Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Comparative Pharmacological Efficacy of COVID-19 Vaccines against the Variants of Concerns (VOCs) of SARS-CoV-2: Recent Clinical Studies on Booster Dose

Author(s): Di Zhao, Xiaoyan Wang, Junqi Liu, Chinnappa AU, Vijaya Basavaraj, Chiriki Devi Sri, Vladimir N. Nikolenko, Narasimha M. Beeraka, Priyanka Shivaprakash and Ruitai Fan*

Volume 24, Issue 13, 2023

Published on: 29 March, 2023

Page: [1603 - 1612] Pages: 10

DOI: 10.2174/1389201024666230227115329

Price: $65

Abstract

Sera obtained from convalescent individuals, and vaccinated individuals can induce low neutralizing efficacy against variants of concerns (VOCs) of SARS-CoV-2. In addition, the majority of COVID-19 vaccines are less efficacious against VOCs when compared to their efficacy against the original virus. Immune escape is one of the significant mechanisms observed during SARS-CoV-2 infection due to the substantial mutational capacity of VOCs such as B.1.1.7, P.1, B.1.351, B.1.617.2, C.37, and B.1.621. Omicron, a novel strain of SARS-CoV-2, also referred to as B.1.1.529, was identified in South Africa. This variant is a potential new VOC by the World Health Organization (WHO), and confirmed cases have been arising across several nations due to its rapid spreading ability. Omicron variant can acquire substantial immune escape following Delta, Beta/Gamma D614G VOCs and subsequently facilitating potential infectivity due to its enhanced ACE2 binding ability. The Omicron variant is a highly mutated variant accompanied by higher transmissibility and immune evasion. This mini review describes the ability of VOCs to acquire immune escape and also describes the comparative neutralization efficacy of several vaccines, including Booster doses against SARS-CoV-2.

Keywords: SARS-CoV-2, COVID-19, booster dose, variants of concern, vaccine neutralization efficacy, sera.

Next »
Graphical Abstract
[1]
Jawad, B.; Adhikari, P.; Podgornik, R.; Ching, W.Y. Key interacting residues between RBD of SARS-CoV-2 and ACE2 receptor: Combina-tion of molecular dynamics simulation and density functional calculation. J. Chem. Inf. Model., 2021, 61(9), 4425-4441.
[http://dx.doi.org/10.1021/acs.jcim.1c00560] [PMID: 34428371]
[2]
Aleem, A.; Samad, A.B.A.; Slenker, A.K. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19); StatPearls Publishing: Florida, 2022.
[3]
Beeraka, N.M.; Sadhu, S.P.; Madhunapantula, S.V.; Rao Pragada, R.; Svistunov, A.A.; Nikolenko, V.N.; Mikhaleva, L.M.; Aliev, G. Strat-egies for targeting SARS CoV-2: Small molecule inhibitors—The current status. Front. Immunol., 2020, 11, 552925.
[http://dx.doi.org/10.3389/fimmu.2020.552925] [PMID: 33072093]
[4]
Karnik, M.; Beeraka, N.M.; Uthaiah, C.A.; Nataraj, S.M.; Bettadapura, A.D.S.; Aliev, G.; Madhunapantula, S.V. A review on SARS-CoV-2-induced neuroinflammation, neurodevelopmental complications, and recent updates on the vaccine development. Mol. Neurobiol., 2021, 58(9), 4535-4563.
[http://dx.doi.org/10.1007/s12035-021-02399-6] [PMID: 34089508]
[5]
Sukocheva, O.A.; Maksoud, R.; Beeraka, N.M.; Madhunapantula, S.V.; Sinelnikov, M.; Nikolenko, V.N.; Neganova, M.E.; Klochkov, S.G.; Kamal, M.A.; Staines, D.R. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J. Adv. Res., 2021, 40, 179-196.
[http://dx.doi.org/10.1016/j.jare.2021.11.013] [PMID: 36100326]
[6]
Beeraka, N.M.; Tulimilli, S.V.; Karnik, M.; Sadhu, S.P.; Pragada, R.R.; Aliev, G.; Madhunapantula, S.V. The current status and challenges in the development of vaccines and drugs against severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2). Biomed Res Int, 2021, 2021, 8160860.
[http://dx.doi.org/10.1155/2021/8160860] [PMID: 34159203]
[7]
Herrera, A.S.; Beeraka, N.M.; Sinelnikov, M.Y.; Nikolenko, V.N.; Giller, D.B.; Solis, L.F.T.; Mikhaleva, L.M.; Somasundaram, S.G.; Kirkland, C.E.; Aliev, G. The beneficial effects of QIAPI 1® against pentavalent arsenic-induced lung toxicity: A hypothetical model for SARS CoV2-I induced lung toxicity. Curr. Pharm. Biotechnol., 2022, 23(2), 307-315.
[http://dx.doi.org/10.2174/1389201022666210412142230] [PMID: 33845734]
[8]
Beeraka, N.M.; Tulimilli, S.V.; Greeshma, M.V.; Dallavalasa, S.; Zhang, Y.; Xiao, W.; Fan, R.; Zhao, D.; Bettadapura, A.D.S.; Nataraj, S.M.; Madhunapantula, S.V.; Liu, J. COVID-19 effects on geriatric population and failures of aminoquinoline therapy: Compilation of studies from EU, USA, and China; Safety and efficacy of vaccines in the prevention and treatment of COVID-19. Curr. Med. Chem., 2022, 29(20), 3601-3621.
[http://dx.doi.org/10.2174/0929867329666220301113146] [PMID: 35232337]
[9]
Beeraka, N.M.; Sukocheva, O.A.; Lukina, E.; Liu, J.; Fan, R. Development of antibody resistance in emerging mutant strains of SARS-CoV-2: Impediment for COVID-19 vaccines. Rev. Med. Virol., 2022, 32(5), E2346.
[http://dx.doi.org/10.1002/rmv.2346] [PMID: 35416390]
[10]
Islam, S; Islam, T; Islam, MR New coronavirus variants are creating more challenges to global healthcare system: A brief report on the current knowledge. Clin Pathol, 2022, 15, 2632010X221075584.
[http://dx.doi.org/10.1177/2632010X221075584]
[11]
Crawford, K.H.D.; Eguia, R.; Dingens, A.S.; Loes, A.N.; Malone, K.D.; Wolf, C.R.; Chu, H.Y.; Tortorici, M.A.; Veesler, D.; Murphy, M.; Pettie, D.; King, N.P.; Balazs, A.B.; Bloom, J.D. Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays. Viruses, 2020, 12(5), 513.
[http://dx.doi.org/10.3390/v12050513] [PMID: 32384820]
[12]
Nie, J.; Li, Q.; Wu, J.; Zhao, C.; Hao, H.; Liu, H.; Zhang, L.; Nie, L.; Qin, H.; Wang, M.; Lu, Q.; Li, X.; Sun, Q.; Liu, J.; Fan, C.; Huang, W.; Xu, M.; Wang, Y. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg. Microbes Infect., 2020, 9(1), 680-686.
[http://dx.doi.org/10.1080/22221751.2020.1743767] [PMID: 32207377]
[13]
Schmidt, F.; Weisblum, Y.; Muecksch, F.; Hoffmann, H.H.; Michailidis, E.; Lorenzi, J.C.C.; Mendoza, P.; Rutkowska, M.; Bednarski, E.; Gaebler, C.; Agudelo, M.; Cho, A.; Wang, Z.; Gazumyan, A.; Cipolla, M.; Caskey, M.; Robbiani, D.F.; Nussenzweig, M.C.; Rice, C.M.; Hatziioannou, T.; Bieniasz, P.D. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med., 2020, 217(11), E20201181.
[http://dx.doi.org/10.1084/jem.20201181] [PMID: 32692348]
[14]
Zeng, C.; Evans, J.P.; Pearson, R.; Qu, P.; Zheng, Y.M.; Robinson, R.T.; Hall-Stoodley, L.; Yount, J.; Pannu, S.; Mallampalli, R.K.; Saif, L.; Oltz, E.; Lozanski, G.; Liu, S.L. Neutralizing antibody against SARS-CoV-2 spike in COVID-19 patients, health care workers, and convalescent plasma donors. JCI Insight, 2020, 5(22), E143213.
[http://dx.doi.org/10.1172/jci.insight.143213] [PMID: 33035201]
[15]
He, X.; Hong, W.; Pan, X.; Lu, G.; Wei, X. SARS-CoV-2 Omicron variant: Characteristics and prevention. MedComm, 2021, 2(4), 838-845.
[http://dx.doi.org/10.1002/mco2.110] [PMID: 34957469]
[16]
Roessler, A.; Riepler, L.; Bante, D.; von Laer, D.; Kimpel, J. SARS-CoV-2 B.1.1.529 variant (Omicron) evades neutralization by sera from vaccinated and convalescent individuals. medRxiv, 2021, 2021-12.
[17]
Zhang, X.; Wu, S.; Wu, B.; Yang, Q.; Chen, A.; Li, Y.; Zhang, Y.; Pan, T.; Zhang, H.; He, X. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct. Target. Ther., 2021, 6(1), 430.
[http://dx.doi.org/10.1038/s41392-021-00852-5] [PMID: 34921135]
[18]
Wang, Z.; Schmidt, F.; Weisblum, Y.; Muecksch, F.; Barnes, C.O.; Finkin, S.; Schaefer-Babajew, D.; Cipolla, M.; Gaebler, C.; Lieberman, J.A.; Oliveira, T.Y.; Yang, Z.; Abernathy, M.E.; Huey-Tubman, K.E.; Hurley, A.; Turroja, M.; West, K.A.; Gordon, K.; Millard, K.G.; Ramos, V.; Da Silva, J.; Xu, J.; Colbert, R.A.; Patel, R.; Dizon, J.; Unson-O’Brien, C.; Shimeliovich, I.; Gazumyan, A.; Caskey, M.; Bjorkman, P.J.; Casellas, R.; Hatziioannou, T.; Bieniasz, P.D.; Nussenzweig, M.C. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 2021, 592(7855), 616-622.
[http://dx.doi.org/10.1038/s41586-021-03324-6] [PMID: 33567448]
[19]
WHO: DRAFT landscape of COVID-19 candidate vaccines. 2020. Available from: https://www.who.int/publications/m/item/draft-landscape-of-COVID-19-candidate-vaccines [Accessed August 2020].
[21]
Corbett, K.S.; Flynn, B.; Foulds, K.E.; Francica, J.R.; Boyoglu-Barnum, S.; Werner, A.P.; Flach, B.; O’Connell, S.; Bock, K.W.; Minai, M.; Nagata, B.M.; Andersen, H.; Martinez, D.R.; Noe, A.T.; Douek, N.; Donaldson, M.M.; Nji, N.N.; Alvarado, G.S.; Edwards, D.K.; Flebbe, D.R.; Lamb, E.; Doria-Rose, N.A.; Lin, B.C.; Louder, M.K.; O’Dell, S.; Schmidt, S.D.; Phung, E.; Chang, L.A.; Yap, C.; Todd, J.P.M.; Pessaint, L.; Van Ry, A.; Browne, S.; Greenhouse, J.; Putman-Taylor, T.; Strasbaugh, A.; Campbell, T.A.; Cook, A.; Dodson, A.; Steingrebe, K.; Shi, W.; Zhang, Y.; Abiona, O.M.; Wang, L.; Pegu, A.; Yang, E.S.; Leung, K.; Zhou, T.; Teng, I.T.; Widge, A.; Gordon, I.; Novik, L.; Gillespie, R.A.; Loomis, R.J.; Moliva, J.I.; Stewart-Jones, G.; Himansu, S.; Kong, W.P.; Nason, M.C.; Morabito, K.M.; Ruck-wardt, T.J.; Ledgerwood, J.E.; Gaudinski, M.R.; Kwong, P.D.; Mascola, J.R.; Carfi, A.; Lewis, M.G.; Baric, R.S.; McDermott, A.; Moore, I.N.; Sullivan, N.J.; Roederer, M.; Seder, R.A.; Graham, B.S. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med., 2020, 383(16), 1544-1555.
[http://dx.doi.org/10.1056/NEJMoa2024671] [PMID: 32722908]
[22]
Robbiani, D.F.; Gaebler, C.; Muecksch, F.; Lorenzi, J.C.C.; Wang, Z.; Cho, A.; Agudelo, M.; Barnes, C.O.; Gazumyan, A.; Finkin, S.; Häg-glöf, T.; Oliveira, T.Y.; Viant, C.; Hurley, A.; Hoffmann, H.H.; Millard, K.G.; Kost, R.G.; Cipolla, M.; Gordon, K.; Bianchini, F.; Chen, S.T.; Ramos, V.; Patel, R.; Dizon, J.; Shimeliovich, I.; Mendoza, P.; Hartweger, H.; Nogueira, L.; Pack, M.; Horowitz, J.; Schmidt, F.; Weisblum, Y.; Michailidis, E.; Ashbrook, A.W.; Waltari, E.; Pak, J.E.; Huey-Tubman, K.E.; Koranda, N.; Hoffman, P.R.; West, A.P., Jr; Rice, C.M.; Hatziioannou, T.; Bjorkman, P.J.; Bieniasz, P.D.; Caskey, M.; Nussenzweig, M.C. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature, 2020, 584(7821), 437-442.
[http://dx.doi.org/10.1038/s41586-020-2456-9] [PMID: 32555388]
[23]
Weisblum, Y.; Schmidt, F.; Zhang, F. Fuggite da anticorpi neutralizanti da varianti di proteine spike SARS-CoV-2. eLife, 2020, 9, e61312.
[http://dx.doi.org/10.7554/eLife.61312] [PMID: 33112236]
[24]
Barnes, C.O.; Jette, C.A.; Abernathy, M.E.; Dam, K.M.A.; Esswein, S.R.; Gristick, H.B.; Malyutin, A.G.; Sharaf, N.G.; Huey-Tubman, K.E.; Lee, Y.E.; Robbiani, D.F.; Nussenzweig, M.C.; West, A.P., Jr; Bjorkman, P.J. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature, 2020, 588(7839), 682-687.
[http://dx.doi.org/10.1038/s41586-020-2852-1] [PMID: 33045718]
[25]
Starr, T.N.; Greaney, A.J.; Addetia, A.; Hannon, W.W.; Choudhary, M.C.; Dingens, A.S.; Li, J.Z.; Bloom, J.D. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science, 2021, 371(6531), 850-854.
[http://dx.doi.org/10.1126/science.abf9302] [PMID: 33495308]
[26]
Pritchard, E.; Matthews, P.C.; Stoesser, N.; Eyre, D.W.; Gethings, O.; Vihta, K-D.; Jones, J.; House, T. Impact of vaccination on new SARS-CoV-2 infections in the United Kingdom. Nat. Med., 2021, 27(8), 1370-1378.
[http://dx.doi.org/10.1038/s41591-021-01410-w] [PMID: 34108716]
[27]
Levine-Tiefenbrun, M.; Yelin, I.; Katz, R.; Herzel, E.; Golan, Z.; Schreiber, L.; Wolf, T.; Nadler, V.; Ben-Tov, A.; Kuint, J.; Gazit, S.; Patalon, T.; Chodick, G.; Kishony, R. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat. Med., 2021, 27(5), 790-792.
[http://dx.doi.org/10.1038/s41591-021-01316-7] [PMID: 33782619]
[28]
Singanayagam, A.; Hakki, S.; Dunning, J.; Madon, K.J.; Crone, M.A.; Koycheva, A.; Derqui-Fernandez, N.; Barnett, J.L.; Whitfield, M.G.; Varro, R.; Charlett, A.; Kundu, R.; Fenn, J.; Cutajar, J.; Quinn, V.; Conibear, E.; Barclay, W.; Freemont, P.S.; Taylor, G.P.; Ahmad, S.A.; Lackenby, A. Community transmission and viral load kinetics of the SARS-CoV-2 delta (B. 1.617. 2) variant in vaccinated and unvac-cinated individuals in the UK: a prospective, longitudinal, cohort study. Lancet Infect. Dis., 2022, 22(2), 183-195.
[PMID: 34756186]
[29]
Chia, P.Y.; Ong, S.W.X.; Chiew, C.J.; Ang, L.W.; Chavatte, J-M.; Mak, T-M.; Cui, L.; Kalimuddin, S.; Chia, W.N.; Tan, C.W.; Chai, L.Y.A.; Tan, S.W.; Zheng, S.; Lin, R.T.P.; Wang, L.; Leo, Y.S.; Lee, V.J.; Lyc, D.C.; Young, B.E. Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine-breakthrough infections: A multi-center cohort study. Clin. Microbiol. Infect., 2022, 28(4), 612-E1.
[PMID: 34826623]
[30]
Eyre, D.W.; Taylor, D.; Purver, M.; Chapman, D.; Fowler, T.; Pouwels, K.B.; Walker, A.S.; Peto, T.E.A. Effect of COVID-19 vaccination on transmission of alpha and delta variants. N. Engl. J. Med., 2022, 386(8), 744-756.
[http://dx.doi.org/10.1056/NEJMoa2116597] [PMID: 34986294]
[31]
Chemaitelly, H.; Yassine, H.M.; Benslimane, F.M.; Al Khatib, H.A.; Tang, P.; Hasan, M.R.; Malek, J.A.; Coyle, P.; Ayoub, H.H.; Al Ka-naani, Z.; Al Kuwari, E.; Jeremijenko, A.; Kaleeckal, A.H.; Latif, A.N.; Shaik, R.M.; Abdul Rahim, H.F.; Nasrallah, G.K.; Al Kuwari, M.G.; Al Romaihi, H.E.; Al-Thani, M.H.; Al Khal, A.; Butt, A.A.; Bertollini, R.; Abu-Raddad, L.J. mRNA-1273 COVID-19 vaccine effec-tiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nat. Med., 2021, 27(9), 1614-1621.
[http://dx.doi.org/10.1038/s41591-021-01446-y] [PMID: 34244681]
[32]
Seppälä, E.; Veneti, L.; Starrfelt, J.; Danielsen, A.S.; Bragstad, K.; Hungnes, O.; Taxt, A.M.; Watle, S.V.; Meijerink, H. Vaccine effective-ness against infection with the Delta (B.1.617.2) variant, Norway, April to August 2021. Euro Surveill., 2021, 26(35), 2100793.
[http://dx.doi.org/10.2807/1560-7917.ES.2021.26.35.2100793] [PMID: 34477054]
[33]
Skowronski, D.M.; Setayeshgar, S.; Zou, M.; Prystajecky, N.; Tyson, J.R.; Galanis, E.; Naus, M.; Patrick, D.M.; Sbihi, H.; El Adam, S. Single-dose mRNA vaccine effectiveness against SARSCoV-2, including, 1. medRxiv, 2021, 2021-06..
[34]
Abu-Raddad, L.J.; Chemaitelly, H.; Butt, A.A. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Vari-ants. N. Engl. J. Med., 2021, 385(2), 187-189.
[http://dx.doi.org/10.1056/NEJMc2104974] [PMID: 33951357]
[35]
Hall, V.J.; Foulkes, S.; Saei, A.; Andrews, N.; Oguti, B.; Charlett, A.; Wellington, E.; Stowe, J.; Gillson, N.; Atti, A.; Islam, J.; Karagiannis, I.; Munro, K.; Khawam, J.; Chand, M.A.; Brown, C.S.; Ramsay, M.; Lopez-Bernal, J.; Hopkins, S.; Andrews, N.; Atti, A.; Aziz, H.; Brooks, T.; Brown, C.S.; Camero, D.; Carr, C.; Chand, M.A.; Charlett, A.; Crawford, H.; Cole, M.; Conneely, J.; D’Arcangelo, S.; Ellis, J.; Evans, S.; Foulkes, S.; Gillson, N.; Gopal, R.; Hall, L.; Hall, V.J.; Harrington, P.; Hopkins, S.; Hewson, J.; Hoschler, K.; Ironmonger, D.; Islam, J.; Kall, M.; Karagiannis, I.; Kay, O.; Khawam, J.; King, E.; Kirwan, P.; Kyffin, R.; Lackenby, A.; Lattimore, M.; Linley, E.; Lopez-Bernal, J.; Mabey, L.; McGregor, R.; Miah, S.; Monk, E.J.M.; Munro, K.; Naheed, Z.; Nissr, A.; O’Connell, A.M.; Oguti, B.; Okafor, H.; Organ, S.; Osbourne, J.; Otter, A.; Patel, M.; Platt, S.; Pople, D.; Potts, K.; Ramsay, M.; Robotham, J.; Rokadiya, S.; Rowe, C.; Saei, A.; Sebbage, G.; Semper, A.; Shrotri, M.; Simmons, R.; Soriano, A.; Staves, P.; Taylor, S.; Taylor, A.; Tengbe, A.; Tonge, S.; Vusirikala, A.; Wallace, S.; Wellington, E.; Zambon, M.; Corrigan, D.; Sartaj, M.; Cromey, L.; Campbell, S.; Braithwaite, K.; Price, L.; Haahr, L.; Stewart, S.; Lacey, E.D.; Partridge, L.; Stevens, G.; Ellis, Y.; Hodgson, H.; Norman, C.; Lacey, E.D.; Larru, B.; Mcwilliam, S.; Roynon, A.; North-field, J.; Winchester, S.; Cieciwa, P.; Pai, A.; Bakker, P.; Loughrey, C.; Watt, A.; Adair, F.; Hawkins, A.; Grant, A.; Temple-Purcell, R.; Howard, J.; Slawson, N.; Subudhi, C.; Davies, S.; Bexley, A.; Penn, R.; Wong, N.; Boyd, G.; Rajgopal, A.; Arenas-Pinto, A.; Matthews, R.; Whileman, A.; Laugharne, R.; Ledger, J.; Barnes, T.; Jones, C.; Osuji, N.; Chitalia, N.; Bailey, T.; Akhtar, S.; Harrison, G.; Horne, S.; Walker, N.; Agwuh, K.; Maxwell, V.; Graves, J.; Williams, S.; O’Kelly, A.; Ridley, P.; Cowley, A.; Johnstone, H.; Swift, P.; Democratis, J.; Meda, M.; Brake, S.; Gunn, J.; Selassi, A.; Hams, S.; Irvine, V.; Chandrasekaran, B.; Forsyth, C.; Radmore, J.; Thomas, C.; Brown, K.; Roberts, S.; Burns, P.; Gajee, K.; Lewis, T.; Byrne, T.M.; Sanderson, F.; Knight, S.; Macnaughton, E.; Burton, B.J.L.; Smith, H.; Chaudhuri, R.; Aeron-Thomas, J.; Hollinshead, K.; Shorten, R.J.; Swan, A.; Shorten, R.J.; Favager, C.; Murira, J.; Baillon, S.; Hamer, S.; Shah, A.; Russell, J.; Brennan, D.; Dave, A.; Chawla, A.; Westwell, F.; Adeboyeku, D.; Papineni, P.; Pegg, C.; Williams, M.; Ahmad, S.; Horsley, A.; Gabriel, C.; Pagget, K.; Cieciwa, P.; Maloney, G.; Ashcroft, J.; Del Rosario, I.; Crosby-Nwaobi, R.; Flanagan, D.; Dhasmana, D.; Fowler, S.; Cameron, E.; Prentice, L.; Sinclair, C.; Irvine, V.; Bateman, V.; McLelland-Brooks, K.; Ho, A.; Murphy, M.; Cochrane, A.; Gibson, A.; Patel, M.; Black, K.; Tempeton, K.; Donaldson, S.; Coke, L.; Elumogo, N.; Elliott, J.; Padgett, D.; Cross, A.; Mirfenderesky, M.; Joyce, S.; Sinanovic, I.; Howard, M.; Lewis, T.; Cowling, P.; Brazil, M.; Hanna, E.; Abdelrazik, A.; Brand, S.; Sheridan, E.A.; Wad-ams, B.; Lloyd, A.; Mouland, J.; Giles, J.; Pottinger, G.; Coles, H.; Joseph, M.; Lee, M.; Orr, S.; Chenoweth, H.; Browne, D.; Auckland, C.; Lear, R.; Mahungu, T.; Rodger, A.; Warren, S.; Brooking, D.; Pai, S.; Druyeh, R.; Smith, E.; Stone, S.; Meisner, S.; Delgado, D.; Underhill, E.; Keen, L.; Aga, M.; Domingos, P.; Gormley, S.; Kerrison, C.; Birch, S.; DeSilva, T.; Allsop, L.; Ambalkar, S.; Beekes, M.; Jose, S.; Tomlinson, J.; Painter, S.; Price, C.; Pepperell, J.; James, K.; Trinick, T.; Moore, L.; Day, J.; Boulos, A.; Knox, I.; Defever, E.; McCracken, D.; Brown, K.; Gray, K.; Houston, A.; Planche, T.; Pritchard Jones, R.; Wycherley, D.; Bennett, S.; Marrs, J.; Nimako, K.; Stewart, B.; Bain, S.C.; Kalakonda, N.; Khanduri, S.; Ashby, A.; Holden, M.; Mahabir, N.; Harwood, J.; Payne, B.; Court, K.; White, N.; Longfellow, R.; Hughes, L.E.; Green, M.E.; Halkes, M.; Mercer, P.; Roebuck, A.; Wilson-Davies, E.; Gallego, L.; Lazarus, R.; Aldridge, N.; Berry, L.; Game, F.; Reynolds, T.; Holmes, C.; Wiselka, M.; Higham, A.; Booth, M.; Duff, C.; Alderton, J.; Hilton, D.; Powell, J.; Jackson, A.; Plant, A.J.; Ahmed, N.; Chin, T.; Qazzafi, M.Z.; Moody, A.M.; Tilley, R.E.; Donaghy, T.; O’Kane, M.; Shipman, K.; Sierra, R.; Parmar, C.; Mills, G.; Harvey, D.; Huang, Y.W.J.; Birch, J.; Robinson, L.; Board, S.; Broadley, A.; Laven, C.; Todd, N.; Eyre, D.W.; Jeffery, K.; Dunachie, S.; Duncan, C.; Klenerman, P.; Turtle, L.; Baxendale, H.; Heeney, J.L. COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): A prospective, multicentre, cohort study. Lancet, 2021, 397(10286), 1725-1735.
[http://dx.doi.org/10.1016/S0140-6736(21)00790-X] [PMID: 33901423]
[36]
Dagan, N.; Barda, N.; Kepten, E.; Miron, O.; Perchik, S.; Katz, M.A.; Hernán, M.A.; Lipsitch, M.; Reis, B.; Balicer, R.D. BNT162b2 mRNA COVID-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med., 2021, 384(15), 1412-1423.
[http://dx.doi.org/10.1056/NEJMoa2101765] [PMID: 33626250]
[37]
Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; Southern, J.; Swerdlow, D.L.; Jodar, L.; Levy, Y.; Alroy-Preis, S. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infec-tions and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet, 2021, 397(10287), 1819-1829.
[http://dx.doi.org/10.1016/S0140-6736(21)00947-8] [PMID: 33964222]
[38]
Bernal, J.L.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G. Effective-ness of COVID-19 vaccines against the B. 1.617. 2 (Delta) variant. N. Engl. J. Med., 2021, 385(7), 585-594.
[http://dx.doi.org/10.1056/NEJMoa2108891] [PMID: 34289274]
[39]
Bernal, JL; Andrews, N; Gower, C; Robertson, C; Stowe, J; Tessier, E; Simmons, R; Cottrell, S; Roberts, R; O’Doherty, M Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: Test negative case-control study. bmj, 2021, 373, n1088.
[http://dx.doi.org/10.1136/bmj.n1088] [PMID: 33985964]
[40]
Nasreen, S.; Chung, H.; He, S.; Brown, K.A.; Gubbay, J.B.; Buchan, S.A.; Fell, D.B.; Austin, P.C.; Schwartz, K.L.; Sundaram, M.E. Effec-tiveness of mRNA and ChAdOx1 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. medRxiv, 2021.
[http://dx.doi.org/10.1101/2021.06.28.21259420]
[41]
Kissling, E.; Hooiveld, M.; Sandonis Martín, V.; Martínez-Baz, I.; William, N.; Vilcu, A.M.; Mazagatos, C.; Domegan, L.; de Lusignan, S.; Meijer, A.; Machado, A.; Brytting, M.; Casado, I.; Murray, J.L.K.; Belhillil, S.; Larrauri, A.; O’Donnell, J.; Tsang, R.; de Lange, M.; Ro-drigues, A.P.; Riess, M.; Castilla, J.; Hamilton, M.; Falchi, A.; Pozo, F.; Dunford, L.; Cogdale, J.; Jansen, T.; Guiomar, R.; Enkirch, T.; Burgui, C.; Sigerson, D.; Blanchon, T.; Martínez Ochoa, E.M.; Connell, J.; Ellis, J.; van Gageldonk-Lafeber, R.; Kislaya, I.; Rose, A.M.C.; Valenciano, M. Vaccine effectiveness against symptomatic SARS-CoV-2 infection in adults aged 65 years and older in primary care: I-MOVE-COVID-19 project, Europe, December 2020 to May 2021. Euro Surveill., 2021, 26(29), 2100670.
[http://dx.doi.org/10.2807/1560-7917.ES.2021.26.29.2100670] [PMID: 34296676]
[42]
Shrotri, M.; Krutikov, M.; Palmer, T.; Giddings, R.; Azmi, B.; Subbarao, S.; Fuller, C.; Irwin-Singer, A.; Davies, D.; Tut, G.; Lopez Bernal, J.; Moss, P.; Hayward, A.; Copas, A.; Shallcross, L. Vaccine effectiveness of the first dose of ChAdOx1 nCoV-19 and BNT162b2 against SARS-CoV-2 infection in residents of long-term care facilities in England (VIVALDI): A prospective cohort study. Lancet Infect. Dis., 2021, 21(11), 1529-1538.
[http://dx.doi.org/10.1016/S1473-3099(21)00289-9] [PMID: 34174193]
[43]
Emary, K.R.W.; Golubchik, T.; Aley, P.K.; Ariani, C.V.; Angus, B.; Bibi, S.; Blane, B.; Bonsall, D.; Cicconi, P.; Charlton, S.; Clutterbuck, E.A.; Collins, A.M.; Cox, T.; Darton, T.C.; Dold, C.; Douglas, A.D.; Duncan, C.J.A.; Ewer, K.J.; Flaxman, A.L.; Faust, S.N.; Ferreira, D.M.; Feng, S.; Finn, A.; Folegatti, P.M.; Fuskova, M.; Galiza, E.; Goodman, A.L.; Green, C.M.; Green, C.A.; Greenland, M.; Hallis, B.; Heath, P.T.; Hay, J.; Hill, H.C.; Jenkin, D.; Kerridge, S.; Lazarus, R.; Libri, V.; Lillie, P.J.; Ludden, C.; Marchevsky, N.G.; Minassian, A.M.; McGregor, A.C.; Mujadidi, Y.F.; Phillips, D.J.; Plested, E.; Pollock, K.M.; Robinson, H.; Smith, A.; Song, R.; Snape, M.D.; Suther-land, R.K.; Thomson, E.C.; Toshner, M.; Turner, D.P.J.; Vekemans, J.; Villafana, T.L.; Williams, C.J.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Voysey, M.; Ramasamy, M.N.; Pollard, A.J. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): An exploratory analysis of a randomised controlled trial. Lancet, 2021, 397(10282), 1351-1362.
[http://dx.doi.org/10.1016/S0140-6736(21)00628-0] [PMID: 33798499]
[44]
Chung, H; He, S; Nasreen, S; Sundaram, ME; Buchan, SA; Wilson, SE; Chen, B; Calzavara, A; Fell, DB; Austin, PC Effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe COVID-19 outcomes in Ontar-io, Canada: Test negative design study. BMJ, 2021, 374, n1943.
[http://dx.doi.org/10.1136/bmj.n1943] [PMID: 34417165]
[45]
Yassi, A.; Grant, J.M.; Lockhart, K.; Barker, S.; Sprague, S.; Okpani, A.I.; Wong, T.; Daly, P.; Henderson, W.; Lubin, S.; Kim Sing, C. Infection control, occupational and public health measures including mRNA-based vaccination against SARS-CoV-2 infections to protect healthcare workers from variants of concern: A 14-month observational study using surveillance data. PLoS One, 2021, 16(7), e0254920.
[http://dx.doi.org/10.1371/journal.pone.0254920] [PMID: 34270608]
[46]
Charmet, T.; Schaeffer, L.; Grant, R.; Galmiche, S.; Chény, O.; Von Platen, C.; Maurizot, A.; Rogoff, A.; Omar, F.; David, C.; Septfons, A.; Cauchemez, S.; Gaymard, A.; Lina, B.; Lefrancois, L.H.; Enouf, V.; van der Werf, S.; Mailles, A.; Levy-Bruhl, D.; Carrat, F.; Fontanet, A. Impact of original, B.1.1.7, and B.1.351/P.1 SARS-CoV-2 lineages on vaccine effectiveness of two doses of COVID-19 mRNA vaccines: Results from a nationwide case-control study in France. Lancet Reg. Health Eur., 2021, 8, 100171.
[http://dx.doi.org/10.1016/j.lanepe.2021.100171] [PMID: 34278372]
[47]
Madhi, S.A.; Baillie, V.; Cutland, C.L.; Voysey, M.; Koen, A.L.; Fairlie, L.; Padayachee, S.D.; Dheda, K.; Barnabas, S.L.; Bhorat, Q.E.; Briner, C.; Kwatra, G.; Ahmed, K.; Aley, P.; Bhikha, S.; Bhiman, J.N.; Bhorat, A.E.; du Plessis, J.; Esmail, A.; Groenewald, M.; Horne, E.; Hwa, S.H.; Jose, A.; Lambe, T.; Laubscher, M.; Malahleha, M.; Masenya, M.; Masilela, M.; McKenzie, S.; Molapo, K.; Moultrie, A.; Oelofse, S.; Patel, F.; Pillay, S.; Rhead, S.; Rodel, H.; Rossouw, L.; Taoushanis, C.; Tegally, H.; Thombrayil, A.; van Eck, S.; Wibmer, C.K.; Durham, N.M.; Kelly, E.J.; Villafana, T.L.; Gilbert, S.; Pollard, A.J.; de Oliveira, T.; Moore, P.L.; Sigal, A.; Izu, A. Efficacy of the ChAdOx1 nCoV-19 COVID-19 vaccine against the B. 1.351 variant. N. Engl. J. Med., 2021, 384(20), 1885-1898.
[http://dx.doi.org/10.1056/NEJMoa2102214] [PMID: 33725432]
[48]
Tang, P.; Hasan, M.R.; Chemaitelly, H.; Yassine, H.M.; Benslimane, F.M.; Al Khatib, H.A.; AlMukdad, S.; Coyle, P.; Ayoub, H.H.; Al Kanaani, Z.; Al Kuwari, E.; Jeremijenko, A.; Kaleeckal, A.H.; Latif, A.N.; Shaik, R.M.; Abdul Rahim, H.F.; Nasrallah, G.K.; Al Kuwari, M.G.; Al Romaihi, H.E.; Butt, A.A.; Al-Thani, M.H.; Al Khal, A.; Bertollini, R.; Abu-Raddad, L.J. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. Nat. Med., 2021, 27(12), 2136-2143.
[http://dx.doi.org/10.1038/s41591-021-01583-4] [PMID: 34728831]
[49]
Fowlkes, A.; Gaglani, M.; Groover, K.; Thiese, M.S.; Tyner, H.; Ellingson, K. Effectiveness of COVID-19 vaccines in preventing SARS-CoV-2 infection among frontline workers before and during B. 1.617. 2 (Delta) variant predominance-eight US locations, December 2020-August 2021. MMWR Morb. Mortal. Wkly. Rep., 2021, 70(34), 1167-1169.
[http://dx.doi.org/10.15585/mmwr.mm7034e4] [PMID: 34437521]
[50]
Bruxvoort, K.J.; Sy, L.S.; Qian, L.; Ackerson, B.K.; Luo, Y.; Lee, G.S.; Tian, Y.; Florea, A.; Aragones, M.; Tubert, J.E.; Takhar, H.S.; Ku, J.H.; Paila, Y.D.; Talarico, C.A.; Tseng, H.F. Effectiveness of mRNA-1273 against delta, mu, and other emerging variants of SARS-CoV-2: Test negative case-control study. BMJ, 2021, 375, e068848.
[http://dx.doi.org/10.1136/bmj-2021-068848] [PMID: 34911691]
[51]
Tartof, S.Y.; Slezak, J.M.; Fischer, H.; Hong, V.; Ackerson, B.K.; Ranasinghe, O.N.; Frankland, T.B.; Ogun, O.A.; Zamparo, J.M.; Gray, S.; Valluri, S.R.; Pan, K.; Angulo, F.J.; Jodar, L.; McLaughlin, J.M. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet, 2021, 398(10309), 1407-1416.
[http://dx.doi.org/10.1016/S0140-6736(21)02183-8] [PMID: 34619098]
[52]
Kshetrapal, P.; Pandey, R.; Scaria, V.; Malik, P.K.; Taneja, J.; Binayke, A.; Vohra, T.; Zaheer, A.; Rathore, D.; Khan, N.A.; Shaman, H.; Ahmed, S.; Kumar, R.; Deshpande, S.; Subramani, C.; Wadhwa, N.; Gupta, N.; Pandey, A.K.; Bhattacharya, J.; Agrawal, A.; Vrati, S.; Bhatnagar, S.; Garg, P.K. Cellular immune responses are preserved and may contribute to Chadox1 ChAdOx1 nCoV-19 vaccine effectiveness against infection due to SARSCoV-2 B• 1• 617• 2 delta variant despite reduced virus neutralisation. 2021.
[http://dx.doi.org/10.2139/ssrn.3884946]
[53]
Li, X.N.; Huang, Y.; Wang, W.; Jing, Q.L.; Zhang, C.H.; Qin, P.Z.; Guan, W.J.; Gan, L.; Li, Y.L.; Liu, W.H.; Dong, H.; Miao, Y.T.; Fan, S.J.; Zhang, Z.B.; Zhang, D.M.; Zhong, N.S. Effectiveness of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: A test-negative case-control real-world study. Emerg. Microbes Infect., 2021, 10(1), 1751-1759.
[http://dx.doi.org/10.1080/22221751.2021.1969291] [PMID: 34396940]
[54]
Hitchings, M.D.T.; Ranzani, O.T.; Dorion, M.; D’Agostini, T.L.; de Paula, R.C.; de Paula, O.F.P.; de Moura Villela, E.F.; Torres, M.S.S.; de Oliveira, S.B.; Schulz, W.; Almiron, M.; Said, R.; de Oliveira, R.D.; Silva, P.V.; de Araújo, W.N.; Gorinchteyn, J.C.; Andrews, J.R.; Cummings, D.A.T.; Ko, A.I.; Croda, J. Effectiveness of ChAdOx1 vaccine in older adults during SARS-CoV-2 Gamma variant circulation in São Paulo. Nat. Commun., 2021, 12(1), 6220.
[http://dx.doi.org/10.1038/s41467-021-26459-6] [PMID: 34711813]
[55]
Hitchings, M.D.T.; Ranzani, O.T.; Torres, M.S.S.; de Oliveira, S.B.; Almiron, M.; Said, R.; Borg, R.; Schulz, W.L.; de Oliveira, R.D.; da Silva, P.V.; de Castro, D.B.; Sampaio, V.S.; de Albuquerque, B.C.; Ramos, T.C.A.; Fraxe, S.H.H.; da Costa, C.F.; Naveca, F.G.; Siqueira, A.M.; de Araújo, W.N.; Andrews, J.R.; Cummings, D.A.T.; Ko, A.I.; Croda, J. Effectiveness of CoronaVac among healthcare workers in the setting of high SARS-CoV-2 Gamma variant transmission in Manaus, Brazil: A test-negative case-control study. Lancet Reg Health Am, 2021, 1, 100025.
[http://dx.doi.org/10.1016/j.lana.2021.100025] [PMID: 34386791]
[56]
Ranzani, OT; Hitchings, MD; Dorion, M; D’Agostini, TL; de Paula, RC; de Paula, OFP; de Moura Villela, EF; Torres, MSS; de Oliveira, SB; Schulz, W Effectiveness of the CoronaVac vaccine in older adults during a gamma variant associated epidemic of COVID-19 in Bra-zil: Test negative case-control study. BMJ, 2021, 374, n2015.
[http://dx.doi.org/10.1136/bmj.n2015]
[57]
Tseng, H.F.; Ackerson, B.K.; Luo, Y.; Sy, L.S.; Talarico, C.A.; Tian, Y.; Bruxvoort, K.J.; Tubert, J.E.; Florea, A.; Ku, J.H.; Lee, G.S.; Choi, S.K.; Takhar, H.S.; Aragones, M.; Qian, L. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat. Med., 2022, 28(5), 1063-1071.
[http://dx.doi.org/10.1038/s41591-022-01753-y] [PMID: 35189624]
[58]
Simons, D.; Blomquist, P.B.; Zaidi, A.; Nash, S.; Aziz, N.I.B.A.; Thelwall, S.; Dabrera, G.; Myers, R.; Amirthalingam, G.; Gharbia, S.; Barrett, J.C.; Elson, R.; Ladhani, S.N.; Ferguson, N.; Zambon, M.; Campbell, C.N.J.; Brown, K.; Hopkins, S.; Chand, M.; Ramsay, M.; Ber-nal, J.L. Effectiveness of COVID-19 vaccines against the Omicron (B. 1.1. 529) variant of concern. MedRxiv, 2021, 2021-12.
[59]
Menni, C.; May, A.; Polidori, L.; Louca, P.; Wolf, J.; Capdevila, J.; Hu, C.; Ourselin, S.; Steves, C.J.; Valdes, A.M.; Spector, T.D. COVID-19 vaccine waning and effectiveness and side-effects of boosters: A prospective community study from the ZOE COVID Study. Lancet Infect. Dis., 2022, 22(7), 1002-1010.
[http://dx.doi.org/10.1016/S1473-3099(22)00146-3] [PMID: 35405090]
[60]
Edara, V.V.; Manning, K.E.; Ellis, M.; Lai, L.; Moore, K.M.; Foster, S.L.; Floyd, K.; Davis-Gardner, M.E.; Mantus, G.; Nyhoff, L.E.; Bechnak, S.; Alaaeddine, G.; Naji, A.; Samaha, H.; Lee, M.; Bristow, L.; Gagne, M.; Roberts-Torres, J.; Henry, A.R.; Godbole, S.; Grakoui, A.; Saxton, M.; Piantadosi, A.; Waggoner, J.J.; Douek, D.C.; Rouphael, N.; Wrammert, J.; Suthar, M.S. mRNA-1273 and BNT162b2 mRNA vaccines have reduced neutralizing activity against the SARS-CoV-2 omicron variant. Cell Rep. Med., 2022, 3(2), 100529.
[http://dx.doi.org/10.1016/j.xcrm.2022.100529] [PMID: 35233550]
[61]
Garcia-Beltran, WF; Denis, KJS; Hoelzemer, A; Lam, EC; Nitido, AD; Sheehan, ML; Berrios, C; Ofoman, O; Chang, CC; Hauser, BM mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell, 2022, 185(3), 457-466.
[http://dx.doi.org/10.1016/j.cell.2021.12.033] [PMID: 34995482]
[62]
Chenchula, S.; Karunakaran, P.; Sharma, S.; Chavan, M. Current evidence on efficacy of COVID-19 booster dose vaccination against the Omicron variant: A systematic review. J. Med. Virol., 2022, 94(7), 2969-2976.
[http://dx.doi.org/10.1002/jmv.27697] [PMID: 35246846]
[63]
Suntronwong, N.; Kanokudom, S.; Auphimai, C.; Assawakosri, S.; Thongmee, T.; Vichaiwattana, P.; Duangchinda, T.; Chantima, W.; Pakchotanon, P.; Chansaenroj, J.; Puenpa, J.; Nilyanimit, P.; Srimuan, D.; Thatsanatorn, T.; Sudhinaraset, N.; Wanlapakorn, N.; Mongkolsapaya, J.; Poovorawan, Y. Effects of boosted mRNA and adenoviral-vectored vaccines on immune responses to omicron BA.1 and BA.2 following the heterologous CoronaVac/AZD1222 vaccination. J. Med. Virol., 2022, 94(12), 5713-5722.
[http://dx.doi.org/10.1002/jmv.28044] [PMID: 35924475]
[64]
Collie, S.; Champion, J.; Moultrie, H.; Bekker, L-G.; Gray, G. Effectiveness of BNT162b2 vaccine against omicron variant in South Afri-ca. N. Engl. J. Med., 2021, 386(5), 494-496.
[http://dx.doi.org/10.1056/NEJMc2119270] [PMID: 34965358]
[65]
Schmidt, F.; Muecksch, F.; Weisblum, Y.; Da Silva, J.; Bednarski, E.; Cho, A.; Wang, Z.; Gaebler, C.; Caskey, M.; Nussenzweig, M.C. Plasma neutralization of the SARS-CoV-2 omicron variant. N. Engl. J. Med., 2021, 386(6), 599-601.
[http://dx.doi.org/10.1056/NEJMc2119641] [PMID: 35030645]
[66]
Gaebler, C.; Wang, Z.; Lorenzi, J.C.C.; Muecksch, F.; Finkin, S.; Tokuyama, M.; Cho, A.; Jankovic, M.; Schaefer-Babajew, D.; Oliveira, T.Y.; Cipolla, M.; Viant, C.; Barnes, C.O.; Bram, Y.; Breton, G.; Hägglöf, T.; Mendoza, P.; Hurley, A.; Turroja, M.; Gordon, K.; Millard, K.G.; Ramos, V.; Schmidt, F.; Weisblum, Y.; Jha, D.; Tankelevich, M.; Martinez-Delgado, G.; Yee, J.; Patel, R.; Dizon, J.; Unson-O’Brien, C.; Shimeliovich, I.; Robbiani, D.F.; Zhao, Z.; Gazumyan, A.; Schwartz, R.E.; Hatziioannou, T.; Bjorkman, P.J.; Mehandru, S.; Bieniasz, P.D.; Caskey, M.; Nussenzweig, M.C. Evolution of antibody immunity to SARS-CoV-2. Nature, 2021, 591(7851), 639-644.
[http://dx.doi.org/10.1038/s41586-021-03207-w] [PMID: 33461210]
[67]
Wang, Z.; Muecksch, F.; Schaefer-Babajew, D.; Finkin, S.; Viant, C.; Gaebler, C.; Hoffmann, H.H.; Barnes, C.O.; Cipolla, M.; Ramos, V.; Oliveira, T.Y.; Cho, A.; Schmidt, F.; Da Silva, J.; Bednarski, E.; Aguado, L.; Yee, J.; Daga, M.; Turroja, M.; Millard, K.G.; Jankovic, M.; Gazumyan, A.; Zhao, Z.; Rice, C.M.; Bieniasz, P.D.; Caskey, M.; Hatziioannou, T.; Nussenzweig, M.C. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature, 2021, 595(7867), 426-431.
[http://dx.doi.org/10.1038/s41586-021-03696-9] [PMID: 34126625]
[68]
Naranbhai, V; Denis, KJS; Lam, EC; Ofoman, O; Garcia-Beltran, WF; Mairena, CB; Bhan, AK; Gainor, JF; Balazs, AB; Iafrate, AJ Neutralization breadth of SARS-CoV-2 viral variants following primary series and booster SARS-CoV-2 vaccines in patients with cancer. Cancer Cell, 2022, 40(1), 103-108.e102.
[http://dx.doi.org/10.1016/j.ccell.2021.12.002]
[69]
Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Sachdeva, R.; Gower, C.; Ramsay, M.; Lopez Bernal, J. Effectiveness of COVID-19 booster vaccines against COVID-19-related symptoms, hospitalization and death in England. Nat. Med., 2022, 28(4), 831-837.
[http://dx.doi.org/10.1038/s41591-022-01699-1] [PMID: 35045566]
[70]
Vadrevu, K.M.; Ganneru, B.; Reddy, S.; Jogdand, H.; Raju, D.; Sapkal, G.; Yadav, P.; Reddy, P.; Verma, S.; Singh, C.; Redkar, S.V.; Gil-lurkar, C.S.; Kushwaha, J.S.; Mohapatra, S.; Bhate, A.; Rai, S.K.; Ella, R.; Abraham, P.; Prasad, S.; Ella, K. Persistence of immunity and impact of third dose of inactivated COVID-19 vaccine against emerging variants. Sci. Rep., 2022, 12(1), 12038.
[http://dx.doi.org/10.1038/s41598-022-16097-3] [PMID: 35835822]
[71]
Terpos, E.; Karalis, V.; Ntanasis-Stathopoulos, I.; Evangelakou, Z.; Gavriatopoulou, M.; Manola, M.S.; Malandrakis, P.; Gianniou, D.D.; Kastritis, E.; Trougakos, I.P.; Dimopoulos, M.A. Comparison of neutralizing antibody responses at 6 months post vaccination with BNT162b2 and AZD1222. Biomedicines, 2022, 10(2), 338.
[http://dx.doi.org/10.3390/biomedicines10020338] [PMID: 35203547]
[72]
Wald, A. Booster vaccination to reduce SARS-COV-2 transmission and infection. JAMA, 2022, 327(4), 327-328.
[http://dx.doi.org/10.1001/jama.2021.23726] [PMID: 35006269]
[73]
Nemet, I.; Kliker, L.; Lustig, Y.; Zuckerman, N.; Erster, O.; Cohen, C.; Kreiss, Y.; Alroy-Preis, S.; Regev-Yochay, G.; Mendelson, E. Third BNT162b2 vaccination neutralization of SARS-CoV-2 Omicron infection. N. Engl. J. Med., 2021, 386(5), 492-494.
[PMID: 34965337]
[74]
Bar-On, Y.M.; Goldberg, Y.; Mandel, M.; Bodenheimer, O.; Freedman, L.; Kalkstein, N.; Mizrahi, B.; Alroy-Preis, S.; Ash, N.; Milo, R.; Huppert, A. Protection of BNT162b2 vaccine booster against COVID-19 in Israel. N. Engl. J. Med., 2021, 385(15), 1393-1400.
[http://dx.doi.org/10.1056/NEJMoa2114255] [PMID: 34525275]
[75]
Falsey, A.R.; Frenck, R.W., Jr; Walsh, E.E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Bailey, R.; Swanson, K.A.; Xu, X.; Koury, K.; Kalina, W.; Cooper, D.; Zou, J.; Xie, X.; Xia, H.; Türeci, Ö.; Lagkadinou, E.; Tompkins, K.R.; Shi, P.Y.; Jansen, K.U.; Şahin, U.; Dormitzer, P.R.; Gruber, W.C. SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3. N. Engl. J. Med., 2021, 385(17), 1627-1629.
[http://dx.doi.org/10.1056/NEJMc2113468] [PMID: 34525276]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy