Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Nanodiamond Mediated Molecular Targeting in Pancreatic Ductal Adenocarcinoma: Disrupting the Tumor-stromal Cross-talk, Next Hope on the Horizon?

Author(s): Mohini Singh*, Paulami Pal, Rajat Subhra Dutta, Daphisha Marbaniang, Subhabrata Ray and Bhaskar Mazumder

Volume 23, Issue 8, 2023

Published on: 07 April, 2023

Page: [620 - 633] Pages: 14

DOI: 10.2174/1568009623666230227120837

Price: $65

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the foremost causes of cancer-related morbidities worldwide. Novel nanotechnology-backed drug delivery stratagems, including molecular targeting of the chemotherapeutic payload, have been considered. However, no quantum leap in the gross survival rate of patients with PDAC has been realized. One of the predominant causes behind this is tumor desmoplasia, a dense and heterogenous stromal extracellular matrix of the tumor, aptly termed tumor microenvironment (TME). It plays a pivotal role in the tumor pathogenesis of PDAC as it occupies most of the tumor mass, making PDAC one of the most stromal-rich cancers. The complex crosstalk between the tumor and dynamic components of the TME impacts tumor progression and poses a potential barrier to drug delivery. Understanding and deciphering the complex cascade of tumorstromal interactions are the need of the hour so that we can develop neoteric nano-carriers to disrupt the stroma and target the tumor. Nanodiamonds (NDs), due to their unique surface characteristics, have emerged as a promising nano delivery system in various pre-clinical cancer models and have the potential to deliver the chemotherapeutic payload by moving beyond the dynamic tumor-stromal barrier. It can be the next revolution in nanoparticle-mediated pancreatic cancer targeting.

Keywords: Pancreatic ductal adenocarcinoma, stroma, pancreatic stellate cells, cancer associated fibroblasts, molecular targeting, nanodiamonds, desmoplasia.

Graphical Abstract
[1]
Muñoz, A.R.; Chakravarthy, D.; Gong, J.; Halff, G.A.; Ghosh, R.; Kumar, A.P. Pancreatic cancer: Current status and challenges. Curr. Pharmacol. Rep., 2017, 3(6), 396-408.
[http://dx.doi.org/10.1007/s40495-017-0112-3] [PMID: 29404265]
[2]
Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol., 2016, 22(44), 9694-9705.
[http://dx.doi.org/10.3748/wjg.v22.i44.9694] [PMID: 27956793]
[3]
Ansari, D.; Tingstedt, B.; Andersson, B.; Holmquist, F.; Sturesson, C.; Williamsson, C.; Sasor, A.; Borg, D.; Bauden, M.; Andersson, R. Pancreatic cancer: Yesterday, today and tomorrow. Future Oncol., 2016, 12(16), 1929-1946.
[http://dx.doi.org/10.2217/fon-2016-0010] [PMID: 27246628]
[4]
McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol., 2018, 24(43), 4846-4861.
[http://dx.doi.org/10.3748/wjg.v24.i43.4846] [PMID: 30487695]
[5]
Hruban, R.H.; Goggins, M.; Parsons, J.; Kern, S.E. Progression model for pancreatic cancer. Clin. Cancer Res., 2000, 6(8), 2969-2972.
[PMID: 10955772]
[6]
Zhu, Z.; Xiao, S.; Hao, H.; Hou, Q.; Fu, X. Kirsten rat sarcoma viral oncogene homologue (KRAS) mutations in the occurrence and treatment of pancreatic cancer. Curr. Top. Med. Chem., 2019, 19(23), 2176-2186.
[http://dx.doi.org/10.2174/1568026619666190828160804] [PMID: 31456520]
[7]
Sikdar, N.; Saha, G.; Dutta, A.; Ghosh, S.; Shrikhande, S.V.; Banerjee, S. Genetic alterations of periampullary and pancreatic ductal adenocarcinoma: An overview. Curr. Genomics, 2018, 19(6), 444-463.
[http://dx.doi.org/10.2174/1389202919666180221160753] [PMID: 30258276]
[8]
Cicenas, J.; Kvederaviciute, K.; Meskinyte, I.; Meskinyte-Kausiliene, E; Skeberdyte, A.; Cicenas, J. KRAS, TP53, CDKN2A, SMAD4, BRCA1, and BRCA2 mutations in pancreatic cancer. Cancers (Basel), 2017, 9(5), 42.
[http://dx.doi.org/10.3390/cancers9050042]
[9]
Delpu, Y.; Hanoun, N.; Lulka, H.; Sicard, F.; Selves, J.; Buscail, L.; Torrisani, J.; Cordelier, P. Genetic and epigenetic alterations in pancreatic carcinogenesis. Curr. Genomics, 2011, 12(1), 15-24.
[http://dx.doi.org/10.2174/138920211794520132] [PMID: 21886451]
[10]
Pipinikas, C.P.; Berner, A.M.; Sposito, T.; Thirlwell, C. The evolving (epi)genetic landscape of pancreatic neuroendocrine tumours. Endocr. Relat. Cancer, 2019, 26(9), R519-R544.
[http://dx.doi.org/10.1530/ERC-19-0175] [PMID: 31252410]
[11]
Timar, J.; Kashofer, K. Molecular epidemiology and diagnostics of KRAS mutations in human cancer. Cancer Metastasis Rev., 2020, 39(4), 1029-1038.
[http://dx.doi.org/10.1007/s10555-020-09915-5] [PMID: 32725342]
[12]
Khorana, A.A.; Mangu, P.B.; Berlin, J.; Engebretson, A.; Hong, T.S.; Maitra, A.; Mohile, S.G.; Mumber, M.; Schulick, R.; Shapiro, M.; Urba, S.; Zeh, H.J.; Katz, M.H.G. Potentially curable pancreatic cancer: American society of clinical oncology clinical practice guideline. J. Clin. Oncol., 2016, 34(21), 2541-2556.
[http://dx.doi.org/10.1200/JCO.2016.67.5553] [PMID: 27247221]
[13]
Buanes, T.A. Pancreatic cancer-improved care achievable. World J. Gastroenterol., 2014, 20(30), 10405-10418.
[http://dx.doi.org/10.3748/wjg.v20.i30.10405] [PMID: 25132756]
[14]
Petrelli, F.; Coinu, A.; Borgonovo, K.; Cabiddu, M.; Ghilardi, M.; Lonati, V.; Aitini, E.; Barni, S. FOLFIRINOX-based neoadjuvant therapy in borderline resectable or unresectable pancreatic cancer: A meta-analytical review of published studies. Pancreas, 2015, 44(4), 515-521.
[http://dx.doi.org/10.1097/MPA.0000000000000314] [PMID: 25872127]
[15]
Hackert, T.; Sachsenmaier, M.; Hinz, U.; Schneider, L.; Michalski, C.W.; Springfeld, C.; Strobel, O.; Jäger, D.; Ulrich, A.; Büchler, M.W. Locally advanced pancreatic cancer. Ann. Surg., 2016, 264(3), 457-463.
[http://dx.doi.org/10.1097/SLA.0000000000001850]
[16]
Sohal, D.P.S.; Mangu, P.B.; Khorana, A.A.; Shah, M.A.; Philip, P.A.; O’Reilly, E.M.; Uronis, H.E.; Ramanathan, R.K.; Crane, C.H.; Engebretson, A.; Ruggiero, J.T.; Copur, M.S.; Lau, M.; Urba, S.; Laheru, D. Metastatic pancreatic cancer: American society of clinical oncology clinical practice guideline. J. Clin. Oncol., 2016, 34, 2784-2796.
[17]
Mangge, H.; Niedrist, T.; Renner, W.; Lyer, S.; Alexiou, C.; Haybaeck, J. New diagnostic and therapeutic aspects of pancreatic ductal adenocarcinoma. Curr. Med. Chem., 2017, 24(28), 3012-3024.
[http://dx.doi.org/10.2174/0929867324666170510150124] [PMID: 28494747]
[18]
Zavoral, M.; Minarikova, P.; Zavada, F.; Salek, C.; Minarik, M. Molecular biology of pancreatic cancer. World J. Gastroenterol., 2011, 17(24), 2897-2908.
[http://dx.doi.org/10.3748/wjg.v17.i24.2897] [PMID: 21734801]
[19]
Goel, G.; Sun, W. Novel approaches in the management of pancreatic ductal adenocarcinoma: Potential promises for the future. J. Hematol. Oncol., 2015, 8(1), 44.
[http://dx.doi.org/10.1186/s13045-015-0141-5] [PMID: 25935754]
[20]
Karanikas, M.; Esempidis, A.; Chasan, Z.T.M.; Deftereou, T.; Antonopoulou, M.; Bozali, F.; Amarantidis, K.; Man, Y.G. Pancreatic cancer from molecular pathways to treatment opinion. J. Cancer, 2016, 7(10), 1328-1339.
[http://dx.doi.org/10.7150/jca.15419] [PMID: 27390608]
[21]
USFDA. Pancreatic cancer tgerapy. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs
[22]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[23]
Sohal, D.P.S.; Mangu, P.B.; Laheru, D. Metastatic pancreatic cancer: American society of clinical oncology clinical practice guideline summary. J. Oncol. Pract., 2017, 13(4), 261-264.
[http://dx.doi.org/10.1200/JOP.2016.017368] [PMID: 28399388]
[24]
Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and response criteria of the Eastern cooperative oncology group. Am. J. Clin. Oncol., 1982, 5(6), 649-656.
[http://dx.doi.org/10.1097/00000421-198212000-00014] [PMID: 7165009]
[25]
Wang-Gillam, A.; Hubner, R.A.; Siveke, J.T.; Von Hoff, D.D.; Belanger, B.; de Jong, F.A.; Mirakhur, B.; Chen, L.T. NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: Final overall survival analysis and characteristics of long-term survivors. Eur. J. Cancer, 2019, 108, 78-87.
[http://dx.doi.org/10.1016/j.ejca.2018.12.007] [PMID: 30654298]
[26]
Macarulla, T.; Blanc, J.F.; Wang-Gillam, A.; Chen, L.T.; Siveke, J.T.; Mirakhur, B.; Chen, J.; de Jong, F.A. Liposomal irinotecan and 5-fluorouracil/leucovorin in older patients with metastatic pancreatic cancer – A subgroup analysis of the pivotal NAPOLI-1 trial. J. Geriatr. Oncol., 2019, 10(3), 427-435.
[http://dx.doi.org/10.1016/j.jgo.2019.02.011] [PMID: 30842038]
[27]
Principe, D.R.; Underwood, P.W.; Korc, M.; Trevino, J.G.; Munshi, H.G.; Rana, A. The current treatment paradigm for pancreatic ductal adenocarcinoma and barriers to therapeutic efficacy. Front. Oncol., 2021, 11688377
[http://dx.doi.org/10.3389/fonc.2021.688377] [PMID: 34336673]
[28]
Quinn, Bridget A. The quest for an effective treatment for an intractable cancer. Adv. Cancer Res., 2015, 127, 283-306.
[http://dx.doi.org/10.1016/bs.acr.2015.04.009]
[29]
Cross, D.; Burmester, J.K. Gene therapy for cancer treatment: Past, present and future. Clin. Med. Res., 2006, 4(3), 218-227.
[http://dx.doi.org/10.3121/cmr.4.3.218] [PMID: 16988102]
[30]
Park, W.; Chawla, A.; O’Reilly, E.M. Pancreatic cancer. JAMA, 2021, 326(9), 851-862.
[http://dx.doi.org/10.1001/jama.2021.13027] [PMID: 34547082]
[31]
Neoptolemos, J.P.; Kleeff, J.; Michl, P.; Costello, E.; Greenhalf, W.; Palmer, D.H. Therapeutic developments in pancreatic cancer: Current and future perspectives. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(6), 333-348.
[http://dx.doi.org/10.1038/s41575-018-0005-x] [PMID: 29717230]
[32]
Roth, M.T.; Cardin, D.B.; Berlin, J.D. Recent advances in the treatment of pancreatic cancer. F1000 Res., 2020, 9, 131.
[http://dx.doi.org/10.12688/f1000research.21981.1]
[33]
Casolino, R.; Braconi, C.; Malleo, G.; Paiella, S.; Bassi, C.; Milella, M.; Dreyer, S.B.; Froeling, F.E.M.; Chang, D.K.; Biankin, A.V.; Golan, T. Reshaping preoperative treatment of pancreatic cancer in the era of precision medicine. Ann. Oncol., 2021, 32(2), 183-196.
[http://dx.doi.org/10.1016/j.annonc.2020.11.013] [PMID: 33248227]
[34]
Springfeld, C.; Jäger, D.; Büchler, M.W.; Strobel, O.; Hackert, T.; Palmer, D.H.; Neoptolemos, J.P. Chemotherapy for pancreatic cancer. Pres. Med., 2019, 48(3), e159-e174.
[http://dx.doi.org/10.1016/j.lpm.2019.02.025] [PMID: 30879894]
[35]
Swayden, M.; Iovanna, J.; Soubeyran, P. Pancreatic cancer chemo-resistance is driven by tumor phenotype rather than tumor genotype. Heliyon, 2018, 4(12)e01055
[http://dx.doi.org/10.1016/j.heliyon.2018.e01055] [PMID: 30582059]
[36]
Zeng, S.; Pöttler, M.; Lan, B.; Grützmann, R.; Pilarsky, C.; Yang, H. Chemoresistance in pancreatic cancer. Int. J. Mol. Sci., 2019, 20(18), 4504.
[http://dx.doi.org/10.3390/ijms20184504] [PMID: 31514451]
[37]
Yu, S.; Zhang, C.; Xie, K.P. Therapeutic resistance of pancreatic cancer: Roadmap to its reversal. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(1)188461
[http://dx.doi.org/10.1016/j.bbcan.2020.188461] [PMID: 33157162]
[38]
Singh, M.; Mazumder, B. Recent advancements in nanodiamond mediated brain targeted drug delivery and bioimaging of brain ailments: A holistic review. Pharm. Nanotechnol., 2022, 10(1), 42-55.
[http://dx.doi.org/10.2174/2211738510666211222111938] [PMID: 34951376]
[39]
Jones, S.; Zhang, X.; Parsons, D.W.; Lin, J.C.H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Kamiyama, H.; Jimeno, A.; Hong, S.M.; Fu, B.; Lin, M.T.; Calhoun, E.S.; Kamiyama, M.; Walter, K.; Nikolskaya, T.; Nikolsky, Y.; Hartigan, J.; Smith, D.R.; Hidalgo, M.; Leach, S.D.; Klein, A.P.; Jaffee, E.M.; Goggins, M.; Maitra, A.; Iacobuzio-Donahue, C.; Eshleman, J.R.; Kern, S.E.; Hruban, R.H.; Karchin, R.; Papadopoulos, N.; Parmigiani, G.; Vogelstein, B.; Velculescu, V.E.; Kinzler, K.W. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 2008, 321(5897), 1801-1806.
[http://dx.doi.org/10.1126/science.1164368] [PMID: 18772397]
[40]
Biankin, A.V.; Waddell, N.; Kassahn, K.S.; Gingras, M.C.; Muthuswamy, L.B.; Johns, A.L.; Miller, D.K.; Wilson, P.J.; Patch, A.M.; Wu, J.; Chang, D.K.; Cowley, M.J.; Gardiner, B.B.; Song, S.; Harliwong, I.; Idrisoglu, S.; Nourse, C.; Nourbakhsh, E.; Manning, S.; Wani, S.; Gongora, M.; Pajic, M.; Scarlett, C.J.; Gill, A.J.; Pinho, A.V.; Rooman, I.; Anderson, M.; Holmes, O.; Leonard, C.; Taylor, D.; Wood, S.; Xu, Q.; Nones, K.; Lynn Fink, J.; Christ, A.; Bruxner, T.; Cloonan, N.; Kolle, G.; Newell, F.; Pinese, M.; Scott Mead, R.; Humphris, J.L.; Kaplan, W.; Jones, M.D.; Colvin, E.K.; Nagrial, A.M.; Humphrey, E.S.; Chou, A.; Chin, V.T.; Chantrill, L.A.; Mawson, A.; Samra, J.S.; Kench, J.G.; Lovell, J.A.; Daly, R.J.; Merrett, N.D.; Toon, C.; Epari, K.; Nguyen, N.Q.; Barbour, A.; Zeps, N.; Kakkar, N.; Zhao, F.; Qing Wu Y.; Wang, M.; Muzny, D.M.; Fisher, W.E.; Charles Brunicardi, F.; Hodges, S.E.; Reid, J.G.; Drummond, J.; Chang, K.; Han, Y.; Lewis, L.R.; Dinh, H.; Buhay, C.J.; Beck, T.; Timms, L.; Sam, M.; Begley, K.; Brown, A.; Pai, D.; Panchal, A.; Buchner, N.; De Borja, R.; Denroche, R.E.; Yung, C.K.; Serra, S.; Onetto, N.; Mukhopadhyay, D.; Tsao, M.S.; Shaw, P.A.; Petersen, G.M.; Gallinger, S.; Hruban, R.H.; Maitra, A.; Iacobuzio-Donahue, C.A.; Schulick, R.D.; Wolfgang, C.L.; Morgan, R.A.; Lawlor, R.T.; Capelli, P.; Corbo, V.; Scardoni, M.; Tortora, G.; Tempero, M.A.; Mann, K.M.; Jenkins, N.A.; Perez-Mancera, P.A.; Adams, D.J.; Largaespada, D.A.; Wessels, L.F.A.; Rust, A.G.; Stein, L.D.; Tuveson, D.A.; Copeland, N.G.; Musgrove, E.A.; Scarpa, A.; Eshleman, J.R.; Hudson, T.J.; Sutherland, R.L.; Wheeler, D.A.; Pearson, J.V.; McPherson, J.D.; Gibbs, R.A.; Grimmond, S.M. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 2012, 491(7424), 399-405.
[http://dx.doi.org/10.1038/nature11547] [PMID: 23103869]
[41]
Chu, G.C.; Kimmelman, A.C.; Hezel, A.F.; DePinho, R.A. Stromal biology of pancreatic cancer. J. Cell. Biochem., 2007, 101(4), 887-907.
[http://dx.doi.org/10.1002/jcb.21209] [PMID: 17266048]
[42]
Vonlaufen, A.; Joshi, S.; Qu, C.; Phillips, P.A.; Xu, Z.; Parker, N.R.; Toi, C.S.; Pirola, R.C.; Wilson, J.S.; Goldstein, D.; Apte, M.V. Pancreatic stellate cells: Partners in crime with pancreatic cancer cells. Cancer Res., 2008, 68(7), 2085-2093.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2477] [PMID: 18381413]
[43]
Hwang, R.F.; Moore, T.; Arumugam, T.; Ramachandran, V.; Amos, K.D.; Rivera, A.; Ji, B.; Evans, D.B.; Logsdon, C.D. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res., 2008, 68(3), 918-926.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5714] [PMID: 18245495]
[44]
Olive, K.P.; Jacobetz, M.A.; Davidson, C.J.; Gopinathan, A.; McIntyre, D.; Honess, D.; Madhu, B.; Goldgraben, M.A.; Caldwell, M.E.; Allard, D.; Frese, K.K.; DeNicola, G.; Feig, C.; Combs, C.; Winter, S.P.; Ireland-Zecchini, H.; Reichelt, S.; Howat, W.J.; Chang, A.; Dhara, M.; Wang, L.; Rückert, F.; Grützmann, R.; Pilarsky, C.; Izeradjene, K.; Hingorani, S.R.; Huang, P.; Davies, S.E.; Plunkett, W.; Egorin, M.; Hruban, R.H.; Whitebread, N.; McGovern, K.; Adams, J.; Iacobuzio-Donahue, C.; Griffiths, J.; Tuveson, D.A. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 2009, 324(5933), 1457-1461.
[http://dx.doi.org/10.1126/science.1171362] [PMID: 19460966]
[45]
Hartel, M.; di Mola, F.F.; Gardini, A.; Zimmermann, A.; Di Sebastiano, P.; Guweidhi, A.; Innocenti, P.; Giese, T.; Giese, N.; Büchler, M.W.; Friess, H. Desmoplastic reaction influences pancreatic cancer growth behavior. World J. Surg., 2004, 28(8), 818-825.
[http://dx.doi.org/10.1007/s00268-004-7147-4] [PMID: 15457365]
[46]
Matsuo, Y.; Ochi, N.; Sawai, H.; Yasuda, A.; Takahashi, H.; Funahashi, H.; Takeyama, H.; Tong, Z.; Guha, S. CXCL8/IL-8 and CXCL12/SDF-1α co-operatively promote invasiveness and angiogenesis in pancreatic cancer. Int. J. Cancer, 2009, 124(4), 853-861.
[http://dx.doi.org/10.1002/ijc.24040] [PMID: 19035451]
[47]
Xu, Z.; Vonlaufen, A.; Phillips, P.A.; Fiala-Beer, E.; Zhang, X.; Yang, L.; Biankin, A.V.; Goldstein, D.; Pirola, R.C.; Wilson, J.S.; Apte, M.V. Role of pancreatic stellate cells in pancreatic cancer metastasis. Am. J. Pathol., 2010, 177(5), 2585-2596.
[http://dx.doi.org/10.2353/ajpath.2010.090899] [PMID: 20934972]
[48]
Gao, Z.; Wang, X.; Wu, K.; Zhao, Y.; Hu, G. Pancreatic stellate cells increase the invasion of human pancreatic cancer cells through the stromal cell-derived factor-1/CXCR4 axis. Pancreatology, 2010, 10(2-3), 186-193.
[http://dx.doi.org/10.1159/000236012] [PMID: 20484957]
[49]
Foster, D.S.; Jones, R.E.; Ransom, R.C.; Longaker, M.T.; Norton, J.A. The evolving relationship of wound healing and tumor stroma. JCI Insight, 2018, 3(18)e99911
[http://dx.doi.org/10.1172/jci.insight.99911] [PMID: 30232274]
[50]
Flier, J.S.; Underhill, L.H.; Dvorak, H.F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med., 1986, 315(26), 1650-1659.
[http://dx.doi.org/10.1056/NEJM198612253152606] [PMID: 3537791]
[51]
Tracy, L.E.; Minasian, R.A.; Caterson, E.J. Extracellular matrix and dermal fibroblast function in the healing wound. Adv. Wound Care (New Rochelle), 2016, 5(3), 119-136.
[http://dx.doi.org/10.1089/wound.2014.0561] [PMID: 26989578]
[52]
Desmoulière, A.; Guyot, C.; Gabbiani, G. The stroma reaction myofibroblast: A key player in the control of tumor cell behavior. Int. J. Dev. Biol., 2004, 48(5-6), 509-517.
[http://dx.doi.org/10.1387/ijdb.041802ad] [PMID: 15349825]
[53]
Dunér, S.; Lindman, J.L.; Ansari, D.; Gundewar, C.; Andersson, R. Pancreatic cancer: The role of pancreatic stellate cells in tumor progression. Pancreatology, 2011, 10(6), 673-681.
[http://dx.doi.org/10.1159/000320711] [PMID: 21242706]
[54]
Allam, A.; Thomsen, A.R.; Gothwal, M.; Saha, D.; Maurer, J.; Brunner, T.B. Pancreatic stellate cells in pancreatic cancer: In focus. Pancreatology, 2017, 17(4), 514-522.
[http://dx.doi.org/10.1016/j.pan.2017.05.390] [PMID: 28601475]
[55]
Nielsen, M.F.B.; Mortensen, M.B.; Detlefsen, S. Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas. Histochem. Cell Biol., 2017, 148(4), 359-380.
[http://dx.doi.org/10.1007/s00418-017-1581-5] [PMID: 28540429]
[56]
Fu, Y.; Liu, S.; Zeng, S.; Shen, H. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol. Cancer, 2018, 17(1), 62.
[http://dx.doi.org/10.1186/s12943-018-0815-z] [PMID: 29458370]
[57]
Bynigeri, R.R.; Jakkampudi, A.; Jangala, R.; Subramanyam, C.; Sasikala, M.; Rao, G.V.; Reddy, D.N.; Talukdar, R. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J. Gastroenterol., 2017, 23(3), 382-405.
[http://dx.doi.org/10.3748/wjg.v23.i3.382] [PMID: 28210075]
[58]
Apte, M.V.; Haber, P.S.; Darby, S.J.; Rodgers, S.C.; McCaughan, G.W.; Korsten, M.A.; Pirola, R.C.; Wilson, J.S. Pancreatic stellate cells are activated by proinflammatory cytokines: Implications for pancreatic fibrogenesis. Gut, 1999, 44(4), 534-541.
[http://dx.doi.org/10.1136/gut.44.4.534] [PMID: 10075961]
[59]
Bachem, M.G.; Schneider, E.; Groß, H.; Weidenbach, H.; Schmid, R.M.; Menke, A.; Siech, M.; Beger, H.; Grünert, A.; Adler, G. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology, 1998, 115(2), 421-432.
[http://dx.doi.org/10.1016/S0016-5085(98)70209-4] [PMID: 9679048]
[60]
Apte, M.V.; Park, S.; Phillips, P.A.; Santucci, N.; Goldstein, D.; Kumar, R.K.; Ramm, G.A.; Buchler, M.; Friess, H.; McCarroll, J.A.; Keogh, G.; Merrett, N.; Pirola, R.; Wilson, J.S. Desmoplastic reaction in pancreatic cancer: Role of pancreatic stellate cells. Pancreas, 2004, 29(3), 179-187.
[http://dx.doi.org/10.1097/00006676-200410000-00002] [PMID: 15367883]
[61]
Fujiwara, K.; Ohuchida, K.; Mizumoto, K.; Shindo, K.; Eguchi, D.; Kozono, S.; Ikenaga, N.; Ohtsuka, T.; Takahata, S.; Aishima, S.; Tanaka, M. CD271+ subpopulation of pancreatic stellate cells correlates with prognosis of pancreatic cancer and is regulated by interaction with cancer cells. PLoS One, 2012, 7(12)e52682
[http://dx.doi.org/10.1371/journal.pone.0052682] [PMID: 23300742]
[62]
Birtolo, C.; Pham, H.; Morvaridi, S.; Chheda, C.; Go, V.L.W.; Ptasznik, A.; Edderkaoui, M.; Weisman, M.H.; Noss, E.; Brenner, M.B.; Larson, B.; Guindi, M.; Wang, Q.; Pandol, S.J. Cadherin-11 is a cell surface marker up-regulated in activated pancreatic stellate cells and is involved in pancreatic cancer cell migration. Am. J. Pathol., 2017, 187(1), 146-155.
[http://dx.doi.org/10.1016/j.ajpath.2016.09.012] [PMID: 27855278]
[63]
Shek, F.W.T.; Benyon, R.C.; Walker, F.M.; McCrudden, P.R.; Pender, S.L.F.; Williams, E.J.; Johnson, P.A.; Johnson, C.D.; Bateman, A.C.; Fine, D.R.; Iredale, J.P. Expression of transforming growth factor-β 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am. J. Pathol., 2002, 160(5), 1787-1798.
[http://dx.doi.org/10.1016/S0002-9440(10)61125-X] [PMID: 12000730]
[64]
Nielsen, M.F.B.; Mortensen, M.B.; Detlefsen, S. Key players in pancreatic cancer-stroma interaction: Cancer-associated fibroblasts, endothelial and inflammatory cells. World J. Gastroenterol., 2016, 22(9), 2678-2700.
[http://dx.doi.org/10.3748/wjg.v22.i9.2678] [PMID: 26973408]
[65]
Ko, A.H.; LoConte, N.; Tempero, M.A.; Walker, E.J.; Kate Kelley, R.; Lewis, S.; Chang, W.C.; Kantoff, E.; Vannier, M.W.; Catenacci, D.V.; Venook, A.P.; Kindler, H.L. A phase i study of folfirinox plus IPI-926, a hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma. Pancreas, 2016, 45(3), 370-375.
[http://dx.doi.org/10.1097/MPA.0000000000000458] [PMID: 26390428]
[66]
Öhlund, D.; Handly-Santana, A.; Biffi, G.; Elyada, E.; Almeida, A.S.; Ponz-Sarvise, M.; Corbo, V.; Oni, T.E.; Hearn, S.A.; Lee, E.J.; Chio, I.I.C.; Hwang, C.I.; Tiriac, H.; Baker, L.A.; Engle, D.D.; Feig, C.; Kultti, A.; Egeblad, M.; Fearon, D.T.; Crawford, J.M.; Clevers, H.; Park, Y.; Tuveson, D.A. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med., 2017, 214(3), 579-596.
[http://dx.doi.org/10.1084/jem.20162024] [PMID: 28232471]
[67]
Hammer, A.M.; Sizemore, G.M.; Shukla, V.C.; Avendano, A.; Sizemore, S.T.; Chang, J.J.; Kladney, R.D.; Cuitiño, M.C.; Thies, K.A.; Verfurth, Q.; Chakravarti, A.; Yee, L.D.; Leone, G.; Song, J.W.; Ghadiali, S.N.; Ostrowski, M.C. Stromal PDGFR-α activation enhances matrix stiffness, impedes mammary ductal development, and accelerates tumor growth. Neoplasia, 2017, 19(6), 496-508.
[http://dx.doi.org/10.1016/j.neo.2017.04.004] [PMID: 28501760]
[68]
Crawford, Y.; Kasman, I.; Yu, L.; Zhong, C.; Wu, X.; Modrusan, Z.; Kaminker, J.; Ferrara, N. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 2009, 15(1), 21-34.
[http://dx.doi.org/10.1016/j.ccr.2008.12.004] [PMID: 19111878]
[69]
Joyce, J.A.; Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer, 2009, 9(4), 239-252.
[http://dx.doi.org/10.1038/nrc2618] [PMID: 19279573]
[70]
Cao, H.; Eppinga, R.D.; Razidlo, G.L.; Krueger, E.W.; Chen, J.; Qiang, L.; McNiven, M.A. Stromal fibroblasts facilitate cancer cell invasion by a novel invadopodia-independent matrix degradation process. Oncogene, 2016, 35(9), 1099-1110.
[http://dx.doi.org/10.1038/onc.2015.163] [PMID: 25982272]
[71]
Charrier, A.; Chen, R.; Chen, L.; Kemper, S.; Hattori, T.; Takigawa, M.; Brigstock, D.R. Connective tissue growth factor (CCN2) and microRNA-21 are components of a positive feedback loop in pancreatic stellate cells (PSC) during chronic pancreatitis and are exported in PSC-derived exosomes. J. Cell Commun. Signal., 2014, 8(2), 147-156.
[http://dx.doi.org/10.1007/s12079-014-0220-3] [PMID: 24464300]
[72]
Che, P.P.; Gregori, A.; Firuzi, O.; Dahele, M.; Sminia, P.; Peters, G.J.; Giovannetti, E. Pancreatic cancer resistance conferred by stellate cells: Looking for new preclinical models. Exp. Hematol. Oncol., 2020, 9(1), 18.
[http://dx.doi.org/10.1186/s40164-020-00176-0] [PMID: 32775041]
[73]
Zhu, Y.; Li, J.; Li, W.; Zhang, Y.; Yang, X.; Chen, N.; Sun, Y.; Zhao, Y.; Fan, C.; Huang, Q. The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics, 2012, 2(3), 302-312.
[http://dx.doi.org/10.7150/thno.3627] [PMID: 22509196]
[74]
Man, H.B.; Ho, D. Nanodiamonds as platforms for biology and medicine. SLAS Technol., 2013, 18(1), 12-18.
[http://dx.doi.org/10.1177/2211068212456198] [PMID: 22933615]
[75]
Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med., 2011, 3(73), 921.
[http://dx.doi.org/10.1126/scitranslmed.3001713]
[76]
Slegerova, J.; Hajek, M.; Rehor, I.; Sedlak, F.; Stursa, J.; Hruby, M.; Cigler, P. Designing the nanobiointerface of fluorescent nanodiamonds: Highly selective targeting of glioma cancer cells. Nanoscale, 2015, 7(2), 415-420.
[http://dx.doi.org/10.1039/C4NR02776K] [PMID: 25132312]
[77]
Perevedentseva, E.; Lin, Y.C.; Cheng, C.L. A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opin. Drug Deliv., 2021, 18(3), 369-382.
[http://dx.doi.org/10.1080/17425247.2021.1832988] [PMID: 33047984]
[78]
Gu, M.; Toh, T.B.; Hooi, L.; Lim, J.J.; Zhang, X.; Chow, E.K.H. Nanodiamond-mediated delivery of a G9a inhibitor for hepatocellular carcinoma therapy. ACS Appl. Mater. Interfaces, 2019, 11(49), 45427-45441.
[http://dx.doi.org/10.1021/acsami.9b16323] [PMID: 31718136]
[79]
Madamsetty, V.S.; Pal, K.; Keshavan, S.; Caulfield, T.R.; Dutta, S.K.; Wang, E.; Fadeel, B.; Mukhopadhyay, D. Development of multi-drug loaded PEGylated nanodiamonds to inhibit tumor growth and metastasis in genetically engineered mouse models of pancreatic cancer. Nanoscale, 2019, 11(45), 22006-22018.
[http://dx.doi.org/10.1039/C9NR05478B] [PMID: 31710073]
[80]
Mangoni, M.; Sottili, M.; Gerini, C.; Desideri, I.; Bastida, C.; Pallotta, S.; Castiglione, F.; Bonomo, P.; Meattini, I.; Greto, D.; Olmetto, E.; Terziani, F.; Becherini, C.; Delli Paoli, C.; Trombetta, L.; Loi, M.; Biti, G.; Livi, L. A PPAR gamma agonist protects against oral mucositis induced by irradiation in a murine model. Oral Oncol., 2017, 64, 52-58.
[http://dx.doi.org/10.1016/j.oraloncology.2016.11.018] [PMID: 28024724]
[81]
Sumida, T.; Kitadai, Y.; Shinagawa, K.; Tanaka, M.; Kodama, M.; Ohnishi, M.; Ohara, E.; Tanaka, S.; Yasui, W.; Chayama, K. Anti-stromal therapy with imatinib inhibits growth and metastasis of gastric carcinoma in an orthotopic nude mouse model. Int. J. Cancer, 2011, 128(9), 2050-2062.
[http://dx.doi.org/10.1002/ijc.25812] [PMID: 21387285]
[82]
Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell, 2014, 159(1), 80-93.
[83]
Xie, Y.; Hang, Y.; Wang, Y.; Sleightholm, R.; Prajapati, D.R.; Bader, J.; Yu, A.; Tang, W.; Jaramillo, L.; Li, J.; Singh, R.K.; Oupický, D. Stromal modulation and treatment of metastatic pancreatic cancer with local intraperitoneal triple miRNA/siRNA nanotherapy. ACS Nano, 2020, 14(1), 255-271.
[http://dx.doi.org/10.1021/acsnano.9b03978] [PMID: 31927946]
[84]
Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; Jhunjhunwala, S.; Banchereau, R.; Yang, Y.; Guan, Y.; Chalouni, C.; Ziai, J.; Şenbabaoğlu, Y.; Santoro, S.; Sheinson, D.; Hung, J.; Giltnane, J.M.; Pierce, A.A.; Mesh, K.; Lianoglou, S.; Riegler, J.; Carano, R.A.D.; Eriksson, P.; Höglund, M.; Somarriba, L.; Halligan, D.L.; van der Heijden, M.S.; Loriot, Y.; Rosenberg, J.E.; Fong, L.; Mellman, I.; Chen, D.S.; Green, M.; Derleth, C.; Fine, G.D.; Hegde, P.S.; Bourgon, R.; Powles, T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554(7693), 544-548.
[http://dx.doi.org/10.1038/nature25501] [PMID: 29443960]
[85]
Miyamoto, R.; Oda, T.; Hashimoto, S.; Kurokawa, T.; Inagaki, Y.; Shimomura, O.; Ohara, Y.; Yamada, K.; Akashi, Y.; Enomoto, T.; Kishimoto, M.; Yanagihara, H.; Kita, E.; Ohkohchi, N. Cetuximab delivery and antitumor effects are enhanced by mild hyperthermia in a xenograft mouse model of pancreatic cancer. Cancer Sci., 2016, 107(4), 514-520.
[http://dx.doi.org/10.1111/cas.12888] [PMID: 26782353]
[86]
Lu, M.; Wang, Y.K.; Zhao, J.; Lu, H.; Stenzel, M.H.; Xiao, P. PEG grafted‐nanodiamonds for the delivery of gemcitabine. Macromol. Rapid Commun., 2016, 37(24), 2023-2029.
[http://dx.doi.org/10.1002/marc.201600344] [PMID: 27813236]
[87]
Ye, W.; Han, H.; Li, H.; Jin, Q.; Wu, Y. Polymer coated nanodiamonds as gemcitabine prodrug with enzymatic sensitivity for pancreatic cancer treatment. Prog. Nat. Sci., 2020, 30(5), 711-717.
[http://dx.doi.org/10.1016/j.pnsc.2020.10.011]
[88]
Madamsetty, V.S.; Sharma, A.; Toma, M.; Samaniego, S.; Gallud, A.; Wang, E.; Pal, K.; Mukhopadhyay, D.; Fadeel, B. Tumor selective uptake of drug-nanodiamond complexes improves therapeutic outcome in pancreatic cancer. Nanomedicine, 2019, 18, 112-121.
[http://dx.doi.org/10.1016/j.nano.2019.02.020] [PMID: 30849547]
[89]
Afinitor and hair loss-a phase IV clinical study of FDA data., 2022. Available from: https://www.ehealthme.com/ds/afinitor/hair-loss/
[90]
Oxaliplatin and cardiomyopathy - a phase IV clinical study of FDA data., 2022. Available from: https://www.ehealthme.com/ds/oxaliplatin/laryngospasm/
[91]
Mitomycin-chemotherapy drugs, 2022. Available from: https://chemocare.com/chemotherapy/drug-info/mitomycin.aspx
[92]
Lynparza Olaparib, 2022. Available from: https://www.lynparza.com/side-effects.html
[93]
Side effects and tips, 2021. Available from: https://www.sutent. com/possible-side-effects
[94]
Accessdata.fda.gov. Establishment Registration and Device Listing. Available from: https://www.accessdata.fda.gov/drugsatfda_ docs/label/2013/021660s037lbl.pdf
[95]
Elliot, W.T.; Chan, J. Pharmacology Update: Cetuximab injection, 2004. Available from: https://www.reliasmedia.com/articles/4842-pharmacology-update-cetuximab-injection-erbitux
[97]
Zhou, M.; Han, S.; Aras, O.; An, F. Recent advances in paclitaxel-based self-delivery nanomedicine for cancer therapy. Curr. Med. Chem., 2021, 28(31), 6358-6374.
[http://dx.doi.org/10.2174/0929867327666201111143725] [PMID: 33176629]
[98]
Marupudi, N.I.; Han, J.E.; Li, K.W.; Renard, V.M.; Tyler, B.M.; Brem, H. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin. Drug Saf., 2007, 6(5), 609-621.
[http://dx.doi.org/10.1517/14740338.6.5.609] [PMID: 17877447]
[99]
de Man, F.M.; Goey, A.K.L.; van Schaik, R.H.N.; Mathijssen, R.H.J.; Bins, S. Individualization of irinotecan treatment: A review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin. Pharmacokinet., 2018, 57(10), 1229-1254.
[http://dx.doi.org/10.1007/s40262-018-0644-7] [PMID: 29520731]
[100]
Chopra, A. 177Lu-Labeled h-R3 (nimotuzumab), a humanized monoclonal antibody targeting the external domain of the epidermal growth factor receptor. In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda, MD, 2012; pp. 2004-2013.
[101]
Kush, P.; Kaur, M.; Sharma, M.; Madan, J.; Kumar, P.; Deep, A.; Kim, K.H. Investigations of potent biocompatible metal-organic framework for efficient encapsulation and delivery of Gemcitabine: Biodistribution, pharmacokinetic and cytotoxicity study. Biomed. Phys. Eng. Express, 2020, 6(2)025014
[http://dx.doi.org/10.1088/2057-1976/ab73f7] [PMID: 33438640]
[102]
Harmsen, S.; Meijerman, I.; Maas-Bakker, R.F.; Beijnen, J.H.; Schellens, J.H.M. PXR-mediated P-glycoprotein induction by small molecule tyrosine kinase inhibitors. Eur. J. Pharm. Sci., 2013, 48(4-5), 644-649.
[http://dx.doi.org/10.1016/j.ejps.2012.12.019] [PMID: 23277288]
[103]
Ciaffaglione, V.; Modica, M.N.; Pittalà, V.; Romeo, G.; Salerno, L.; Intagliata, S. Mutual prodrugs of 5‐fluorouracil: From a classic chemotherapeutic agent to novel potential anticancer drugs. ChemMedChem, 2021, 16(23), 3496-3512.
[http://dx.doi.org/10.1002/cmdc.202100473] [PMID: 34415107]
[104]
Entezar-Almahdi, E.; Mohammadi-Samani, S.; Tayebi, L.; Farjadian, F. Recent advances in designing 5-fluorouracil delivery systems: A stepping stone in the safe treatment of colorectal cancer. Int. J. Nanomedicine, 2020, 15, 5445-5458.
[http://dx.doi.org/10.2147/IJN.S257700] [PMID: 32801699]
[105]
Wang, WB; Yang, Y; Zhao, YP; Zhang, TP; Liao, Q; Shu, H Recent studies of 5-fluorouracil resistance in pancreatic cancer. World J. Gastroenterol., 2014, 20(42), 15682-90.
[http://dx.doi.org/10.3748/wjg.v20.i42.15682] [PMID: 25400452]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy