Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Cancer-associated Fibroblast-derived Extracellular Vesicles Mediate Immune Escape of Bladder Cancer via PD-L1/PD-1 Expression

Author(s): Rui Feng, Zhongxing Li, Guangcheng Ge, Chenghao Wang, Yuejun Jia and Jun Ouyang*

Volume 23, Issue 11, 2023

Published on: 09 June, 2023

Page: [1410 - 1420] Pages: 11

DOI: 10.2174/1871530323666230228124125

Price: $65

Abstract

Objective: Bladder cancer (BCa) is a malignant urological tumor with a high prevalence and poor prognosis. Extracellular vesicles (EVs) are increasingly becoming current hotspots owing to their involvement in cancer progression. This paper probed into the action of cancer-associated fibroblast-derived EVs (CAF-EVs) in the immune escape of BCa.

Methods: CAFs were identified by immunofluorescence. EVs were extracted from CAFs via ultracentrifugation and later characterized. BCa cells (T24 cell line) were co-cultured with CD8+ T cells and then treated with CAF-EVs. The uptake of EVs by T24 cells was examined by confocal laser microscopy. T24 cell apoptosis and invasion were assessed using flow cytometry and invasion assay. CD8+ T cell proliferation was evaluated using CFSE staining. The levels of cytokines (IFN-γ, IL-2, and TNF-α) were measured by ELISA. PD-L1 and PD-1 levels were determined utilizing RT-qPCR and flow cytometry. BCa mouse models were established to identify the effect of CAF-EVs on BCa progression in vivo.

Results: CAF-EVs decreased apoptosis and enhanced invasion of T24 cells, reduced proliferation of CD8+ T cells, and diminished levels of IFN-γ, IL-2, and TNF-α secreted by CD8+ T cells. CAF-EVs promoted the immune escape of T24 cells by carrying PD-L1. Downregulation of PDL1 expression in T24 cells or EVs partially counteracted the promotion of CAF-EVs on immune escape by reducing the binding of PD-L1 and PD-1. Additionally, CAF-EVs raised tumor volume and weight, upregulated PD-L1 expression, and weakened CD8+ T cell infiltration in BCa mice.

Conclusion: CAF-EVs facilitate the immune escape of BCa by upregulating PD-L1/PD-1.

Keywords: Bladder cancer, cancer-associated fibroblasts, extracellular vesicles, PD-L1, PD-1, immune escape, T24 cells, CD8+ T cells.

Graphical Abstract
[1]
Abbaoui, B.; Lucas, C.R.; Riedl, K.M.; Clinton, S.K.; Mortazavi, A. Cruciferous vegetables, isothiocyanates, and bladder cancer prevention. Mol. Nutr. Food Res., 2018, 62(18), 1800079.
[http://dx.doi.org/10.1002/mnfr.201800079] [PMID: 30079608]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Fang, D.; Kitamura, H. Cancer stem cells and epithelial-mesenchymal transition in urothelial carcinoma: Possible pathways and potential therapeutic approaches. Int. J. Urol., 2018, 25(1), 7-17.
[http://dx.doi.org/10.1111/iju.13404] [PMID: 28697535]
[4]
Kates, M.; Date, A.; Yoshida, T.; Afzal, U.; Kanvinde, P.; Babu, T.; Sopko, N.A.; Matsui, H.; Hahn, N.M.; McConkey, D.J.; Baras, A.; Hanes, J.; Ensign, L.; Bivalacqua, T.J. Preclinical evaluation of intravesical cisplatin nanoparticles for non–muscle-invasive bladder cancer. Clin. Cancer Res., 2017, 23(21), 6592-6601.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1082] [PMID: 28808039]
[5]
Medle, B.; Sjödahl, G.; Eriksson, P.; Liedberg, F.; Höglund, M.; Bernardo, C. Patient-derived bladder cancer organoid models in tumor biology and drug testing: A systematic review. Cancers (Basel), 2022, 14(9), 2062.
[http://dx.doi.org/10.3390/cancers14092062] [PMID: 35565191]
[6]
Aghaalikhani, N.; Rashtchizadeh, N.; Shadpour, P.; Allameh, A.; Mahmoodi, M. Cancer stem cells as a therapeutic target in bladder cancer. J. Cell. Physiol., 2019, 234(4), 3197-3206.
[http://dx.doi.org/10.1002/jcp.26916] [PMID: 30471107]
[7]
Georgantzoglou, N.; Pergaris, A.; Masaoutis, C.; Theocharis, S. Extracellular vesicles as biomarkers carriers in bladder cancer: Diagnosis, surveillance, and treatment. Int. J. Mol. Sci., 2021, 22(5), 2744.
[http://dx.doi.org/10.3390/ijms22052744] [PMID: 33803085]
[8]
Kim, K.; Sohn, Y.J.; Lee, R.; Yoo, H.J.; Kang, J.Y.; Choi, N.; Na, D.; Yeon, J.H. Cancer-associated fibroblasts differentiated by exosomes isolated from cancer cells promote cancer cell invasion. Int. J. Mol. Sci., 2020, 21(21), 8153.
[http://dx.doi.org/10.3390/ijms21218153] [PMID: 33142759]
[9]
Dai, X.; Xie, Y.; Dong, M. Cancer-associated fibroblasts derived extracellular vesicles promote angiogenesis of colorectal adenocarcinoma cells through miR-135b-5p/FOXO1 axis. Cancer Biol. Ther., 2022, 23(1), 76-88.
[http://dx.doi.org/10.1080/15384047.2021.2017222] [PMID: 35100092]
[10]
Ginini, L.; Billan, S.; Fridman, E.; Gil, Z. Insight into extracellular vesicle-cell communication: From cell recognition to intracellular fate. Cells, 2022, 11(9), 1375.
[http://dx.doi.org/10.3390/cells11091375] [PMID: 35563681]
[11]
Tan, D.; Li, G.; Zhang, P.; Peng, C.; He, B. LncRNA SNHG12 in extracellular vesicles derived from carcinoma-associated fibroblasts promotes cisplatin resistance in non-small cell lung cancer cells. Bioengineered, 2022, 13(1), 1838-1857.
[http://dx.doi.org/10.1080/21655979.2021.2018099] [PMID: 35014944]
[12]
Yin, H.; Yu, S.; Xie, Y.; Dai, X.; Dong, M.; Sheng, C.; Hu, J. Cancer-associated fibroblasts-derived exosomes upregulate microRNA-135b-5p to promote colorectal cancer cell growth and angiogenesis by inhibiting thioredoxin-interacting protein. Cell. Signal., 2021, 84, 110029.
[http://dx.doi.org/10.1016/j.cellsig.2021.110029] [PMID: 33932496]
[13]
Yan, L.; Wang, P.; Fang, W.; Liang, C. Cancer‐associated fibroblasts–derived exosomes‐mediated transfer of LINC00355 regulates bladder cancer cell proliferation and invasion. Cell Biochem. Funct., 2020, 38(3), 257-265.
[http://dx.doi.org/10.1002/cbf.3462] [PMID: 31749189]
[14]
Kato, T.; Fahrmann, J.F.; Hanash, S.M.; Vykoukal, J. Extracellular vesicles mediate B cell immune response and are a potential target for cancer therapy. Cells, 2020, 9(6), 1518.
[http://dx.doi.org/10.3390/cells9061518] [PMID: 32580358]
[15]
Eckert, A.W.; Wickenhauser, C.; Salins, P.C.; Kappler, M.; Bukur, J.; Seliger, B. Clinical relevance of the tumor microenvironment and immune escape of oral squamous cell carcinoma. J. Transl. Med., 2016, 14(1), 85.
[http://dx.doi.org/10.1186/s12967-016-0828-6] [PMID: 27044404]
[16]
Umansky, V.; Blattner, C.; Fleming, V.; Hu, X.; Gebhardt, C.; Altevogt, P.; Utikal, J. Myeloid-derived suppressor cells and tumor escape from immune surveillance. Semin. Immunopathol., 2017, 39(3), 295-305.
[http://dx.doi.org/10.1007/s00281-016-0597-6] [PMID: 27787613]
[17]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Ge, J.; Xiang, B.; Wu, X.; Ma, J.; Zhou, M.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Guo, C.; Zeng, Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Cancer, 2019, 18(1), 10.
[http://dx.doi.org/10.1186/s12943-018-0928-4] [PMID: 30646912]
[18]
Zhang, L.; Zhao, Y.; Tu, Q.; Xue, X.; Zhu, X.; Zhao, K.N. The roles of programmed cell death Ligand-1/programmed cell death-1 (PD-L1/PD-1) in HPV-induced cervical cancer and potential for their use in blockade therapy. Curr. Med. Chem., 2021, 28(5), 893-909.
[http://dx.doi.org/10.2174/1875533XMTAziOTYt1] [PMID: 32003657]
[19]
Jiang, Y.; Wang, K.; Lu, X.; Wang, Y.; Chen, J. Cancer-associated fibroblasts-derived exosomes promote lung cancer progression by OIP5-AS1/miR-142-5p/PD-L1 axis. Mol. Immunol., 2021, 140, 47-58.
[http://dx.doi.org/10.1016/j.molimm.2021.10.002] [PMID: 34653794]
[20]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[21]
Song, N.; Li, P.; Song, P.; Li, Y.; Zhou, S.; Su, Q.; Li, X.; Yu, Y.; Li, P.; Feng, M.; Zhang, M.; Lin, W. MicroRNA-138-5p suppresses non-small cell lung cancer cells by targeting PD-L1/PD-1 to regulate tumor microenvironment. Front. Cell Dev. Biol., 2020, 8540.
[22]
Tian, P.; Wei, J.X.; Li, J.; Ren, J.K.; Yang, J.J. LncRNA SNHG1 regulates immune escape of renal cell carcinoma by targeting miR‐129‐3p to activate STAT3 and PD‐L1. Cell Biol. Int., 2021, 45(7), 1546-1560.
[http://dx.doi.org/10.1002/cbin.11595] [PMID: 33739543]
[23]
Varghese, F.; Bukhari, A.B.; Malhotra, R.; De, A. IHC Profiler: An open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One, 2014, 9(5), e96801.
[http://dx.doi.org/10.1371/journal.pone.0096801] [PMID: 24802416]
[24]
Yang, J.; Chen, J.; Liang, H.; Yu, Y. Nasopharyngeal cancer cell‐derived exosomal PD‐L1 inhibits CD8 + T‐cell activity and promotes immune escape. Cancer Sci., 2022, 113(9), 3044-3054.
[http://dx.doi.org/10.1111/cas.15433] [PMID: 35598173]
[25]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[26]
Jain, P.; Kathuria, H.; Momin, M. Clinical therapies and nano drug delivery systems for urinary bladder cancer. Pharmacol. Ther., 2021, 226, 107871.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107871] [PMID: 33915179]
[27]
Zhang, Z.; Huang, Q.; Yu, L.; Zhu, D.; Li, Y.; Xue, Z.; Hua, Z.; Luo, X.; Song, Z.; Lu, C.; Zhao, T.; Liu, Y. The Role of miRNA in tumor immune escape and mirna-based therapeutic strategies. Front. Immunol., 2021, 12807895.
[PMID: 35116035]
[28]
Huang, M.; Peng, X.; Yang, L.; Yang, S.; Li, X.; Tang, S.; Li, B.; Jin, H.; Wu, B.; Liu, J.; Li, H. Non-coding RNA derived from extracellular vesicles in cancer immune escape: Biological functions and potential clinical applications. Cancer Lett., 2021, 501, 234-246.
[http://dx.doi.org/10.1016/j.canlet.2020.11.005] [PMID: 33186654]
[29]
Wang, B.; Wang, Y.; Sun, X.; Deng, G.; Huang, W.; Wu, X.; Gu, Y.; Tian, Z.; Fan, Z.; Xu, Q.; Chen, H.; Sun, Y. CXCR6 is required for antitumor efficacy of intratumoral CD8 + T cell. J. Immunother. Cancer, 2021, 9(8), e003100.
[http://dx.doi.org/10.1136/jitc-2021-003100] [PMID: 34462326]
[30]
Sun, X.; Zhao, J.; Ma, L.; Sun, X.; Ge, J.; Yu, Y.; Ma, J.; Zhang, M. B7-H6 as an efficient target for T cell-induced cytotoxicity in haematologic malignant cells. Invest. New Drugs, 2021, 39(1), 24-33.
[http://dx.doi.org/10.1007/s10637-020-00976-5] [PMID: 32770284]
[31]
Zhang, Z.; Zhang, H.; Shi, L.; Wang, D.; Tang, D. Heterogeneous cancer‐associated fibroblasts: A new perspective for understanding immunosuppression in pancreatic cancer. Immunology, 2022, 167(1), 1-14.
[http://dx.doi.org/10.1111/imm.13496] [PMID: 35569095]
[32]
Shan, G.; Zhou, X.; Gu, J.; Zhou, D.; Cheng, W.; Wu, H.; Wang, Y.; Tang, T.; Wang, X. Downregulated exosomal microRNA-148b-3p in cancer associated fibroblasts enhance chemosensitivity of bladder cancer cells by downregulating the Wnt/β-catenin pathway and upregulating PTEN. Cell Oncol., 2021, 44(1), 45-59.
[http://dx.doi.org/10.1007/s13402-020-00500-0] [PMID: 33423167]
[33]
Ma, F.; Vayalil, J.; Lee, G.; Wang, Y.; Peng, G. Emerging role of tumor-derived extracellular vesicles in T cell suppression and dysfunction in the tumor microenvironment. J. Immunother. Cancer, 2021, 9(10), e003217.
[http://dx.doi.org/10.1136/jitc-2021-003217] [PMID: 34642246]
[34]
Guo, L.M.; Ding, G.F.; Xu, W.C.; Ge, H.; Jiang, Y.; Lu, Y.F. Anti-PD-L1 antibody enhances T cell immune responses and reduces resistance of breast cancer cells to radiotherapy. Oxid. Med. Cell. Longev., 2022, 2022, 1-16.
[http://dx.doi.org/10.1155/2022/5938688] [PMID: 35295718]
[35]
Lu, C.; Zhao, Y.; Wang, J.; Shi, W.; Dong, F.; Xin, Y.; Zhao, X.; Liu, C. Breast cancer cell-derived extracellular vesicles transfer miR-182-5p and promote breast carcinogenesis via the CMTM7/EGFR/AKT axis. Mol. Med., 2021, 27(1), 78.
[http://dx.doi.org/10.1186/s10020-021-00338-8] [PMID: 34294040]
[36]
Dou, X.; Hua, Y.; Chen, Z.; Chao, F.; Li, M. Extracellular vesicles containing PD-L1 contribute to CD8+ T-cell immune suppression and predict poor outcomes in small cell lung cancer. Clin. Exp. Immunol., 2022, 207(3), 307-317.
[http://dx.doi.org/10.1093/cei/uxac006] [PMID: 35553630]
[37]
Lee, Y.S.; Heo, W.; Choi, H.J.; Cho, H.R.; Nam, J.H.; Ki, Y.G.; Lee, H.R.; Son, W.C.; Park, Y.S.; Kang, C.D.; Bae, J. An inhibitor of programmed death ligand 1 enhances natural killer cell-mediated immunity against malignant melanoma cells. PLoS One, 2021, 16(4), e0248870.
[http://dx.doi.org/10.1371/journal.pone.0248870] [PMID: 33793576]
[38]
Raimondo, S.; Pucci, M.; Alessandro, R.; Fontana, S. Extracellular vesicles and tumor-immune escape: Biological functions and clinical perspectives. Int. J. Mol. Sci., 2020, 21(7), 2286.
[http://dx.doi.org/10.3390/ijms21072286] [PMID: 32225076]
[39]
Chen, Y.L.; Wang, G.X.; Lin, B.A.; Huang, J.S. MicroRNA‐93‐5p expression in tumor tissue and its tumor suppressor function via targeting programmed death ligand‐1 in colorectal cancer. Cell Biol. Int., 2020, 44(5), 1224-1236.
[http://dx.doi.org/10.1002/cbin.11323] [PMID: 32068322]
[40]
Dou, D.; Ren, X.; Han, M.; Xu, X.; Ge, X.; Gu, Y.; Wang, X. Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the miR-92/PD-L1 pathway. Front. Immunol., 2020, 11, 2026.
[http://dx.doi.org/10.3389/fimmu.2020.02026] [PMID: 33162971]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy