Review Article

三唑嘧啶衍生物:合成、生物活性和给药方面的最新进展

卷 31, 期 14, 2024

发表于: 26 May, 2023

页: [1896 - 1919] 页: 24

弟呕挨: 10.2174/0929867330666230228120416

价格: $65

Open Access Journals Promotions 2
摘要

含三唑嘧啶核的分子具有抗阿尔茨海默病、抗糖尿病、抗癌、抗微生物、抗结核、抗病毒、抗疟疾、抗炎、抗帕金森病、抗青光眼等多种生物活性。三唑嘧啶有8种异构体结构,包括最稳定的1,2,4-三唑[1,5- a]嘧啶。通过不同的化学反应得到三唑嘧啶,a) 1,2,4-三唑核环化成嘧啶,b)嘧啶环化成1,2,4-三唑结构,c) 1,2,4-三唑[1,5 -a]嘧啶重排,d)嘧啶四嗪重排。本文综述了三唑嘧啶类化合物的合成方法、最新药理作用和给药前景。

关键词: 阿尔茨海默病,三唑嘧啶,药理作用,生物学,药物输送,四嗪。

[1]
Büyükafşar, K.; Yazar, A.; Düşmez, D.; Öztürk, H.; Polat, G.; Levent, A. Effect of trapidil, an antiplatelet and vasodilator agent on gentamicin-induced nephrotoxicity in rats. Pharmacol. Res., 2001, 44(4), 321-328.
[http://dx.doi.org/10.1006/phrs.2001.0864]
[2]
Polat, G.; Ümit Talas, D.; Polat, A.; Nayci, A. Atiş S.; Bağdatoğlu, Ö.; Çömelekoğlu, Ü.; Atik, U. Effects of triazolopyrimidine on lipid peroxidation and nitric oxide levels in the corticosteroid-impaired healing of rat tracheal anastomoses. Cell Biochem. Funct., 2005, 23(1), 39-45.
[http://dx.doi.org/10.1002/cbf.1126]
[3]
Johnson, T.C.; Martin, T.P.; Mann, R.K.; Pobanz, M.A. Penoxsulam-Structure–activity relationships of triazolopyrimidine sulfonamides. Bioorg. Med. Chem., 2009, 17(12), 4230-4240.
[http://dx.doi.org/10.1016/j.bmc.2009.02.010]
[4]
Renyu, Q.; Yuchao, L.; Kandegama, W.M.W.W.; Qiong, C.; Guangfu, Y. Recent applications of triazolopyrimidine-based bioactive compounds in medicinal and agrochemical chemistry. Mini Rev. Med. Chem., 2018, 18(9), 781-793.
[http://dx.doi.org/10.2174/1389557517666171101112850]
[5]
Singh, P.K.; Choudhary, S.; Kashyap, A.; Verma, H.; Kapil, S.; Kumar, M.; Arora, M.; Silakari, O. An exhaustive compilation on chemistry of triazolopyrimidine: A journey through decades. Bioorg. Chem., 2019, 88, 102919.
[http://dx.doi.org/10.1016/j.bioorg.2019.102919]
[6]
Pinheiro, S.; Pinheiro, E.M.C.; Muri, E.M.F.; Pessôa, J.C.; Cadorini, M.A.; Greco, S.J. Biological activities of [1,2,4]triazolo[1,5-a]pyrimidines and analogs. Med. Chem. Res., 2020, 29(10), 1751-1776.
[http://dx.doi.org/10.1007/s00044-020-02609-1]
[7]
Umar, T.; Gusain, S.; Raza, M.K.; Shalini, S.; Kumar, J.; Tiwari, M.; Hoda, N. Naphthalene-triazolopyrimidine hybrid compounds as potential multifunctional anti-Alzheimer’s agents. Bioorg. Med. Chem., 2019, 27(14), 3156-3166.
[http://dx.doi.org/10.1016/j.bmc.2019.06.004]
[8]
Gami, S.P.; Vilapara, K.V.; Khunt, H.R.; Babariya, J.S.; Naliapara, Y.T. Synthesis and antimicrobal activities of some novel triazolo [1,5-a] pyrimidine derivatives. Int. Lett. Chem. Phys. Astronomy, 2014, 30, 127-134.
[9]
Jameel, E.; Meena, P.; Maqbool, M.; Kumar, J.; Ahmed, W.; Mumtazuddin, S.; Tiwari, M.; Hoda, N.; Jayaram, B. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur. J. Med. Chem., 2017, 136, 36-51.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.064]
[10]
Kumar, J.; Meena, P.; Singh, A.; Jameel, E.; Maqbool, M.; Mobashir, M.; Shandilya, A.; Tiwari, M.; Hoda, N.; Jayaram, B. Synthesis and screening of triazolopyrimidine scaffold as multi-functional agents for Alzheimer’s disease therapies. Eur. J. Med. Chem., 2016, 119, 260-277.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.053]
[11]
Huang, B.; Li, C.; Chen, W.; Liu, T.; Yu, M.; Fu, L.; Sun, Y.; Liu, H.; De Clercq, E.; Pannecouque, C.; Balzarini, J.; Zhan, P.; Liu, X. Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 3: Optimization of [1,2,4]triazolo[1,5-a]pyrimidine core via structure-based and physicochemical property-driven approaches. Eur. J. Med. Chem., 2015, 92, 754-765.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.042]
[12]
Aghazadeh Tabrizi, M.; Baraldi, P.G.; Ruggiero, E.; Saponaro, G.; Baraldi, S.; Poli, G.; Tuccinardi, T.; Ravani, A.; Vincenzi, F.; Borea, P.A.; Varani, K. Synthesis and structure activity relationship investigation of triazolo[1,5-a]pyrimidines as CB2 cannabinoid receptor inverse agonists. Eur. J. Med. Chem., 2016, 113, 11-27.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.032]
[13]
Porter, D.W.; Bradley, M.; Brown, Z.; Canova, R.; Charlton, S.; Cox, B.; Hunt, P.; Kolarik, D.; Lewis, S.; O’Connor, D.; Reilly, J.; Spanka, C.; Tedaldi, L.; Watson, S.J.; Wermuth, R.; Press, N.J. The discovery of potent, orally bioavailable pyrazolo and triazolopyrimidine CXCR2 receptor antagonists. Bioorg. Med. Chem. Lett., 2014, 24(1), 72-76.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.074]
[14]
Huang, L.H.; Zheng, Y.F.; Lu, Y.Z.; Song, C.J.; Wang, Y.G.; Yu, B.; Liu, H.M. Synthesis and biological evaluation of novel steroidal[17,16-d][1,2,4]triazolo[1,5-a]pyrimidi-nes. Steroids, 2012, 77(6), 710-715.
[http://dx.doi.org/10.1016/j.steroids.2012.03.002]
[15]
Zarguil, A.; Boukhris, S.; El Efrit, M.L.; Souizi, A.; Essassi, E.M. Easy access to triazoles, triazolopyrimidines, benzimidazoles and imidazoles from imidates. Tetrahedron Lett., 2008, 49(41), 5883-5886.
[http://dx.doi.org/10.1016/j.tetlet.2008.07.134]
[16]
Fizer, M.M.; Slivka, M.V.; Lendel, V.G. New method of synthesis of 3,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimi-dine-2(1H)-thione. Chem. Heterocycl. Compd., 2013, 49(8), 1243-1245.
[http://dx.doi.org/10.1007/s10593-013-1369-z]
[17]
Frizzo, C.P.; Scapin, E.; Marzari, M.R.B.; München, T.S.; Zanatta, N.; Bonacorso, H.G.; Buriol, L.; Martins, M.A.P. Ultrasound irradiation promotes the synthesis of new 1,2,4-triazolo[1,5-a]pyrimidine. Ultrason. Sonochem., 2014, 21(3), 958-962.
[http://dx.doi.org/10.1016/j.ultsonch.2013.12.007]
[18]
Pada, R.; Ram, H.; Nandaniya, R.; Dodiya, D.; Shah, V. A one-pot multi component synthesis of triazolopyrimidines. OCAIJ, 2012, 8(11), 419-423.
[19]
Ablajan, K.; Kamil, W.; Tuoheti, A.; Wan-Fu, S. An efficient three component one-pot synthesis of 5-Amino-7-aryl-7,8-dihydro-[1,2,4] triazolo[4,3-a]-pyrimidine-6-carboni-triles. Molecules, 2012, 17(2), 1860-1869.
[http://dx.doi.org/10.3390/molecules17021860]
[20]
Shahnavaz, Z.; Khaligh, N.G.; Mihankhah, T.; Johan, M.R. Design, synthesis, characterization, and physical property determination of a new ionic liquid: the preparation of triazolo-pyrimidines at room temperature under metal-free conditions. Res. Chem. Intermed., 2020, 46(10), 4645-4658.
[http://dx.doi.org/10.1007/s11164-020-04226-4]
[21]
Shaabani, A.; Seyyedhamzeh, M.; Ganji, N.; Hamidzad Sangachin, M.; Armaghan, M. One-pot four-component synthesis of highly substituted [1,2,4]triazolo[1,5-a]pyrimidines. Mol. Divers., 2015, 19(4), 709-715.
[http://dx.doi.org/10.1007/s11030-015-9604-4]
[22]
Sirakanyan, S.N.; Spinelli, D.; Geronikaki, A.; Kartsev, V.G.; Hakobyan, E.K.; Hovakimyan, A.A. Synthesis of new heterocyclic systems: Pyrido[3′2′4,5]thieno(furo)[2,3-e][1,2,4]triazolopyrimidines and an unusual ANRORC rearrangement in the fused pyrimidine series. ChemistrySelect, 2018, 3(39), 10938-10942.
[http://dx.doi.org/10.1002/slct.201802221]
[23]
Omar, A.M.; Abd El Razik, H.A.; Hazzaa, A.A.; El-Attar, M.A.Z.; El Demellawy, M.A.; Abdel Wahab, A.E.; El Hawash, S.A.M. New pyrimidines and triazolopyrimidines as antiproliferative and antioxidants with cyclooxygenase-1/2 inhibitory potential. Future Med. Chem., 2019, 11(13), 1583-1603.
[http://dx.doi.org/10.4155/fmc-2018-0285]
[24]
Nicolai, E.; Cure, G.; Goyard, J.; Kirchner, M.; Teulon, J.M.; Versigny, A.; Cazes, M.; Caussade, F.; Virone-Oddos, A.; Cloarec, A. Synthesis and SAR studies of novel triazolopyrimidine derivatives as potent, orally active Angiotensin II receptor antagonists. J. Med. Chem., 1994, 37(15), 2371-2386.
[http://dx.doi.org/10.1021/jm00041a016]
[25]
Abu-Hashem, A.A.; Hussein, H.A.R.; Abu-zied, K.M. Synthesis of novel 1,2,4-triazolopyrimidines and their evaluation as antimicrobial agents. Med. Chem. Res., 2017, 26(1), 120-130.
[http://dx.doi.org/10.1007/s00044-016-1733-5]
[26]
Daboun, H.A.; El-Reedy, A.M. A one step synthesis of new 4-aminopyrimidine derivatives: Preparation of tetrazolo-and s-triazolopyrimidines. Z. Naturforsch. B. J. Chem. Sci., 1983, 38(12), 1686-1689.
[http://dx.doi.org/10.1515/znb-1983-1223]
[27]
Said, S.A.; El-Sayed, H.A.; El-Farargy, A.F.; Amr, A.; Ibrahim, S.; Abdalla, M.M. Pharmacological activities of some synthesized substituted pyrazole, oxazole and triazolopyrimidine derivatives. Lat. Am. J. Pharm., 2016, 35, 1618-1625.
[28]
Guetzoyan, L.J.; Spooner, R.A.; Lord, J.M.; Roberts, L.M.; Clarkson, G.J. Simple oxidation of pyrimidinylhydrazones to triazolopyrimidines and their inhibition of Shiga toxin trafficking. Eur. J. Med. Chem., 2010, 45(1), 275-283.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.007]
[29]
El-Sayed, H.A.; El-Hashash, M.M.; Ahmed, A.E. Novel synthesis, ring transformation and anticancer activity of 1, 3-thiazine, pyrimidine and triazolo [1,5-a] pyrimidine derivatives. Bull. Chem. Soc. Ethiop., 2018, 32(3), 513-522.
[http://dx.doi.org/10.4314/bcse.v32i3.10]
[30]
Abdelghani, E.; Said, S.A.; Assy, M.G.; Abdel Hamid, A.M. Synthesis and antimicrobial evaluation of some new pyrimidines and condensed pyrimidines. Arab. J. Chem., 2017, 10, S2926-S2933.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.025]
[31]
Said, M.A.; Eldehna, W.M.; Nocentini, A.; Bonardi, A.; Fahim, S.H.; Bua, S.; Soliman, D.H.; Abdel-Aziz, H.A.; Gratteri, P.; Abou-Seri, S.M.; Supuran, C.T. Synthesis, biological and molecular dynamics investigations with a series of triazolopyrimidine/triazole-based benzenesulfonamides as novel carbonic anhydrase inhibitors. Eur. J. Med. Chem., 2020, 185, 111843.
[http://dx.doi.org/10.1016/j.ejmech.2019.111843]
[32]
Zhang, N.; Ayral-Kaloustian, S.; Nguyen, T.; Afragola, J.; Hernandez, R.; Lucas, J.; Gibbons, J.; Beyer, C. Synthesis and SAR of [1,2,4] triazolo[1,5-a]pyrimidines, a class of anticancer agents with a unique mechanism of tubulin inhibition. J. Med. Chem., 2007, 50(2), 319-327.
[http://dx.doi.org/10.1021/jm060717i]
[33]
Beyer, C.F.; Zhang, N.; Hernandez, R.; Vitale, D.; Lucas, J.; Nguyen, T.; Discafani, C.; Ayral-Kaloustian, S.; Gibbons, J.J. TTI-237: a novel microtubule-active compound with in vivo antitumor activity. Cancer Res., 2008, 68(7), 2292-2300.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1420]
[34]
Pogaku, V.; Gangarapu, K.; Basavoju, S.; Tatapudi, K.K.; Katragadda, S.B. Design, synthesis, molecular modelling, ADME prediction and anti-hyperglycemic evaluation of new pyrazole-triazolopyrimidine hybrids as potent α-glucosidase inhibitors. Bioorg. Chem., 2019, 93, 103307.
[http://dx.doi.org/10.1016/j.bioorg.2019.103307]
[35]
Zuniga, E.S.; Korkegian, A.; Mullen, S.; Hembre, E.J.; Ornstein, P.L.; Cortez, G.; Biswas, K.; Kumar, N.; Cramer, J.; Masquelin, T.; Hipskind, P.A.; Odingo, J.; Parish, T. The synthesis and evaluation of triazolopyrimidines as anti-tubercular agents. Bioorg. Med. Chem., 2017, 25(15), 3922-3946.
[http://dx.doi.org/10.1016/j.bmc.2017.05.030]
[36]
Chen, Q.; Liu, Z.M.; Chen, C.N.; Jiang, L.L.; Yang, G.F. Synthesis and fungicidal activities of new 1,2,4-triazolo[1,5-a]pyrimidines. Chem. Biodivers., 2009, 6(8), 1254-1265.
[http://dx.doi.org/10.1002/cbdv.200800168]
[37]
Uryu, S.; Tokuhiro, S.; Murasugi, T.; Oda, T. A novel compound, RS-1178, specifically inhibits neuronal cell death mediated by β-amyloid-induced macrophage activation in vitro. Brain Res., 2002, 946(2), 298-306.
[http://dx.doi.org/10.1016/S0006-8993(02)02898-6]
[38]
Chen, C.N.; Lv, L.L.; Ji, F.Q.; Chen, Q.; Xu, H.; Niu, C.W.; Xi, Z.; Yang, G.F. Design and synthesis of N-2,6-difluorophenyl-5-methoxyl-1,2,4-triazolo[1,5-a]-pyrimidi-ne-2-sulfonamide as acetohydroxyacid synthase inhibitor. Bioorg. Med. Chem., 2009, 17(8), 3011-3017.
[http://dx.doi.org/10.1016/j.bmc.2009.03.018]
[39]
Li, H.; Tatlock, J.; Linton, A.; Gonzalez, J.; Jewell, T.; Patel, L.; Ludlum, S.; Drowns, M.; Rahavendran, S.V.; Skor, H.; Hunter, R.; Shi, S.T.; Herlihy, K.J.; Parge, H.; Hickey, M.; Yu, X.; Chau, F.; Nonomiya, J.; Lewis, C. Discovery of (R)-6-Cyclopentyl-6-(2-(2,6-diethylpyridin-4-yl)ethyl)-3-((5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl) methyl)-4-hydroxy-5,6-dihydropyran-2-one (PF-00868554) as a potent and orally available hepatitis c virus polymerase inhibitor. J. Med. Chem., 2009, 52(5), 1255-1258.
[http://dx.doi.org/10.1021/jm8014537]
[40]
Peng, H.; Kumaravel, G.; Yao, G.; Sha, L.; Wang, J.; Van Vlijmen, H.; Bohnert, T.; Huang, C.; Vu, C.B.; Ensinger, C.L.; Chang, H.; Engber, T.M.; Whalley, E.T.; Petter, R.C. Novel bicyclic piperazine derivatives of triazolotriazine and triazolopyrimidines as highly potent and selective adenosine A2A receptor antagonists. J. Med. Chem., 2004, 47(25), 6218-6229.
[http://dx.doi.org/10.1021/jm0494321]
[41]
Alam, F.; Shafique, Z.; Amjad, S.T.; Bin Asad, M.H.H. Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytother. Res., 2019, 33(1), 41-54.
[http://dx.doi.org/10.1002/ptr.6211]
[42]
Abuelizz, H.A.; Iwana, N.A.N.I.; Ahmad, R.; Anouar, E.H.; Marzouk, M.; Al-Salahi, R. Synthesis, biological activity and molecular docking of new tricyclic series as α-glucosidase inhibitors. BMC Chem., 2019, 13(1), 52.
[http://dx.doi.org/10.1186/s13065-019-0560-4]
[43]
Pogaku, V.; Krishnan, R.; Basavoju, S. Synthesis and biological evaluation of new benzo[d][1,2,3]triazol-1-yl-pyrazole-based dihydro-[1,2,4]triazolo[4,3-a]pyrimidines as potent antidiabetic, anticancer and antioxidant agents. Res. Chem. Intermed., 2021, 47(2), 551-571.
[http://dx.doi.org/10.1007/s11164-020-04285-7]
[44]
Jansen, J.; Karges, W.; Rink, L. Zinc and diabetes - clinical links and molecular mechanisms. J. Nutr. Biochem., 2009, 20(6), 399-417.
[http://dx.doi.org/10.1016/j.jnutbio.2009.01.009]
[45]
Song, Y.; Wang, J.; Li, X.; Cai, L. Zinc and the diabetic heart. Biometals, 2005, 18(4), 325-332.
[http://dx.doi.org/10.1007/s10534-005-3689-7]
[46]
Coulston, L.; Dandona, P. Insulin-like effect of zinc on adipocytes. Diabetes, 1980, 29(8), 665-667.
[http://dx.doi.org/10.2337/diab.29.8.665]
[47]
Esteban-Parra, G.M.; Sebastián, E.S.; Cepeda, J.; Sánchez-González, C.; Rivas-García, L.; Llopis, J.; Aranda, P.; Sánchez-Moreno, M.; Quirós, M.; Rodríguez-Diéguez, A. Anti-diabetic and anti-parasitic properties of a family of luminescent zinc coordination compounds based on the 7-amino-5-methyl-1,2,4-triazolo[1,5-a]pyrimidine ligand. J. Inorg. Biochem., 2020, 212, 111235.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111235]
[48]
Kawahara, K.; Hohjoh, H.; Inazumi, T.; Tsuchiya, S.; Sugimoto, Y. Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2015, 1851(4), 414-421.
[http://dx.doi.org/10.1016/j.bbalip.2014.07.008]
[49]
Said, S.A.; Amr, A.E.G.E.; Sabry, N.M.; Abdalla, M.M. Analgesic, anticonvulsant and anti-inflammatory activities of some synthesized benzodiazipine, triazolopyrimidine and bis-imide derivatives. Eur. J. Med. Chem., 2009, 44(12), 4787-4792.
[http://dx.doi.org/10.1016/j.ejmech.2009.07.013]
[50]
Rossi, R.; Ciofalo, M. An updated review on the synthesis and antibacterial activity of molecular hybrids and conjugates bearing imidazole moiety. Molecules, 2020, 25(21), 5133.
[http://dx.doi.org/10.3390/molecules25215133]
[51]
Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America. Clin. Infect. Dis., 2009, 48(1), 1-12.
[http://dx.doi.org/10.1086/595011]
[52]
Jackson, N.; Czaplewski, L.; Piddock, L.J.V. Discovery and development of new antibacterial drugs: learning from experience? J. Antimicrob. Chemother., 2018, 73(6), 1452-1459.
[http://dx.doi.org/10.1093/jac/dky019]
[53]
Abdel-Aziem, A.; El-Gendy, M.S.; Abdelhamid, A.O. Synthesis and antimicrobial activities of pyrido[2,3-d]pyrimidine, pyridotriazolopyrimidine, triazolopyrimidine, and pyrido[2,3-d:6,5d’]dipyrimidine derivatives. Eur. J. Chem., 2012, 3(4), 455-460.
[http://dx.doi.org/10.5155/eurjchem.3.4.455-460.683]
[54]
Argăseală A.; Maxim, C.; Badea, M.; Ioniță L.; Chifiriuc, M.C.; Rostas, A.M.; Bacalum, M.; Răileanu, M.; Ruţă L.L.; Farcaşanu, I.C.; Iorgulescu, E.E.; Olar, R. Insights into structure and biological activity of copper (II) and zinc (II) complexes with triazolopyrimidine ligands. Molecules, 2022, 27(3), 765.
[http://dx.doi.org/10.3390/molecules27030765]
[55]
Istanbullu, H.; Bayraktar, G.; Ozturk, I.; Coban, R.; Saylam, M. Design, synthesis and bioactivity studies of novel triazolopyrimidinone compounds. J Res Pharm., 2022, 26(1), 231-242.
[56]
Du, H.; Ding, M.; Luo, N.; Shi, J.; Huang, J.; Bao, X. Design, synthesis, crystal structure and in vitro antimicrobial activity of novel 1,2,4-triazolo[1,5-a]pyrimidine-containing quinazolinone derivatives. Mol. Divers., 2021, 25(2), 711-722.
[http://dx.doi.org/10.1007/s11030-020-10043-z]
[57]
Tee, E.H.L.; Karoli, T.; Ramu, S.; Huang, J.X.; Butler, M.S.; Cooper, M.A. Synthesis of essramycin and comparison of its antibacterial activity. J. Nat. Prod., 2010, 73(11), 1940-1942.
[http://dx.doi.org/10.1021/np100648q]
[58]
Wang, H.; Hesek, D.; Lee, M.; Lastochkin, E.; Oliver, A.G.; Chang, M.; Mobashery, S. The natural product essramycin and three of its isomers are devoid of antibacterial activity. J. Nat. Prod., 2016, 79(4), 1219-1222.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00057]
[59]
Seung, K.J.; Keshavjee, S.; Rich, M.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb. Perspect. Med., 2015, 5(9), a017863.
[http://dx.doi.org/10.1101/cshperspect.a017863]
[60]
Patil, V.; Kale, M.; Raichurkar, A.; Bhaskar, B.; Prahlad, D.; Balganesh, M.; Nandan, S.; Shahul Hameed, P. Design and synthesis of triazolopyrimidine acylsulfonamides as novel anti-mycobacterial leads acting through inhibition of acetohydroxyacid synthase. Bioorg. Med. Chem. Lett., 2014, 24(9), 2222-2225.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.054]
[61]
Fodor, E.; Smith, M. The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J. Virol., 2004, 78(17), 9144-9153.
[http://dx.doi.org/10.1128/JVI.78.17.9144-9153.2004]
[62]
Neumann, G.; Brownlee, G.G.; Fodor, E.; Kawaoka, Y. Orthomyxovirus replication, transcription, and polyadenylation. Curr. Top. Microbiol. Immunol., 2004, 283, 121-143.
[http://dx.doi.org/10.1007/978-3-662-06099-5_4]
[63]
Massari, S.; Nannetti, G.; Desantis, J.; Muratore, G.; Sabatini, S.; Manfroni, G.; Mercorelli, B.; Cecchetti, V.; Palù, G.; Cruciani, G.; Loregian, A.; Goracci, L.; Tabarrini, O. A broad anti-influenza hybrid small molecule that potently disrupts the interaction of polymerase acidic protein–basic protein 1 (PA-PB1) subunits. J. Med. Chem., 2015, 58(9), 3830-3842.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00012]
[64]
Massari, S.; Bertagnin, C.; Pismataro, M.C.; Donnadio, A.; Nannetti, G.; Felicetti, T.; Di Bona, S.; Nizi, M.G.; Tensi, L.; Manfroni, G.; Loza, M.I.; Sabatini, S.; Cecchetti, V.; Brea, J.; Goracci, L.; Loregian, A.; Tabarrini, O. Synthesis and characterization of 1,2,4-triazolo[1,5-a]pyrimidine-2-carboxamide-based compounds targeting the PA-PB1 interface of influenza A virus polymerase. Eur. J. Med. Chem., 2021, 209, 112944.
[http://dx.doi.org/10.1016/j.ejmech.2020.112944]
[65]
Pismataro, M.C.; Felicetti, T.; Bertagnin, C.; Nizi, M.G.; Bonomini, A.; Barreca, M.L.; Cecchetti, V.; Jochmans, D.; De Jonghe, S.; Neyts, J.; Loregian, A.; Tabarrini, O.; Massari, S. 1,2,4-triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors. Eur. J. Med. Chem., 2021, 221, 113494.
[http://dx.doi.org/10.1016/j.ejmech.2021.113494]
[66]
Beaumont, T.; van Nuenen, A.; Broersen, S.; Blattner, W.A.; Lukashov, V.V.; Schuitemaker, H. Reversal of human immunodeficiency virus type 1 IIIB to a neutralization-resistant phenotype in an accidentally infected laboratory worker with a progressive clinical course. J. Virol., 2001, 75(5), 2246-2252.
[http://dx.doi.org/10.1128/JVI.75.5.2246-2252.2001]
[67]
Doi, N.; Yokoyama, M.; Koma, T.; Kotani, O.; Sato, H.; Adachi, A.; Nomaguchi, M. Concomitant enhancement of HIV-1 replication potential and neutralization-resistance in concert with three adaptive mutations in Env V1/C2/C4 domains. Front. Microbiol., 2019, 10, 2.
[http://dx.doi.org/10.3389/fmicb.2019.00002]
[68]
Huang, B.; Kang, D.; Tian, Y.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Design, synthesis, and biological evaluation of piperidinyl‐substituted [1,2,4]triazolo[1,5‐a]pyrimidine derivatives as potential anti‐HIV‐1 agents with reduced cytotoxicity. Chem. Biol. Drug Des., 2021, 97(1), 67-76.
[http://dx.doi.org/10.1111/cbdd.13760]
[69]
Kamal, S.M. Hepatitis C treatment in the era of direct-acting antiviral agents: challenges in developing countries. Hepatitis C in Developing Countries: Current and Future Challenges; Elsevier: Amsterdam, 2018, pp. 209-246.
[70]
Wu, J.; Yao, N.; Walker, M.; Hong, Z. Recent advances in discovery and development of promising therapeutics against hepatitis C virus NS5B RNA-dependent RNA polymerase. Mini Rev. Med. Chem., 2005, 5(12), 1103-1112.
[http://dx.doi.org/10.2174/138955705774933310]
[71]
Singer, R.A.; Ragan, J.A.; Bowles, P.; Chisowa, E.; Conway, B.G.; Cordi, E.M.; Leeman, K.R.; Letendre, L.J.; Sieser, J.E.; Sluggett, G.W.; Stanchina, C.L.; Strohmeyer, H.; Blunt, J.; Taylor, S.; Byrne, C.; Lynch, D.; Mullane, S.; O’Sullivan, M.M.; Whelan, M. Synthesis of Filibuvir. Part I. Diastereoselective preparation of a β-Hydroxy alkynyl oxazolidinone and conversion to a 6,6-disubstituted 2H-pyranone. Org. Process Res. Dev., 2014, 18(1), 26-35.
[http://dx.doi.org/10.1021/op4002356]
[72]
Sharma, A.; Tiwari, S.; Deb, M.K.; Marty, J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int. J. Antimicrob. Agents, 2020, 56(2), 106054.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106054]
[73]
Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11727-11734.
[http://dx.doi.org/10.1073/pnas.2003138117]
[74]
Yin, W.; Mao, C.; Luan, X.; Shen, D.D.; Shen, Q.; Su, H.; Wang, X.; Zhou, F.; Zhao, W.; Gao, M.; Chang, S.; Xie, Y-C.; Tian, G.; Jiang, H-W.; Tao, S-C.; Shen, J.; Jiang, Y.; Jiang, H.; Xu, Y.; Zhang, S.; Zhang, Y.; Xu, H.E. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368(6498), 1499-1504.
[http://dx.doi.org/10.1126/science.abc1560]
[75]
Karthic, A.; Kesarwani, V.; Singh, R.K.; Yadav, P.K.; Chaturvedi, N.; Chauhan, P.; Yadav, B.S.; Kushwaha, S.K. Computational analysis reveals monomethylated triazolopyrimidine as a novel inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Molecules, 2022, 27(3), 801.
[http://dx.doi.org/10.3390/molecules27030801]
[76]
Giraud, F.; Guillon, R.; Logé, C.; Pagniez, F.; Picot, C.; Borgne, M.L.; Pape, P.L. Synthesis and structure–activity relationships of 2-phenyl-1-[(pyridinyl- and piperidinylmethyl)amino]-3-(1H-1,2,4-triazol-1-yl)propan-2-ols as antifungal agents. Bioorg. Med. Chem. Lett., 2009, 19(2), 301-304.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.101]
[77]
Masubuchi, M.; Ebiike, H.; Kawasaki, K.; Sogabe, S.; Morikami, K.; Shiratori, Y.; Tsujii, S.; Fujii, T.; Sakata, K.; Hayase, M.; Shindoh, H.; Aoki, Y.; Ohtsuka, T.; Shimma, N. Synthesis and biological activities of benzofuran antifungal agents targeting fungal N-myristoyltransferase. Bioorg. Med. Chem., 2003, 11(20), 4463-4478.
[http://dx.doi.org/10.1016/S0968-0896(03)00429-2]
[78]
Khabnadideh, S.; Rezaei, Z.; Pakshir, K.; Zomorodian, K.; Ghafari, N. Synthesis and antifungal activity of benzimidazole, benzotriazole and aminothiazole derivatives. Res. Pharm. Sci., 2012, 7(2), 65.
[79]
Said, A.B.; Rahmouni, A.; Daami-Ramadib, M.; Romdhane, A.; Janneta, H.B. Design and synthesis of new antimicrobial [1,2,4]triazolo [1,5-c]pyrimidines. J. tunisian Chem. Soc., 2017, 19, 94-104.
[80]
Amin, N.H.; El-Saadi, M.T.; Ibrahim, A.A.; Abdel-Rahman, H.M. Design, synthesis and mechanistic study of new 1,2,4-triazole derivatives as antimicrobial agents. Bioorg. Chem., 2021, 111, 104841.
[http://dx.doi.org/10.1016/j.bioorg.2021.104841]
[81]
Cohee, L.M.; Laufer, M.K. Malaria in children. Pediatr. Clin., 2017, 64(4), 851-866.
[82]
Phillips, M.A.; Rathod, P.K. Plasmodium dihydroorotate dehydrogenase: a promising target for novel anti-malarial chemotherapy. Infect. Disord. Drug Targets, 2010, 10(3), 226-239.
[http://dx.doi.org/10.2174/187152610791163336]
[83]
Chu, X.M.; Wang, C.; Wang, W.L.; Liang, L.L.; Liu, W.; Gong, K.K.; Sun, K.L. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2019, 166, 206-223.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.047]
[84]
Phillips, M.A.; Lotharius, J.; Marsh, K.; White, J.; Dayan, A.; White, K.L.; Njoroge, J.W.; El Mazouni, F.; Lao, Y.; Kokkonda, S.; Tomchick, D.R.; Deng, X.; Laird, T.; Bhatia, S.N.; March, S.; Ng, C.L.; Fidock, D.A.; Wittlin, S.; Lafuente-Monasterio, M.; Benito, F.J.G.; Alonso, L.M.S.; Martinez, M.S.; Jimenez-Diaz, M.B.; Bazaga, S.F.; Angulo-Barturen, I.; Haselden, J.N.; Louttit, J.; Cui, Y.; Sridhar, A.; Zeeman, A.M.; Kocken, C.; Sauerwein, R.; Dechering, K.; Avery, V.M.; Duffy, S.; Delves, M.; Sinden, R.; Ruecker, A.; Wickham, K.S.; Rochford, R.; Gahagen, J.; Iyer, L.; Riccio, E.; Mirsalis, J.; Bathhurst, I.; Rueckle, T.; Ding, X.; Campo, B.; Leroy, D.; Rogers, M.J.; Rathod, P.K.; Burrows, J.N.; Charman, S.A. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci. Transl. Med., 2015, 7(296), 296ra111.
[http://dx.doi.org/10.1126/scitranslmed.aaa6645]
[85]
Boechat, N.; Pinheiro, L.C.S.; Silva, T.S.; Aguiar, A.C.C.; Carvalho, A.S.; Bastos, M.M.; Costa, C.C.P.; Pinheiro, S.; Pinto, A.C.; Mendonça, J.S.; Dutra, K.D.B.; Valverde, A.L.; Santos-Filho, O.A.; Ceravolo, I.P.; Krettli, A.U. New trifluoromethyl triazolopyrimidines as anti-Plasmodium falciparum agents. Molecules, 2012, 17(7), 8285-8302.
[http://dx.doi.org/10.3390/molecules17078285]
[86]
Gujjar, R.; Marwaha, A.; El Mazouni, F.; White, J.; White, K.L.; Creason, S.; Shackleford, D.M.; Baldwin, J.; Charman, W.N.; Buckner, F.S.; Charman, S.; Rathod, P.K.; Phillips, M.A. Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J. Med. Chem., 2009, 52(7), 1864-1872.
[http://dx.doi.org/10.1021/jm801343r]
[87]
Silveira, F.F.; de Souza, J.O.; Hoelz, L.V.B.; Campos, V.R.; Jabor, V.A.P.; Aguiar, A.C.C.; Nonato, M.C.; Albuquerque, M.G.; Guido, R.V.C.; Boechat, N.; Pinheiro, L.C.S. Comparative study between the anti-P. falciparum activity of triazolopyrimidine, pyrazolopyrimidine and quinoline derivatives and the identification of new PfDHODH inhibitors. Eur. J. Med. Chem., 2021, 209, 112941.
[http://dx.doi.org/10.1016/j.ejmech.2020.112941]
[88]
Relitti, N.; Federico, S.; Pozzetti, L.; Butini, S.; Lamponi, S.; Taramelli, D.; D’Alessandro, S.; Martin, R.E.; Shafik, S.H.; Summers, R.L.; Babij, S.K.; Habluetzel, A.; Tapanelli, S.; Caldelari, R.; Gemma, S.; Campiani, G. Synthesis and biological evaluation of benzhydryl-based antiplasmodial agents possessing Plasmodium falciparum chloroquine resistance transporter (PfCRT) inhibitory activity. Eur. J. Med. Chem., 2021, 215, 113227.
[http://dx.doi.org/10.1016/j.ejmech.2021.113227]
[89]
Pavadai, E.; El Mazouni, F.; Wittlin, S.; de Kock, C.; Phillips, M.A.; Chibale, K. Identification of new human malaria parasite Plasmodium falciparum dihydroorotate dehydrogenase inhibitors by pharmacophore and structure-based virtual screening. J. Chem. Inf. Model., 2016, 56(3), 548-562.
[http://dx.doi.org/10.1021/acs.jcim.5b00680]
[90]
Boller, F.; Forette, F. Alzheimer’s disease and THA: a review of the cholinergic theory and of preliminary results. Biomed. Pharmacother., 1989, 43(7), 487-491.
[http://dx.doi.org/10.1016/0753-3322(89)90109-1]
[91]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70.
[http://dx.doi.org/10.1111/ene.13439]
[92]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726]
[93]
Kumar, J.; Gill, A.; Shaikh, M.; Singh, A.; Shandilya, A.; Jameel, E.; Sharma, N.; Mrinal, N.; Hoda, N.; Jayaram, B. Pyrimidine-triazolopyrimidine and pyrimidine-pyridine hybrids as potential acetylcholinesterase inhibitors for Alzheimer’s disease. ChemistrySelect, 2018, 3(2), 736-747.
[http://dx.doi.org/10.1002/slct.201702599]
[94]
Bahbah, E.I.; Ghozy, S.; Attia, M.S.; Negida, A.; Emran, T.B.; Mitra, S.; Albadrani, G.M.; Abdel-Daim, M.M.; Uddin, M.S.; Simal-Gandara, J. Molecular mechanisms of astaxanthin as a potential neurotherapeutic agent. Mar. Drugs, 2021, 19(4), 201.
[http://dx.doi.org/10.3390/md19040201]
[95]
Alonso, A.D.; Cohen, L.S.; Corbo, C.; Morozova, V.; ElIdrissi, A.; Phillips, G.; Kleiman, F.E. Hyperphosphorylation of tau associates with changes in its function beyond microtubule stability. Front. Cell. Neurosci., 2018, 12, 338.
[http://dx.doi.org/10.3389/fncel.2018.00338]
[96]
Soliman, H.M.; Ghonaim, G.A.; Gharib, S.M.; Chopra, H.; Farag, A.K.; Hassanin, M.H.; Nagah, A.; Emad-Eldin, M.; Hashem, N.E.; Yahya, G.; Emam, S.E.; Hassan, A.E.A.; Attia, M.S. Exosomes in Alzheimer’s disease: From being pathological players to potential diagnostics and therapeutics. Int. J. Mol. Sci., 2021, 22(19), 10794.
[http://dx.doi.org/10.3390/ijms221910794]
[97]
Lou, K.; Yao, Y.; Hoye, A.T.; James, M.J.; Cornec, A.S.; Hyde, E.; Gay, B.; Lee, V.M.Y.; Trojanowski, J.Q.; Smith, A.B., III; Brunden, K.R.; Ballatore, C. Brain-penetrant, orally bioavailable microtubule-stabilizing small molecules are potential candidate therapeutics for Alzheimer’s disease and related tauopathies. J. Med. Chem., 2014, 57(14), 6116-6127.
[http://dx.doi.org/10.1021/jm5005623]
[98]
Oukoloff, K.; Nzou, G.; Varricchio, C.; Lucero, B.; Alle, T.; Kovalevich, J.; Monti, L.; Cornec, A.S.; Yao, Y.; James, M.J.; Trojanowski, J.Q.; Lee, V.M.Y.; Smith, A.B., III; Brancale, A.; Brunden, K.R.; Ballatore, C. Evaluation of the structure–activity relationship of microtubule-targeting 1,2,4-triazolo[1,5-a]pyrimidines identifies new candidates for neurodegenerative tauopathies. J. Med. Chem., 2021, 64(2), 1073-1102.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01605]
[99]
Aisen, P.S. The development of anti-amyloid therapy for Alzheimer’s disease. CNS Drugs, 2005, 19(12), 989-996.
[http://dx.doi.org/10.2165/00023210-200519120-00002]
[100]
Sturchio, A.; Dwivedi, A.K.; Young, C.B.; Malm, T.; Marsili, L.; Sharma, J.S.; Mahajan, A.; Hill, E.J.; Andaloussi, S.E.L.; Poston, K.L.; Manfredsson, F.P.; Schneider, L.S.; Ezzat, K.; Espay, A.J. High cerebrospinal amyloid-β 42 is associated with normal cognition in individuals with brain amyloidosis. EClinicalMedicine, 2021, 38, 100988.
[http://dx.doi.org/10.1016/j.eclinm.2021.100988]
[101]
Gouwens, L.K.; Makoni, N.J.; Rogers, V.A.; Nichols, M.R. Amyloid-β42 protofibrils are internalized by microglia more extensively than monomers. Brain Res., 2016, 1648, 485-495.
[http://dx.doi.org/10.1016/j.brainres.2016.08.016]
[102]
Lee, C.Y.D.; Landreth, G.E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. (Vienna), 2010, 117(8), 949-960.
[http://dx.doi.org/10.1007/s00702-010-0433-4]
[103]
Song, F.; Xia, L.; Ji, P.; Tang, Y.; Huang, Z.; Zhu, L.; Zhang, J.; Wang, J.; Zhao, G.; Ge, H.; Zhang, Y.; Wang, Y. Human dCTP pyrophosphatase 1 promotes breast cancer cell growth and stemness through the modulation on 5-methyl-dCTP metabolism and global hypomethylation. Oncogenesis, 2015, 4(6), e159-e159.
[http://dx.doi.org/10.1038/oncsis.2015.10]
[104]
Llona-Minguez, S.; Häggblad, M.; Martens, U.; Throup, A.; Loseva, O.; Jemth, A.S.; Lundgren, B.; Scobie, M.; Helleday, T. Diverse heterocyclic scaffolds as dCTP pyrophosphatase 1 inhibitors. Part 1: Triazoles, triazolopyrimidines, triazinoindoles, quinoline hydrazones and arylpiperazines. Bioorg. Med. Chem. Lett., 2017, 27(16), 3897-3904.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.038]
[105]
Timaxian, C.; Vogel, C.F.A.; Orcel, C.; Vetter, D.; Durochat, C.; Chinal, C. NGuyen, P.; Aknin, M.L.; Mercier-Nomé, F.; Davy, M.; Raymond-Letron, I.; Van, T-N-N.; Diermeier, S.D.; Godefroy, A.; Gary-Bobo, M.; Molina, F.; Balabanian, K.; Lazennec, G. Pivotal role for Cxcr2 in regulating tumor-associated neutrophil in breast cancer. Cancers (Basel), 2021, 13(11), 2584.
[http://dx.doi.org/10.3390/cancers13112584]
[106]
Cheng, Y.; Mo, F.; Li, Q.; Han, X.; Shi, H.; Chen, S.; Wei, Y.; Wei, X. Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin. Mol. Cancer, 2021, 20(1), 62.
[http://dx.doi.org/10.1186/s12943-021-01355-1]
[107]
Hassan, G.S.; El-Sherbeny, M.A.; El-Ashmawy, M.B.; Bayomi, S.M.; Maarouf, A.R.; Badria, F.A. Synthesis and antitumor testing of certain new fused triazolopyrimidine and triazoloquinazoline derivatives. Arab. J. Chem., 2017, 10, S1345-S1355.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.002]
[108]
Haider, K.; Rahaman, S.; Yar, M.S.; Kamal, A. Tubulin inhibitors as novel anticancer agents: an overview on patents (2013-2018). Expert Opin. Ther. Pat., 2019, 29(8), 623-641.
[http://dx.doi.org/10.1080/13543776.2019.1648433]
[109]
Tangutur, A.D.; Kumar, D.; Krishna, K.V.; Kantevari, S. Microtubule targeting agents as cancer chemotherapeutics: an overview of molecular hybrids as stabilizing and destabilizing agents. Curr. Top. Med. Chem., 2017, 17(22), 2523-2537.
[http://dx.doi.org/10.2174/1568026617666170104145640]
[110]
Shang, H.; Pan, L.; Yang, S.; Chen, H.; Cheng, M. Progress in the study of tubulin inhibitors. Yao Xue Xue Bao, 2010, 45(9), 1078-1088.
[111]
Oukoloff, K.; Kovalevich, J.; Cornec, A.S.; Yao, Y.; Owyang, Z.A.; James, M.; Trojanowski, J.Q.; Lee, V.M.Y.; Smith, A.B., III; Brunden, K.R.; Ballatore, C. Design, synthesis and evaluation of photoactivatable derivatives of microtubule (MT)-active [1,2,4]triazolo[1,5-a]pyrimidines. Bioorg. Med. Chem. Lett., 2018, 28(12), 2180-2183.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.010]
[112]
Oliva, P.; Romagnoli, R.; Cacciari, B.; Manfredini, S.; Padroni, C.; Brancale, A.; Ferla, S.; Hamel, E.; Corallo, D.; Aveic, S.; Milan, N.; Mariotto, E.; Viola, G.; Bortolozzi, R. Synthesis and biological evaluation of highly active 7-Anilino triazolopyrimidines as potent antimicrotubule agents. Pharmaceutics, 2022, 14(6), 1191.
[http://dx.doi.org/10.3390/pharmaceutics14061191]
[113]
Huo, X.S.; Jian, X.E.; Ou-Yang, J.; Chen, L.; Yang, F.; Lv, D.X.; You, W.W.; Rao, J.J.; Zhao, P.L. Discovery of highly potent tubulin polymerization inhibitors: Design, synthesis, and structure-activity relationships of novel 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidines. Eur. J. Med. Chem., 2021, 220, 113449.
[http://dx.doi.org/10.1016/j.ejmech.2021.113449]
[114]
Mohamed, H.S.; Amin, N.H.; El-Saadi, M.T.; Abdel-Rahman, H.M. Design, synthesis, biological assessment, and in-silico studies of 1,2,4-triazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors. Bioorg. Chem., 2022, 121, 105687.
[http://dx.doi.org/10.1016/j.bioorg.2022.105687]
[115]
Xu, T.; Wang, Z.; Liu, J.; Wang, G.; Zhou, D.; Du, Y.; Li, X.; Xia, Y.; Gao, Q. Cyclin-dependent kinase inhibitors function as potential immune regulators via inducing pyroptosis in triple negative breast cancer. Front. Oncol., 2022, 12, 820696.
[http://dx.doi.org/10.3389/fonc.2022.820696]
[116]
Tadesse, S.; Anshabo, A.T.; Portman, N.; Lim, E.; Tilley, W.; Caldon, C.E.; Wang, S. Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discov. Today, 2020, 25(2), 406-413.
[http://dx.doi.org/10.1016/j.drudis.2019.12.001]
[117]
Bower, J.; Cansfield, A.; Jordan, A.; Parratt, M.; Walmsley, L.; Williamson, D. Triazolo'1, 5-A! Pyrimidines and their use in medicine. WO Patent 2014108136A1, 2004.
[118]
Richardson, C.M.; Williamson, D.S.; Parratt, M.J.; Borgognoni, J.; Cansfield, A.D.; Dokurno, P.; Francis, G.L.; Howes, R.; Moore, J.D.; Murray, J.B.; Robertson, A.; Surgenor, A.E.; Torrance, C.J. Triazolo[1,5-a]pyrimidines as novel CDK2 inhibitors: Protein structure-guided design and SAR. Bioorg. Med. Chem. Lett., 2006, 16(5), 1353-1357.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.048]
[119]
Binju, M.; Amaya-Padilla, M.A.; Wan, G.; Gunosewoyo, H.; Suryo Rahmanto, Y.; Yu, Y. Therapeutic inducers of apoptosis in ovarian cancer. Cancers (Basel), 2019, 11(11), 1786.
[http://dx.doi.org/10.3390/cancers11111786]
[120]
Chaudhry, G.S.; Md Akim, A.; Sung, Y.Y.; Sifzizul, T.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front. Pharmacol., 2022, 13, 842376.
[http://dx.doi.org/10.3389/fphar.2022.842376]
[121]
Kamal, R.; Kumar, V.; Kumar, R.; Bhardwaj, J.K.; Saraf, P.; Kumari, P.; Bhardwaj, V. Design, synthesis, and screening of triazolopyrimidine-pyrazole hybrids as potent apoptotic inducers. Arch. Pharm. (Weinheim), 2017, 350(11), 1700137.
[http://dx.doi.org/10.1002/ardp.201700137]
[122]
Huo, J.L.; Wang, S.; Yuan, X.H.; Yu, B.; Zhao, W.; Liu, H.M. Discovery of [1,2,4]triazolo[1,5-a]pyrimidines derivatives as potential anticancer agents. Eur. J. Med. Chem., 2021, 211, 113108.
[http://dx.doi.org/10.1016/j.ejmech.2020.113108]
[123]
Kankanala, J.; Ribeiro, C.J.A.; Kiselev, E.; Ravji, A.; Williams, J.; Xie, J.; Aihara, H.; Pommier, Y.; Wang, Z. Novel deazaflavin analogues potently inhibited tyrosyl DNA phosphodiesterase 2 (TDP2) and strongly sensitized cancer cells toward treatment with topoisomerase II (TOP2) poison etoposide. J. Med. Chem., 2019, 62(9), 4669-4682.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00274]
[124]
Ribeiro, C.J.A.; Kankanala, J.; Xie, J.; Williams, J.; Aihara, H.; Wang, Z. Triazolopyrimidine and triazolopyridine scaffolds as TDP2 inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(2), 257-261.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.044]
[125]
El-Sayed, W. A.; Mohamed, A. M.; Khalaf, H. S.; Al-Manawaty, M. Synthesis, docking studies and anticancer activity of new substituted pyrimidine and triazolopyrimidine glycosides. J. Appl. Pharm. Sci., 2017, 7(09), 001-011.
[126]
Cieślak, M.; Komoszyński, M.; Wojtczak, A.; Adenosine, A. Adenosine A2A receptors in Parkinson’s disease treatment. Purinergic Signal., 2008, 4(4), 305-312.
[http://dx.doi.org/10.1007/s11302-008-9100-8]
[127]
Rosin, D.L.; Hettinger, B.D.; Lee, A.; Linden, J. Anatomy of adenosine A2A receptors in brain: Morphological substrates for integration of striatal function. Neurology, 2003, 61(11, Supplement 6)(Suppl. 6), S12-S18.
[http://dx.doi.org/10.1212/01.WNL.0000095205.33940.99]
[128]
Mori, A.; Chen, J.F.; Uchida, S.; Durlach, C.; King, S.M.; Jenner, P. The pharmacological potential of adenosine A2A receptor antagonists for treating Parkinson’s Disease. Molecules, 2022, 27(7), 2366.
[http://dx.doi.org/10.3390/molecules27072366]
[129]
Svenningsson, P.; Le Moine, C.; Fisone, G.; Fredholm, B.B. Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog. Neurobiol., 1999, 59(4), 355-396.
[http://dx.doi.org/10.1016/S0301-0082(99)00011-8]
[130]
Vu, C.B.; Shields, P.; Peng, B.; Kumaravel, G.; Jin, X.; Phadke, D.; Wang, J.; Engber, T.; Ayyub, E.; Petter, R.C. Triamino derivatives of triazolotriazine and triazolopyrimidine as adenosine A2a receptor antagonists. Bioorg. Med. Chem. Lett., 2004, 14(19), 4835-4838.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.048]
[131]
Tang, M.L.; Wen, Z.H.; Wang, J.H.; Wang, M.L.; Zhang, H.; Liu, X.H.; Jin, L.; Chang, J. Discovery of pyridone-substituted triazolopyrimidine dual A2A/A1 AR antagonists for the treatment of ischemic stroke. ACS Med. Chem. Lett., 2022, 13(3), 436-442.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00599]
[132]
Scozzafava, A.; Supuran, C.T. Glaucoma and the applications of carbonic anhydrase inhibitors. Subcell. Biochem., 2014, 75, 349-359.
[http://dx.doi.org/10.1007/978-94-007-7359-2_17]
[133]
Wistrand, P.J. Carbonic anhydrase in the anterior urea of the rabbit. Acta Physiol. Scand., 1951, 24(2-3), 144-148.
[http://dx.doi.org/10.1111/j.1748-1716.1951.tb00833.x]
[134]
Kinsey, V.E.; Reddy, D.V.N.; Aitken, I.; Carter, R. Turnover of total carbon dioxide in the aqueous humors and the effect thereon of acetazolamide. Arch. Ophthalmol., 1959, 62(1), 78-83.
[http://dx.doi.org/10.1001/archopht.1959.04220010082009]
[135]
Marchalant, Y.; Rosi, S.; Wenk, G.L. Anti-inflammatory property of the cannabinoid agonist WIN-55212-2 in a rodent model of chronic brain inflammation. Neuroscience, 2007, 144(4), 1516-1522.
[http://dx.doi.org/10.1016/j.neuroscience.2006.11.016]
[136]
Capozzi, A.; Caissutti, D.; Mattei, V.; Gado, F.; Martellucci, S.; Longo, A.; Recalchi, S.; Manganelli, V.; Riitano, G.; Garofalo, T.; Sorice, M.; Manera, C.; Misasi, R. Anti-inflammatory activity of a cb2 selective cannabinoid receptor agonist: Signaling and cytokines release in blood mononuclear cells. Molecules, 2021, 27(1), 64.
[http://dx.doi.org/10.3390/molecules27010064]
[137]
Yakovlev, D.S.; Vassiliev, P.M.; Agatsarskaya, Y.V.; Brigadirova, A.A.; Sultanova, K.T.; Skripka, M.O.; Spasov, A.A.; Savateev, K.V.; Rusinov, V.L.; Maltsev, D.V. Searching for novel antagonists of adenosine A1 receptors among azolo[1,5-a]pyrimidine nitro derivatives. Res. Results Pharmacol., 2022, 8(2), 69-75.
[http://dx.doi.org/10.3897/rrpharmacology.8.77854]
[138]
Bayazeed, A.A.; Alnoman, R.B. Synthesis of polyheterocyclic ring systems included triazolo[1,5-a]pyrimidine as antioxidant agents. Polycycl. Aromat. Compd., 2022, 42(3), 735-748.
[http://dx.doi.org/10.1080/10406638.2020.1750042]
[139]
Wadwale, N.B.; Prasad, D.; Jadhav, A.H.; Karad, A.R.; Khansole, G.S.; Choudhare, S.S.; Navhate, S.V.; Bhosale, V.N. Synthetic development and assessment of antioxidant activity of imino[1,2,4]triazolo[1,5-a]pyrimidine-6-carbo-nitrile and its derivatives. Russ. J. Org. Chem., 2021, 57(12), 2031-2038.
[http://dx.doi.org/10.1134/S1070428021120204]
[140]
Beaulieu, P.L. Filibuvir, a non-nucleoside NS5B polymerase inhibitor for the potential oral treatment of chronic HCV infection. IDrugs, 2010, 13(12), 938-948.
[141]
Harder, S.; Thürmann, P.A.; Hellstern, A.; Benjaminov, A. Pharmacokinetics of trapidil, an antagonist of platelet derived growth factor, in healthy subjects and in patients with liver cirrhosis. Br. J. Clin. Pharmacol., 1996, 42(4), 443-449.
[http://dx.doi.org/10.1111/j.1365-2125.1996.tb00006.x]
[142]
Minoru, O.; Makoto, S.; Kawamura, Y.; Kasai, S.; Iwasa, A. Sustained-release trapidil tablet. WO Patent 199300781 A1, 1993.
[143]
Musumeci, T.; Ventura, C.A.; Giannone, I.; Ruozi, B.; Montenegro, L.; Pignatello, R.; Puglisi, G. PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm., 2006, 325(1-2), 172-179.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.023]
[144]
Prado, L.B.; Huber, S.C.; Barnabé, A.; Bassora, F.D.S.; Paixão, D.S.; Duran, N.; Annichino-Bizzacchi, J.M. Characterization of pcl and chitosan nanoparticles as carriers of enoxaparin and its antithrombotic effect in animal models of venous thrombosis. J. Nanotechnol., 2017, 2017, 4925495.
[http://dx.doi.org/10.1155/2017/4925495]
[145]
Alex, A.T.; Joseph, A.; Shavi, G.; Rao, J.V.; Udupa, N. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv., 2016, 23(7), 2144-2153.
[http://dx.doi.org/10.3109/10717544.2014.948643]
[146]
Lin, Y.; Wan, Y.; Du, X.; Li, J.; Wei, J.; Li, T.; Li, C.; Liu, Z.; Zhou, M.; Zhong, Z. TAT-modified serum albumin nanoparticles for sustained-release of tetramethylpyrazine and improved targeting to spinal cord injury. J. Nanobiotechnology, 2021, 19(1), 28.
[http://dx.doi.org/10.1186/s12951-020-00766-4]
[147]
Larsen, M.T.; Kuhlmann, M.; Hvam, M.L.; Howard, K.A. Albumin-based drug delivery: harnessing nature to cure disease. Mol. Cell. Ther., 2016, 4(1), 3.
[http://dx.doi.org/10.1186/s40591-016-0048-8]
[148]
Yu, Z.; Yu, M.; Zhang, Z.; Hong, G.; Xiong, Q. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Res. Lett., 2014, 9(1), 343.
[http://dx.doi.org/10.1186/1556-276X-9-343]
[149]
Barbosa, R.D.M.; Ribeiro, L.N.M.; Casadei, B.R.; da Silva, C.M.G.; Queiróz, V.A.; Duran, N.; de Araújo, D.R.; Severino, P.; de Paula, E. Solid lipid nanoparticles for dibucaine sustained release. Pharmaceutics, 2018, 10(4), 231.
[150]
Mu, H.; Wang, Y.; Chu, Y.; Jiang, Y.; Hua, H.; Chu, L.; Wang, K.; Wang, A.; Liu, W.; Li, Y.; Fu, F.; Sun, K. Multivesicular liposomes for sustained release of bevacizumab in treating laser-induced choroidal neovascularization. Drug Deliv., 2018, 25(1), 1372-1383.
[http://dx.doi.org/10.1080/10717544.2018.1474967]
[151]
Kalepu, S.; Manthina, M.; Padavala, V. Oral lipid-based drug delivery systems – an overview. Acta Pharm. Sin. B, 2013, 3(6), 361-372.
[http://dx.doi.org/10.1016/j.apsb.2013.10.001]
[152]
Luo, Y.; Wang, Q. Zein-based micro- and nano-particles for drug and nutrient delivery: A review. J. Appl. Polym. Sci., 2014, 131(16), 40696.
[http://dx.doi.org/10.1002/app.40696]
[153]
Gong, S.J.; Sun, S.X.; Sun, Q.S.; Wang, J.Y.; Liu, X.M.; Liu, G.Y. Tablets based on compressed zein microspheres for sustained oral administration: design, pharmacokinetics, and clinical study. J. Biomater. Appl., 2011, 26(2), 195-208.
[http://dx.doi.org/10.1177/0885328210363504]
[154]
Elsadek, N.E.; Nagah, A.; Ibrahim, T.M.; Chopra, H.; Ghonaim, G.A.; Emam, S.E.; Cavalu, S.; Attia, M.S. Electrospun nanofibers revisited: An update on the emerging applications in nanomedicine. Materials (Basel), 2022, 15(5), 1934.
[http://dx.doi.org/10.3390/ma15051934]
[155]
Laha, A.; Gaydhane, M.K.; Sharma, C.S.; Majumdar, S. Compressed nanofibrous oral tablets: An ingenious way for controlled release kinetics of Amphotericin-B loaded gelatin nanofibers. Nano-Struct. Nano-Objects, 2019, 19, 100367.
[http://dx.doi.org/10.1016/j.nanoso.2019.100367]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy