. Express, 2020, 7(1), 015411.
[http://dx.doi.org/10.1088/2053-1591/ab6774]
[107]
Ghosh, S.; Mishra, P.; Dabke, A.; Pathak, A.; Bhowmick, S.; Misra, A. Targeting Approaches Using Polymeric Nanocarriers. In: Applications of Polymers in Drug Delivery; Elsevier: Amsterdam, 2021; pp. 393-421.
[http://dx.doi.org/10.1016/B978-0-12-819659-5.00014-8]
[108]
Prabhu, R.H.; Patravale, V.B.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomedicine, 2015, 10, 1001-1018.
[PMID: 25678788]
[109]
Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer–drug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294.
[http://dx.doi.org/10.1038/s41573-018-0005-0] [PMID: 30542076]
[110]
Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer- targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191.
[http://dx.doi.org/10.3109/1061186X.2015.1051049] [PMID: 26061298]
[111]
Alibolandi, M.; Ramezani, M.; Abnous, K.; Sadeghi, F.; Hadizadeh, F. Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs. J. Nanopart. Res., 2015, 17(2), 76.
[http://dx.doi.org/10.1007/s11051-015-2878-8]
[112]
Yokoyama, M. Polymeric micelles as drug carriers: Their lights and shadows. J. Drug Target., 2014, 22(7), 576-583.
[http://dx.doi.org/10.3109/1061186X.2014.934688] [PMID: 25012065]
[113]
Chaudhuri, A.; Ramesh, K.; Kumar, D.N.; Dehari, D.; Singh, S.; Kumar, D.; Agrawal, A.K. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J. Drug Deliv. Sci. Technol., 2022, 77, 103886.
[http://dx.doi.org/10.1016/j.jddst.2022.103886]
[114]
Gao, X.; Wang, B.; Wei, X.; Men, K.; Zheng, F.; Zhou, Y.; Zheng, Y.; Gou, M.; Huang, M.; Guo, G.; Huang, N.; Qian, Z.; Wei, Y. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale, 2012, 4(22), 7021-7030.
[http://dx.doi.org/10.1039/c2nr32181e] [PMID: 23044718]
[115]
Fatease, A.A.; Shah, V.; Nguyen, D.X.; Cote, B.; LeBlanc, N.; Rao, D.A.; Alani, A.W.G. Chemosensitization and mitigation of Adriamycin-induced cardiotoxicity using combinational polymeric micelles for co-delivery of quercetin/resveratrol and resveratrol/curcumin in ovarian cancer. Nanomedicine, 2019, 19, 39-48.
[http://dx.doi.org/10.1016/j.nano.2019.03.011] [PMID: 31022465]
[116]
Qureshi, W.A.; Zhao, R.; Wang, H.; Ji, T.; Ding, Y.; Ihsan, A.; Mujeeb, A.; Nie, G.; Zhao, Y. Co-delivery of doxorubicin and quercetin via mPEG–PLGA copolymer assembly for synergistic anti-tumor efficacy and reducing cardio- toxicity. Sci. Bull. (Beijing), 2016, 61(21), 1689-1698.
[http://dx.doi.org/10.1007/s11434-016-1182-z]
[117]
Ramasamy, T.; Ruttala, H.B.; Chitrapriya, N.; Poudal, B.K.; Choi, J.Y.; Kim, S.T.; Youn, Y.S.; Ku, S.K.; Choi, H.G.; Yong, C.S.; Kim, J.O. Engineering of cell microenvironment-responsive polypeptide nanovehicle co-encapsulating a synergistic combination of small molecules for effective chemotherapy in solid tumors. Acta Biomater., 2017, 48, 131-143.
[http://dx.doi.org/10.1016/j.actbio.2016.10.034] [PMID: 27794477]
[118]
Zhang, X.; Huang, Y.; Song, H.; Canup, B.S.B.; Gou, S.; She, Z.; Dai, F.; Ke, B.; Xiao, B. Inhibition of growth and lung metastasis of breast cancer by tumor-homing triple-bioresponsive nanotherapeutics. J. Control. Release, 2020, 328, 454-469.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.066] [PMID: 32890553]
[119]
Wang, Y.; Yu, H.; Wang, S.; Gai, C.; Cui, X.; Xu, Z.; Li, W.; Zhang, W. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel. Mater. Sci. Eng. C, 2021, 119, 111442.
[http://dx.doi.org/10.1016/j.msec.2020.111442] [PMID: 33321583]
[120]
Xiong, Q.; Wang, Y.; Wan, J.; Yuan, P.; Chen, H.; Zhang, L. Facile preparation of hyaluronic acid-based quercetin nanoformulation for targeted tumor therapy. Int. J. Biol. Macromol., 2020, 147, 937-945.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.060] [PMID: 31730969]
[121]
Gu, L.Q.; Cui, P.F.; Xing, L.; He, Y.J.; Chang, X.; Zhou, T.J.; Liu, Y.; Li, L.; Jiang, H.L. An energy-blocking nanoparticle decorated with anti-VEGF antibody to reverse chemotherapeutic drug resistance. RSC Advances, 2019, 9(21), 12110-12123.
[http://dx.doi.org/10.1039/C9RA01356C] [PMID: 35548379]
[122]
Ersoz, M.; Erdemir, A.; Derman, S.; Arasoglu, T.; Mansuroglu, B. Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells. Pharm. Dev. Technol., 2020, 25(6), 757-766.
[http://dx.doi.org/10.1080/10837450.2020.1740933] [PMID: 32192406]
[123]
Tian, F.; Dahmani, F.Z.; Qiao, J.; Ni, J.; Xiong, H.; Liu, T.; Zhou, J.; Yao, J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater., 2018, 75, 398-412.
[http://dx.doi.org/10.1016/j.actbio.2018.05.050] [PMID: 29874597]
[124]
Mu, Y.; Fu, Y.; Li, J.; Yu, X.; Li, Y.; Wang, Y.; Wu, X.; Zhang, K.; Kong, M.; Feng, C.; Chen, X. Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohydr. Polym., 2019, 203, 10-18.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.020] [PMID: 30318192]
[125]
Mu, Y.; Wu, G.; Su, C.; Dong, Y.; Zhang, K.; Li, J.; Sun, X.; Li, Y.; Chen, X.; Feng, C. pH-sensitive amphiphilic chitosan-quercetin conjugate for intracellular delivery of doxorubicin enhancement. Carbohydr. Polym., 2019, 223, 115072.
[http://dx.doi.org/10.1016/j.carbpol.2019.115072] [PMID: 31427010]
[126]
Zhang, J.; Shen, L.; Li, X.; Song, W.; Liu, Y.; Huang, L. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano, 2019, 13(11), 12511-12524.
[http://dx.doi.org/10.1021/acsnano.9b02875] [PMID: 31664821]
[127]
Rezvani, M.; Mohammadnejad, J.; Narmani, A.; Bidaki, K. Synthesis and in vitro study of modified chitosan-polycaprolactam nanocomplex as delivery system. Int. J. Biol. Macromol., 2018, 113, 1287-1293.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.141] [PMID: 29481956]
[128]
Zamani, M.; Aghajanzadeh, M.; Rostamizadeh, K.; Kheiri Manjili, H.; Fridoni, M.; Danafar, H. In vivo study of poly (ethylene glycol)-poly (caprolactone)-modified folic acid nanocarriers as a pH responsive system for tumor-targeted co-delivery of tamoxifen and quercetin. J. Drug Deliv. Sci. Technol., 2019, 54, 101283.
[http://dx.doi.org/10.1016/j.jddst.2019.101283]
[129]
Zhou, L.; Shan, Y.; Hu, H.; Yu, B.; Cong, H. Synthesis and biomedical applications of dendrimers. Curr. Org. Chem., 2018, 22(6), 600-612.
[http://dx.doi.org/10.2174/1385272822666180129142809]
[130]
Yousefi, M.; Narmani, A.; Jafari, S.M. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv. Colloid Interface Sci., 2020, 278, 102125.
[http://dx.doi.org/10.1016/j.cis.2020.102125] [PMID: 32109595]
[131]
Patel, P.; Patel, V.; Patel, P.M. Synthetic strategy of dendrimers: A review. J. Indian Chem. Soc., 2022, 99(7), 100514.
[http://dx.doi.org/10.1016/j.jics.2022.100514]
[132]
Choi, J.; Moquin, A.; Bomal, E.; Na, L.; Maysinger, D.; Kakkar, A. Telodendrimers for physical encapsulation and covalent linking of individual or combined therapeutics. Mol. Pharm., 2017, 14(8), 2607-2615.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00019] [PMID: 28520445]
[133]
Eivazzadeh-Keihan, R.; Maleki, A.; de la Guardia, M.; Bani, M.S.; Chenab, K.K.; Pashazadeh-Panahi, P.; Baradaran, B.; Mokhtarzadeh, A.; Hamblin, M.R. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J. Adv. Res., 2019, 18, 185-201.
[http://dx.doi.org/10.1016/j.jare.2019.03.011] [PMID: 31032119]
[134]
Bianco, A. Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin. Drug Deliv., 2004, 1(1), 57-65.
[http://dx.doi.org/10.1517/17425247.1.1.57] [PMID: 16296720]
[135]
Deepa, C.; Rajeshkumar, L.; Ramesh, M. Preparation, synthesis, properties and characterization of graphene-based 2D nano-materials for biosensors and bioelectronics. J. Mater. Res. Technol., 2022, 19, 2657-2694.
[http://dx.doi.org/10.1016/j.jmrt.2022.06.023]
[136]
Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J.P.; Muller, S.; Prato, M.; Bianco, A. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol., 2007, 2(2), 108-113.
[http://dx.doi.org/10.1038/nnano.2006.209] [PMID: 18654229]
[137]
Kumar, M.; Sharma, G.; Misra, C.; Kumar, R.; Singh, B.; Katare, O.P.; Raza, K. N-desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: A synergistic approach to overcome MDR in cancer cells. Mater. Sci. Eng. C, 2018, 89, 274-282.
[http://dx.doi.org/10.1016/j.msec.2018.03.033] [PMID: 29752099]
[138]
Badea, N.; Craciun, M.M.; Dragomir, A.S.; Balas, M.; Dinischiotu, A.; Nistor, C.; Gavan, C.; Ionita, D. Systems based on carbon nanotubes with potential in cancer therapy. Mater. Chem. Phys., 2020, 241, 122435.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122435]
[139]
Gismondi, A.; Reina, G.; Orlanducci, S.; Mizzoni, F.; Gay, S.; Terranova, M.L.; Canini, A. Nanodiamonds coupled with plant bioactive metabolites: A nanotech approach for cancer therapy. Biomaterials, 2015, 38, 22-35.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.057] [PMID: 25457980]
[140]
Tiwari, H.; Karki, N.; Pal, M.; Basak, S.; Verma, R.K.; Bal, R.; Kandpal, N.D.; Bisht, G.; Sahoo, N.G. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: The synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surf. B Biointerfaces, 2019, 178, 452-459.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.037] [PMID: 30921680]
[141]
Abdallah, B.; Elhissi, A.; Ahmed, W.; Najlah, M. Chapter 16 - Carbon nanotubes drug delivery system for cancer treatment. Adv. Med. Surgic. Eng., 2020, 313-332.
[142]
Huang, Y.; Li, P.; Zhao, R.; Zhao, L.; Liu, J.; Peng, S.; Fu, X.; Wang, X.; Luo, R.; Wang, R.; Zhang, Z. Silica nanoparticles: Biomedical applications and toxicity. Biomed. Pharmacother., 2022, 151, 113053.
[http://dx.doi.org/10.1016/j.biopha.2022.113053] [PMID: 35594717]
[143]
Siddiqui, B.; Rehman, A.; Haq, I.; Al-Dossary, A.A.; Elaissari, A.; Ahmed, N. Exploiting recent trends for the synthesis and surface functionalization of mesoporous silica nanoparticles towards biomedical applications. Int. J. Pharm. X, 2022, 4, 100116.
[http://dx.doi.org/10.1016/j.ijpx.2022.100116] [PMID: 35509288]
[144]
Murugan, C.; Rayappan, K.; Thangam, R.; Bhanumathi, R.; Shanthi, K.; Vivek, R.; Thirumurugan, R.; Bhattacharyya, A.; Sivasubramanian, S.; Gunasekaran, P.; Kannan, S. Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Sci. Rep., 2016, 6(1), 34053.
[http://dx.doi.org/10.1038/srep34053] [PMID: 28442746]
[145]
Sarkar, A.; Ghosh, S.; Chowdhury, S.; Pandey, B.; Sil, P.C. Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim. Biophys. Acta, Gen. Subj., 2016, 1860(10), 2065-2075.
[http://dx.doi.org/10.1016/j.bbagen.2016.07.001] [PMID: 27392941]
[146]
Mishra, S.; Manna, K.; Kayal, U.; Saha, M.; Chatterjee, S.; Chandra, D.; Hara, M.; Datta, S.; Bhaumik, A.; Das Saha, K. Folic acid-conjugated magnetic mesoporous silica nanoparticles loaded with quercetin: A theranostic approach for cancer management. RSC Advances, 2020, 10(39), 23148-23164.
[http://dx.doi.org/10.1039/D0RA00664E] [PMID: 35520307]
[147]
Evans, E.R.; Bugga, P.; Asthana, V.; Drezek, R. Metallic nanoparticles for cancer immunotherapy. Mater. Today, 2018, 21(6), 673-685.
[http://dx.doi.org/10.1016/j.mattod.2017.11.022] [PMID: 30197553]
[148]
El-Sayed, M.A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res., 2001, 34(4), 257-264.
[http://dx.doi.org/10.1021/ar960016n] [PMID: 11308299]
[149]
Khursheed, R.; Dua, K.; Vishwas, S.; Gulati, M.; Jha, N.K.; Aldhafeeri, G.M.; Alanazi, F.G.; Goh, B.H.; Gupta, G.; Paudel, K.R.; Hansbro, P.M.; Chellappan, D.K.; Singh, S.K. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Biomed. Pharmacother., 2022, 150, 112951.
[http://dx.doi.org/10.1016/j.biopha.2022.112951] [PMID: 35447546]
[150]
Bishayee, K.; Khuda-Bukhsh, A.R.; Huh, S.O. PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol. Cells, 2015, 38(6), 518-527.
[http://dx.doi.org/10.14348/molcells.2015.2339] [PMID: 25947292]
[151]
Balakrishnan, S.; Mukherjee, S.; Das, S.; Bhat, F.A.; Raja Singh, P.; Patra, C.R.; Arunakaran, J. Gold nanoparticles- conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem. Funct., 2017, 35(4), 217-231.
[http://dx.doi.org/10.1002/cbf.3266] [PMID: 28498520]
[152]
Balakrishnan, S.; Bhat, F.A.; Raja Singh, P.; Mukherjee, S.; Elumalai, P.; Das, S.; Patra, C.R.; Arunakaran, J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif., 2016, 49(6), 678-697.
[http://dx.doi.org/10.1111/cpr.12296] [PMID: 27641938]
[153]
Daglioglu, C. Enhancing tumor cell response to multidrug resistance with pH-sensitive quercetin and doxorubicin conjugated multifunctional nanoparticles. Colloids Surf. B Biointerfaces, 2017, 156, 175-185.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.012] [PMID: 28528134]
[154]
Mashhadi Malekzadeh, A.; Ramazani, A.; Tabatabaei Rezaei, S.J.; Niknejad, H. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy. J. Colloid Interface Sci., 2017, 490, 64-73.
[http://dx.doi.org/10.1016/j.jcis.2016.11.014] [PMID: 27870961]
[155]
Akal, Z.Ü.; Alpsoy, L.; Baykal, A. Biomedical applications of SPION@APTES@PEG-folic acid@carboxylated quercetin nanodrug on various cancer cells. Appl. Surf. Sci., 2016, 378, 572-581.
[http://dx.doi.org/10.1016/j.apsusc.2016.03.217]
[156]
Sathishkumar, P.; Li, Z.; Govindan, R.; Jayakumar, R.; Wang, C.; Long Gu, F. Zinc oxide-quercetin nanocomposite as a smart nano-drug delivery system: Molecular-level interaction studies. Appl. Surf. Sci., 2021, 536, 147741.
[http://dx.doi.org/10.1016/j.apsusc.2020.147741]
[157]
George, D.; Maheswari, P.U.; Begum, K.M.M.S. Chitosan-cellulose hydrogel conjugated with L-histidine and zinc oxide nanoparticles for sustained drug delivery: Kinetics and in-vitro biological studies. Carbohydr. Polym., 2020, 236, 116101.
[http://dx.doi.org/10.1016/j.carbpol.2020.116101] [PMID: 32172900]
[158]
Sadhukhan, P.; Kundu, M.; Chatterjee, S.; Ghosh, N.; Manna, P.; Das, J.; Sil, P.C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater. Sci. Eng. C, 2019, 100, 129-140.
[http://dx.doi.org/10.1016/j.msec.2019.02.096] [PMID: 30948047]
[159]
Cheng, H.W.; Chiang, C.S.; Ho, H.Y.; Chou, S.H.; Lai, Y.H.; Shyu, W.C.; Chen, S.Y. Dextran-modified Quercetin-Cu(II)/hyaluronic acid nanomedicine with natural poly(ADP-ribose) polymerase inhibitor and dual targeting for programmed synthetic lethal therapy in triple-negative breast cancer. J. Control. Release, 2021, 329, 136-147.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.061] [PMID: 33278482]
[160]
Ponraj, T.; Vivek, R.; Paulpandi, M.; Rejeeth, C.; Nipun Babu, V.; Vimala, K.; Anand, K.; Sivaselvam, S.; Vasanthakumar, A.; Ponpandian, N.; Kannan, S. Mitochondrial dysfunction-induced apoptosis in breast carcinoma cells through a pH-dependent intracellular quercetin NDDS of PVPylated-TiO 2 NPs. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(21), 3555-3570.
[http://dx.doi.org/10.1039/C8TB00769A] [PMID: 32254451]
[161]
Klein, S.; Luchs, T.; Leng, A.; Distel, L.; Neuhuber, W.; Hirsch, A. Encapsulation of hydrophobic drugs in shell-by-shell coated nanoparticles for radio-and chemotherapy-An in vitro study. Bioengineering (Basel), 2020, 7(4), 126.
[http://dx.doi.org/10.3390/bioengineering7040126] [PMID: 33053776]
[162]
Zhong, Y.; Zou, Y.; Liu, L.; Li, R.; Xue, F.; Yi, T. pH-responsive Ag2S nanodots loaded with heat shock protein 70 inhibitor for photoacoustic imaging-guided photothermal cancer therapy. Acta Biomater., 2020, 115, 358-370.
[http://dx.doi.org/10.1016/j.actbio.2020.08.007] [PMID: 32798720]
[163]
Bose, P.; Priyam, A.; Kar, R.; Pattanayak, S.P. Quercetin loaded folate targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy of DMBA induced breast cancer in Sprague Dawley rats. RSC Advances, 2020, 10(53), 31961-31978.
[http://dx.doi.org/10.1039/D0RA05793B] [PMID: 35518142]
[164]
Ma, T.; Liu, Y.; Wu, Q.; Luo, L.; Cui, Y.; Wang, X.; Chen, X.; Tan, L.; Meng, X. Quercetin-modified metal–organic frameworks for dual sensitization of radiotherapy in tumor tissues by inhibiting the carbonic anhydrase IX. ACS Nano, 2019, 13(4), 4209-4219.
[http://dx.doi.org/10.1021/acsnano.8b09221] [PMID: 30933559]
[165]
Chen, Z.; Guo, W.; Wu, Q.; Tan, L.; Ma, T.; Fu, C.; Yu, J.; Ren, X.; Wang, J.; Liang, P.; Meng, X. Tumor reoxygenation for enhanced combination of radiation therapy and microwave thermal therapy using oxygen generation in situ by CuO nanosuperparticles under microwave irradiation. Theranostics, 2020, 10(10), 4659-4675.
[http://dx.doi.org/10.7150/thno.42818] [PMID: 32292521]
[166]
Rezaei-Sadabady, R.; Eidi, A.; Zarghami, N.; Barzegar, A. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 128-134.
[http://dx.doi.org/10.3109/21691401.2014.926456] [PMID: 24959911]
[167]
Zhang, J.; Luo, Y.; Zhao, X.; Li, X.; Li, K.; Chen, D.; Qiao, M.; Hu, H.; Zhao, X. Co-delivery of doxorubicin and the traditional Chinese medicine quercetin using biotin–PEG 2000 –DSPE modified liposomes for the treatment of multidrug resistant breast cancer. RSC Advances, 2016, 6(114), 113173-113184.
[http://dx.doi.org/10.1039/C6RA24173E]
[168]
Patel, G.; Thakur, N.S.; Kushwah, V.; Patil, M.D.; Nile, S.H.; Jain, S.; Kai, G.; Banerjee, U.C. Mycophenolate co-administration with quercetin via lipid-polymer hybrid nanoparticles for enhanced breast cancer management. Nanomedicine, 2020, 24, 102147.
[http://dx.doi.org/10.1016/j.nano.2019.102147] [PMID: 31884040]
[169]
Jain, A.S.; Shah, S.M.; Nagarsenker, M.S.; Nikam, Y.; Gude, R.P.; Steiniger, F.; Thamm, J.; Fahr, A. Lipid colloidal carriers for improvement of anticancer activity of orally delivered quercetin: formulation, characterization and establishing in vitro-in vivo advantage. J. Biomed. Nanotechnol., 2013, 9(7), 1230-1240.
[http://dx.doi.org/10.1166/jbn.2013.1636] [PMID: 23909137]
[170]
Jain, A.K.; Thanki, K.; Jain, S. Novel self-nanoemulsifying formulation of quercetin: Implications of pro-oxidant activity on the anticancer efficacy. Nanomedicine, 2014, 10(5), e959-e969.
[http://dx.doi.org/10.1016/j.nano.2013.12.010] [PMID: 24407148]
[171]
Samadi, A.; Pourmadadi, M.; Yazdian, F.; Rashedi, H.; Navaei-Nigjeh, M.; Eufrasio-da-silva, T. Ameliorating quercetin constraints in cancer therapy with pH-responsive agarose-polyvinylpyrrolidone -hydroxyapatite nanocomposite encapsulated in double nanoemulsion. Int. J. Biol. Macromol., 2021, 182, 11-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.146] [PMID: 33775763]
[172]
Wang, G.; Wang, J.; Luo, J.; Wang, L.; Chen, X.; Zhang, L.; Jiang, S. PEG2000-DPSE-coated quercetin nanoparticles remarkably enhanced anticancer effects through induced programed cell death on C6 glioma cells. J. Biomed. Mater. Res. A, 2013, 101(11), n/a.
[http://dx.doi.org/10.1002/jbm.a.34607] [PMID: 23529952]
[173]
El-Gogary, R.I.; Rubio, N.; Wang, J.T.W.; Al-Jamal, W.T.; Bourgognon, M.; Kafa, H.; Naeem, M.; Klippstein, R.; Abbate, V.; Leroux, F.; Bals, S.; Van Tendeloo, G.; Kamel, A.O.; Awad, G.A.S.; Mortada, N.D.; Al-Jamal, K.T. Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano, 2014, 8(2), 1384-1401.
[http://dx.doi.org/10.1021/nn405155b] [PMID: 24397686]
[174]
Pang, X.; Lu, Z.; Du, H.; Yang, X.; Zhai, G. Hyaluronic acid-quercetin conjugate micelles: Synthesis, characterization, in vitro and in vivo evaluation. Colloids Surf. B Biointerfaces, 2014, 123, 778-786.
[http://dx.doi.org/10.1016/j.colsurfb.2014.10.025] [PMID: 25454664]
[175]
Zafar, S.; Negi, L.M.; Verma, A.K.; Kumar, V.; Tyagi, A.; Singh, P.; Iqbal, Z.; Talegaonkar, S. Sterically stabilized polymeric nanoparticles with a combinatorial approach for multi drug resistant cancer: In vitro and in vivo investigations. Int. J. Pharm., 2014, 477(1-2), 454-468.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.061] [PMID: 25445525]
[176]
David, K.I.; Jaidev, L.R.; Sethuraman, S.; Krishnan, U.M. Dual drug loaded chitosan nanoparticles-sugar-coated arsenal against pancreatic cancer. Colloids Surf. B Biointerfaces, 2015, 135, 689-698.
[http://dx.doi.org/10.1016/j.colsurfb.2015.08.038] [PMID: 26340358]
[177]
Suksiriworapong, J.; Phoca, K.; Ngamsom, S.; Sripha, K.; Moongkarndi, P.; Junyaprasert, V.B. Comparison of poly(ε-caprolactone) chain lengths of poly(ε-caprolactone)- co-d-α-tocopheryl-poly(ethylene glycol) 1000 succinate nanoparticles for enhancement of quercetin delivery to SKBR3 breast cancer cells. Eur. J. Pharm. Biopharm., 2016, 101, 15-24.
[http://dx.doi.org/10.1016/j.ejpb.2016.01.008] [PMID: 26802701]
[178]
Abd-Rabou, A.A.; Ahmed, H.H. CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: A novel approach for induction of apoptosis in HepG2 cell line. Adv. Med. Sci., 2017, 62(2), 357-367.
[http://dx.doi.org/10.1016/j.advms.2017.01.003] [PMID: 28521254]
[179]
Baksi, R.; Singh, D.P.; Borse, S.P.; Rana, R.; Sharma, V.; Nivsarkar, M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed. Pharmacother., 2018, 106, 1513-1526.
[http://dx.doi.org/10.1016/j.biopha.2018.07.106] [PMID: 30119227]
[180]
Desale, J.P.; Swami, R.; Kushwah, V.; Katiyar, S.S.; Jain, S. Chemosensitizer and docetaxel-loaded albumin nanoparticle: Overcoming drug resistance and improving therapeutic efficacy. Nanomedicine, 2018, 13(21), 2759-2776.
[http://dx.doi.org/10.2217/nnm-2018-0206] [PMID: 30398388]
[181]
Halder, A.; Mukherjee, P.; Ghosh, S.; Mandal, S.; Chatterji, U.; Mukherjee, A. Smart PLGA nanoparticles loaded with Quercetin: Cellular uptake and in vitro anticancer study. Mater. Today Proc., 2018, 5(3), 9698-9705.
[http://dx.doi.org/10.1016/j.matpr.2017.10.156]
[182]
Islami, M.; Zarrabi, A.; Tada, S.; Kawamoto, M.; Isoshima, T.; Ito, Y. Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide. Int. J. Nanomedicine, 2018, 13, 6059-6071.
[http://dx.doi.org/10.2147/IJN.S178374] [PMID: 30323593]
[183]
Oliver, S.; Yee, E.; Kavallaris, M.; Vittorio, O.; Boyer, C. Water soluble antioxidant dextran–quercetin conjugate with potential anticancer properties. Macromol. Biosci., 2018, 18(4), 1700239.
[http://dx.doi.org/10.1002/mabi.201700239] [PMID: 29411934]
[184]
Sahiner, N.; Sagbas, S.; Sahiner, M.; Aktas, N. Degradable natural phenolic based particles with micro-and nano-size range. Recent Pat. Mater. Sci., 2018, 11(1), 33-40.
[http://dx.doi.org/10.2174/1874464811666180724124614]
[185]
Sunoqrot, S.; Al-Shalabi, E.; Messersmith, P.B. Facile synthesis and surface modification of bioinspired nanoparticles from quercetin for drug delivery. Biomater. Sci., 2018, 6(10), 2656-2666.
[http://dx.doi.org/10.1039/C8BM00587G] [PMID: 30140818]
[186]
Sunoqrot, S.; Abujamous, L. pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. J. Drug Deliv. Sci. Technol., 2019, 52, 670-676.
[http://dx.doi.org/10.1016/j.jddst.2019.05.035]
[187]
Wang, B.; Zhang, W.; Zhou, X.; Liu, M.; Hou, X.; Cheng, Z.; Chen, D. Development of dual-targeted nano-dandelion based on an oligomeric hyaluronic acid polymer targeting tumor-associated macrophages for combination therapy of non-small cell lung cancer. Drug Deliv., 2019, 26(1), 1265-1279.
[http://dx.doi.org/10.1080/10717544.2019.1693707] [PMID: 31777307]
[188]
Mansourizadeh, F.; Alberti, D.; Bitonto, V.; Tripepi, M.; Sepehri, H.; Khoee, S.; Geninatti Crich, S. Efficient synergistic combination effect of Quercetin with Curcumin on breast cancer cell apoptosis through their loading into Apo ferritin cavity. Colloids Surf. B Biointerfaces, 2020, 191, 110982.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110982] [PMID: 32220813]
[189]
Qiao, Y.; Cao, Y.; Yu, K.; Zong, L.; Pu, X. Preparation and antitumor evaluation of quercetin nanosuspensions with synergistic efficacy and regulating immunity. Int. J. Pharm., 2020, 589, 119830.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119830] [PMID: 32877732]
[190]
Rofeal, M.G.; Elzoghby, A.O.; Helmy, M.W.; Khalil, R.; Khairy, H.; Omar, S. Dual therapeutic targeting of lung infection and carcinoma using lactoferrin-based green nanomedicine. ACS Biomater. Sci. Eng., 2020, 6(10), 5685-5699.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01095] [PMID: 33320553]
[191]
Shen, Y.; TanTai, J. Co-delivery anticancer drug nanoparticles for synergistic therapy against lung cancer cells. Drug Des. Devel. Ther., 2020, 14, 4503-4510.
[http://dx.doi.org/10.2147/DDDT.S275123] [PMID: 33122893]
[192]
Shitole, A.A.; Sharma, N.; Giram, P.; Khandwekar, A.; Baruah, M.; Garnaik, B.; Koratkar, S. LHRH-conjugated, PEGylated, poly-lactide-co-glycolide nanocapsules for targeted delivery of combinational chemotherapeutic drugs Docetaxel and Quercetin for prostate cancer. Mater. Sci. Eng. C, 2020, 114, 111035.
[http://dx.doi.org/10.1016/j.msec.2020.111035] [PMID: 32994029]
[193]
Tian, H.; Zhang, J.; Zhang, H.; Jiang, Y.; Song, A.; Luan, Y. Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of biotin-tailored IR780 and quercetin. Chem. Eng. J., 2020, 382, 123043.
[http://dx.doi.org/10.1016/j.cej.2019.123043]
[194]
Wang, B.; Guo, C.; Liu, Y.; Han, G.; Li, Y.; Zhang, Y.; Xu, H.; Chen, D. Novel nano-pomegranates based on astragalus polysaccharides for targeting ERα-positive breast cancer and multidrug resistance. Drug Deliv., 2020, 27(1), 607-621.
[http://dx.doi.org/10.1080/10717544.2020.1754529] [PMID: 32308054]
[195]
Wang, T.; Wu, C.; Li, T.; Fan, G.; Gong, H.; Liu, P.; Yang, Y.; Sun, L. Comparison of two nanocarriers for quercetin in morphology, loading behavior, release kinetics and cell inhibitory activity. Mater. Express, 2020, 10(10), 1589-1598.
[http://dx.doi.org/10.1166/mex.2020.1796]
[196]
Nematollahi, E.; Pourmadadi, M.; Yazdian, F.; Fatoorehchi, H.; Rashedi, H.; Nigjeh, M.N. Synthesis and characterization of chitosan/polyvinylpyrrolidone coated nanoporous γ-Alumina as a pH-sensitive carrier for controlled release of quercetin. Int. J. Biol. Macromol., 2021, 183, 600-613.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.160] [PMID: 33932424]
[197]
Wang, J.; Cheng, H.; Wang, Z.; Yang, E.; Guo, F.; Wang, W.; Sun, D. Human small intestine cancer cell membrane-camouflaged quercetin-melanin for antibacterial and antitumor activity. J. Biomed. Mater. Res. B Appl. Biomater., 2021, 109(10), 1534-1551.
[http://dx.doi.org/10.1002/jbm.b.34813] [PMID: 33559310]
[198]
Rahmanian, N.; Hamishehkar, H.; Dolatabadi, J.E.N.; Arsalani, N. Nano graphene oxide: A novel carrier for oral delivery of flavonoids. Colloids Surf. B Biointerfaces, 2014, 123, 331-338.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.036] [PMID: 25282100]
[199]
Lee, X.J.; Lim, H.N.; Gowthaman, N.S.K.; Rahman, M.B.A.; Che Abdullah, C.A.; Muthoosamy, K. In-situ surface functionalization of superparamagnetic reduced graphene oxide – Fe3O4 nanocomposite via Ganoderma lucidum extract for targeted cancer therapy application. Appl. Surf. Sci., 2020, 512, 145738.
[http://dx.doi.org/10.1016/j.apsusc.2020.145738]
[200]
Huang, C.; Chen, T.; Zhu, D.; Huang, Q. Enhanced tumor targeting and radiotherapy by quercetin loaded biomimetic nanoparticles. Front Chem., 2020, 8, 225.
[http://dx.doi.org/10.3389/fchem.2020.00225] [PMID: 32296682]
[201]
Liu, M.; Fu, M.; Yang, X.; Jia, G.; Shi, X.; Ji, J.; Liu, X.; Zhai, G. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf. B Biointerfaces, 2020, 196, 111284.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111284] [PMID: 32771817]
[202]
Mittal, A.K.; Kumar, S.; Banerjee, U.C. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J. Colloid Interface Sci., 2014, 431, 194-199.
[http://dx.doi.org/10.1016/j.jcis.2014.06.030] [PMID: 25000181]
[203]
Lou, M.; Zhang, L.; Ji, P.; Feng, F.; Liu, J.; Yang, C.; Li, B.; Wang, L. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomed. Pharmacother., 2016, 84, 1-9.
[http://dx.doi.org/10.1016/j.biopha.2016.08.055] [PMID: 27621033]
[204]
Patra, M.; Mukherjee, R.; Banik, M.; Dutta, D.; Begum, N.A.; Basu, T. Calcium phosphate-quercetin nanocomposite (CPQN): A multi-functional nanoparticle having pH indicating, highly fluorescent and anti-oxidant properties. Colloids Surf. B Biointerfaces, 2017, 154, 63-73.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.018] [PMID: 28324689]
[205]
Ren, K.W.; Li, Y.H.; Wu, G.; Ren, J.Z.; Lu, H.B.; Li, Z.M.; Han, X.W. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int. J. Oncol., 2017, 50(4), 1299-1311.
[http://dx.doi.org/10.3892/ijo.2017.3886] [PMID: 28259895]
[206]
Zhang, Z.; Xu, S.; Wang, Y.; Yu, Y.; Li, F.; Zhu, H.; Shen, Y.; Huang, S.; Guo, S. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J. Colloid Interface Sci., 2018, 509, 47-57.
[http://dx.doi.org/10.1016/j.jcis.2017.08.097] [PMID: 28881205]
[207]
George, D.; Maheswari, P.U.; Begum, K.M.M.S. Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. Int. J. Biol. Macromol., 2019, 132, 784-794.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.008] [PMID: 30951778]
[208]
Lakshmi, B.A.; Kim, S. Quercetin mediated gold nanoclusters explored as a dual functional nanomaterial in anticancer and bio-imaging disciplines. Colloids Surf. B Biointerfaces, 2019, 178, 230-237.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.054] [PMID: 30870790]
[209]
Maghsoodloo, S.; Ebrahimzadeh, M.A.; Tavakoli, S.; Mohammadi, H.; Biparva, P.; Rafiei, A. Green synthesis of multifunctional silver nanoparticles using quercetin and their therapeutic potential. J. Nanomed. Res., 2020, 5(2), 171-181.
[210]
Naderi, E.; Aghajanzadeh, M.; Zamani, M.; Hashiri, A.; Sharafi, A.; Kamalianfar, A.; Naseri, M.; Danafar, H. Improving the anti-cancer activity of quercetin-loaded AgFeO2 through UV irradiation: Synthesis, characterization, and in vivo and in vitro biocompatibility study. J. Drug Deliv. Sci. Technol., 2020, 57, 101645.
[http://dx.doi.org/10.1016/j.jddst.2020.101645]
[211]
Sun, X.; Li, Y.; Xu, L.; Shi, X.; Xu, M.; Tao, X.; Yang, G. Heparin coated meta-organic framework co-delivering doxorubicin and quercetin for effective chemotherapy of lung carcinoma. J. Int. Med. Res., 2020, 48(2)
[http://dx.doi.org/10.1177/0300060519897185] [PMID: 32054349]
[212]
Sadalage, P.S.; Patil, R.V.; Havaldar, D.V.; Gavade, S.S.; Santos, A.C.; Pawar, K.D. Optimally biosynthesized, PEGylated gold nanoparticles functionalized with quercetin and camptothecin enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities. J. Nanobiotechnology, 2021, 19(1), 84.
[http://dx.doi.org/10.1186/s12951-021-00836-1] [PMID: 33766058]
[213]
Thakur, N.S.; Mandal, N.; Patel, G.; Kirar, S.; Reddy, Y.N.; Kushwah, V.; Jain, S.; Kalia, Y.N.; Bhaumik, J.; Banerjee, U.C. Co-administration of zinc phthalocyanine and quercetin via hybrid nanoparticles for augmented photodynamic therapy. Nanomedicine, 2021, 33, 102368.
[http://dx.doi.org/10.1016/j.nano.2021.102368] [PMID: 33548477]
[214]
Minaei, A.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol. Biol. Rep., 2016, 43(2), 99-105.
[http://dx.doi.org/10.1007/s11033-016-3942-x] [PMID: 26748999]
[215]
Han, Q.; Yang, R.; Li, J.; Liang, W.; Zhang, Y.; Dong, M.; Besenbacher, F.; Wang, C. Enhancement of biological activities of nanostructured hydrophobic drug species. Nanoscale, 2012, 4(6), 2078-2082.
[http://dx.doi.org/10.1039/c2nr12013e] [PMID: 22331105]
[216]
Lockhart, J.N.; Stevens, D.M.; Beezer, D.B.; Kravitz, A.; Harth, E. Dual drug delivery of tamoxifen and quercetin: Regulated metabolism for anticancer treatment with nanosponges. J. Control. Release, 2015, 220(Pt B), 751-757.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.052] [PMID: 26344396]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy