Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Nanomaterials as a Potential Target for Infectious Parasitic Agents

Author(s): Rawan H. Alsharedeh, Meriem Rezigue, Rasha M. Bashatwah, Haneen Amawi, Alaa A.A. Aljabali*, Mohammad A. Obeid and Murtaza M. Tambuwala*

Volume 21, Issue 6, 2024

Published on: 06 March, 2023

Page: [828 - 851] Pages: 24

DOI: 10.2174/1567201820666230223085403

Price: $65

Abstract

Despite the technological advancement in the era of personalized medicine and therapeutics development, infectious parasitic causative agents remain one of the most challenging areas of research and development. The disadvantages of conventional parasitic prevention and control are the emergence of multiple drug resistance as well as the non-specific targeting of intracellular parasites, which results in high dose concentration needs and subsequently intolerable cytotoxicity. Nanotechnology has attracted extensive interest to reduce medication therapy adverse effects including poor bioavailability and drug selectivity. Numerous nanomaterials-based delivery systems have previously been shown in animal models to be effective in the treatment of various parasitic infections. This review discusses a variety of nanomaterials-based antiparasitic procedures and techniques as well as the processes that allow them to be targeted to different parasitic infections. This review focuses on the key prerequisites for creating novel nanotechnology-based carriers as a potential option in parasite management, specifically in the context of human-related pathogenic parasitic agents.

Keywords: Parasites, infections, nanoparticles, nanomaterials, drug delivery, antimicrobial.

Graphical Abstract
[1]
Date, A.; Joshi, M.; Patravale, V. Parasitic diseases: Liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv. Drug Deliv. Rev., 2007, 59(6), 505-521.
[http://dx.doi.org/10.1016/j.addr.2007.04.009] [PMID: 17574295]
[2]
Zazo, H.; Colino, C.I.; Lanao, J.M. Current applications of nanoparticles in infectious diseases. J. Control. Release, 2016, 224, 86-102.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.008] [PMID: 26772877]
[3]
Ma, J.Y.; Li, M.Y.; Qi, Z.Z.; Fu, M.; Sun, T.F.; Elsheikha, H.M.; Cong, W. Waterborne protozoan outbreaks: An update on the global, regional, and national prevalence from 2017 to 2020 and sources of contamination. Sci. Total Environ., 2022, 806(2), 150562.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150562] [PMID: 34852432]
[4]
Pensel, P.E.; Ullio Gamboa, G.; Fabbri, J.; Ceballos, L.; Sanchez Bruni, S.; Alvarez, L.I.; Allemandi, D.; Benoit, J.P.; Palma, S.D.; Elissondo, M.C. Cystic echinococcosis therapy: Albendazole-loaded lipid nanocapsules enhance the oral bioavailability and efficacy in experimentally infected mice. Acta Trop., 2015, 152, 185-194.
[http://dx.doi.org/10.1016/j.actatropica.2015.09.016] [PMID: 26409727]
[5]
Amini, S.M. Preparation of antimicrobial metallic nanoparticles with bioactive compounds. Mater. Sci. Eng. C, 2019, 103, 109809.
[http://dx.doi.org/10.1016/j.msec.2019.109809] [PMID: 31349497]
[6]
Backx, B.P.; dos Santos, M.S.; dos Santos, O.A.L.; Filho, S.A. The role of biosynthesized silver nanoparticles in antimicrobial mechanisms. Curr. Pharm. Biotechnol., 2021, 22(6), 762-772.
[http://dx.doi.org/10.2174/1389201022666210202143755] [PMID: 33530905]
[7]
Gharpure, S.; Akash, A.; Ankamwar, B. A review on antimicrobial properties of metal nanoparticles. J. Nanosci. Nanotechnol., 2020, 20(6), 3303-3339.
[http://dx.doi.org/10.1166/jnn.2020.17677] [PMID: 31748024]
[8]
Rodrigues, G.R.; López-Abarrategui, C.; de la Serna Gómez, I.; Dias, S.C.; Otero-González, A.J.; Franco, O.L. Antimicrobial magnetic nanoparticles based-therapies for controlling infectious diseases. Int. J. Pharm., 2019, 555, 356-367.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.043] [PMID: 30453018]
[9]
Staroń, A.; Długosz, O. Antimicrobial properties of nanoparticles in the context of advantages and potential risks of their use. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2021, 56(6), 680-693.
[http://dx.doi.org/10.1080/10934529.2021.1917936] [PMID: 33979267]
[10]
Sun, Y.; Chen, D.; Pan, Y.; Qu, W.; Hao, H.; Wang, X. Nanoparticles for antiparasitic drug delivery. Drug Deliv., 2019, 26(1), 1206-1221.
[http://dx.doi.org/10.1080/10717544.2019.1692968]
[11]
Sharma, G.; Kalra, S.K.; Tejan, N.; Ghoshal, U. Nanoparticles based therapeutic efficacy against Acanthamoeba: Updates and future prospect. Exp. Parasitol., 2020, 218, 108008.
[http://dx.doi.org/10.1016/j.exppara.2020.108008] [PMID: 32979343]
[12]
Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Anasane, N.; Santos, C.A.D. Curcumin and curcumin-loaded nanoparticles: Antipathogenic and antiparasitic activities. Expert Rev. Anti Infect. Ther., 2020, 18(4), 367-379.
[http://dx.doi.org/10.1080/14787210.2020.1730815] [PMID: 32067524]
[13]
Akbari, M.; Oryan, A.; Hatam, G. Application of nanotechnology in treatment of leishmaniasis: A review. Acta Trop., 2017, 172, 86-90.
[http://dx.doi.org/10.1016/j.actatropica.2017.04.029] [PMID: 28460833]
[14]
Aderibigbe, B.A. Metal-based nanoparticles for the treatment of infectious diseases. Molecules, 2017, 22(8), 1370.
[http://dx.doi.org/10.3390/molecules22081370]
[15]
Reshma, V.G.; Syama, S.; Sruthi, S.; Reshma, S.C.; Remya, N.S.; Mohanan, P.V. Engineered nanoparticles with antimicrobial property. Curr. Drug Metab., 2018, 18(11), 1040-1054.
[http://dx.doi.org/10.2174/1389200218666170925122201] [PMID: 28952436]
[16]
Allahverdiyev, A.M.; Abamor, E.S.; Bagirova, M.; Rafailovich, M. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol., 2011, 6(8), 933-940.
[http://dx.doi.org/10.2217/fmb.11.78] [PMID: 21861623]
[17]
Gaafar, M.R.; El-Zawawy, L.A.; El-Temsahy, M.M.; Shalaby, T.I.; Hassan, A.Y. Silver nanoparticles as a therapeutic agent in experimental cyclosporiasis. Exp. Parasitol., 2019, 207, 107772.
[http://dx.doi.org/10.1016/j.exppara.2019.107772] [PMID: 31610183]
[18]
Abbasi, E.; Milani, M.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A.; Tayefi Nasrabadi, H.; Nikasa, P.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Samiei, M. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit. Rev. Microbiol., 2014, 42(2), 1-8.
[http://dx.doi.org/10.3109/1040841X.2014.912200] [PMID: 24937409]
[19]
Mathur, P.; Jha, S.; Ramteke, S.; Jain, N.K. Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 115-126.
[http://dx.doi.org/10.1080/21691401.2017.1414825]
[20]
Tang, S.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater., 2018, 7(13), 1701503.
[http://dx.doi.org/10.1002/adhm.201701503] [PMID: 29808627]
[21]
Jain, A.S.; Pawar, P.S.; Sarkar, A.; Junnuthula, V.; Dyawanapelly, S. Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications. Int. J. Mol. Sci., 2021, 2(21), 11993.
[http://dx.doi.org/10.3390/ijms222111993]
[22]
Lee, S.H.; Jun, B.H. Synthesis and application for nanomedicine. Int. J. Mol. Sci., 2019, 20(4), 865.
[http://dx.doi.org/10.3390/ijms20040865]
[23]
Tao, C. Antimicrobial activity and toxicity of gold nanoparticles: Research progress, challenges and prospects. Lett. Appl. Microbiol., 2018, 67(6), 537-543.
[http://dx.doi.org/10.1111/lam.13082] [PMID: 30269338]
[24]
Aljabali, A.A.A.; Zoubi, M.S.A.; Al-Batanyeh, K.M.; Al-Radaideh, A.; Obeid, M.A.; Al Sharabi, A.; Alshaer, W.; AbuFares, B.; Al-Zanati, T.; Tambuwala, M.M.; Akbar, N.; Evans, D.J. Gold-coated plant virus as computed tomography imaging contrast agent. Beilstein J. Nanotechnol., 2019, 10(1), 1983-1993.
[http://dx.doi.org/10.3762/bjnano.10.195] [PMID: 31667046]
[25]
Aljabali, A.; Akkam, Y.; Al Zoubi, M.; Al-Batayneh, K.; Al-Trad, B.; Abo Alrob, O.; Alkilany, A.; Benamara, M.; Evans, D. Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials, 2018, 8(3), 174.
[http://dx.doi.org/10.3390/nano8030174] [PMID: 29562669]
[26]
Benelli, G. Gold nanoparticles - against parasites and insect vectors. Acta Trop., 2018, 178, 73-80.
[http://dx.doi.org/10.1016/j.actatropica.2017.10.021] [PMID: 29092797]
[27]
Anwar, A.; Siddiqui, R.; Shah, M.; Khan, N. Gold nanoparticles conjugation enhances antiacanthamoebic properties of nystatin, fluconazole and amphotericin B. J. Microbiol. Biotechnol., 2019, 29(1), 171-177.
[http://dx.doi.org/10.4014/jmb.1805.05028] [PMID: 30415525]
[28]
Want, M.Y.; Yadav, P.; Khan, R.; Chouhan, G.; Islamuddin, M.; Aloyouni, S.Y. Critical antileishmanial in vitro effects of highly examined gold nanoparticles. Int. J. Nanomedicine, 2021, 16, 7285-7295.
[http://dx.doi.org/10.2147/IJN.S268548]
[29]
Martínez-Esquivias, F.; Guzmán-Flores, J.M.; Pérez-Larios, A.; González Silva, N.; Becerra-Ruiz, J.S. A review of the antimicrobial activity of selenium nanoparticles. J. Nanosci. Nanotechnol., 2021, 21(11), 5383-5398.
[http://dx.doi.org/10.1166/jnn.2021.19471] [PMID: 33980348]
[30]
Mahmoudvand, H.; Fasihi Harandi, M.; Shakibaie, M.; Aflatoonian, M.R.; Zia Ali, N.; Makki, M.S.; Jahanbakhsh, S. Scolicidal effects of biogenic selenium nanoparticles against protoscolices of hydatid cysts. Int. J. Surg., 2014, 12(5), 399-403.
[http://dx.doi.org/10.1016/j.ijsu.2014.03.017] [PMID: 24686032]
[31]
Ezzatkhah, F.; Khalaf, A.K.; Mahmoudvand, H. Copper nanoparticles: Biosynthesis, characterization, and protoscolicidal effects alone and combined with albendazole against hydatid cyst protoscoleces. Biomed. Pharmacother., 2021, 136, 111257.
[http://dx.doi.org/10.1016/j.biopha.2021.111257] [PMID: 33450495]
[32]
Ramyadevi, J.; Jeyasubramanian, K.; Marikani, A.; Rajakumar, G.; Rahuman, A.A.; Santhoshkumar, T.; Kirthi, A.V.; Jayaseelan, C.; Marimuthu, S. Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol. Res., 2011, 109(5), 1403-1415.
[http://dx.doi.org/10.1007/s00436-011-2387-3] [PMID: 21526405]
[33]
Norouzi, R.; Ataei, A.; Hejazy, M.; Noreddin, A.; El Zowalaty, M.E. Scolicidal effects of nanoparticles against hydatid cyst protoscolices in vitro. Int. J. Nanomed., 2020, 15, 1095-1100.
[http://dx.doi.org/10.2147/IJN.S228538]
[34]
Velayutham, K.; Rahuman, A.A.; Rajakumar, G.; Santhoshkumar, T.; Marimuthu, S.; Jayaseelan, C.; Bagavan, A.; Kirthi, A.V.; Kamaraj, C.; Zahir, A.A.; Elango, G. Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol. Res., 2012, 111(6), 2329-2337.
[http://dx.doi.org/10.1007/s00436-011-2676-x] [PMID: 21987105]
[35]
Khalil, N.; de Mattos, A.; Moraes, M.C.T.; Ludwig, D.; Mainardes, R. Nanotechnological strategies for the treatment of neglected diseases. Curr. Pharm. Des., 2013, 19(41), 7316-7329.
[http://dx.doi.org/10.2174/138161281941131219135458] [PMID: 23489208]
[36]
Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 381-391.
[http://dx.doi.org/10.3109/21691401.2014.953633] [PMID: 25222036]
[37]
Ortega, V.; Giorgio, S.; de Paula, E. Liposomal formulations in the pharmacological treatment of leishmaniasis: A review. J. Liposome Res., 2017, 27(3), 234-248.
[http://dx.doi.org/10.1080/08982104.2017.1376682] [PMID: 28874072]
[38]
Memvanga, P.B.; Nkanga, C.I. Liposomes for malaria management: The evolution from 1980 to 2020. Malar. J., 2021, 20(1), 327.
[http://dx.doi.org/10.1186/s12936-021-03858-0]
[39]
Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem., 2019, 164, 640-653.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.007] [PMID: 30640028]
[40]
Zeng, S.; Wang, H.; Tao, L.; Ning, X.; Fan, Y.; Zhao, S. Decoquinate liposomes: Highly effective clearance of Plasmodium parasites causing severe malaria. Malar. J., 2022, 21(1), 24.
[http://dx.doi.org/10.1186/s12936-022-04042-8]
[41]
El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[42]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[43]
Durak, S.; Arasoglu, T.; Ates, S.C.; Derman, S. Enhanced antibacterial and antiparasitic activity of multifunctional polymeric nanoparticles. Nanotechnology, 2020, 31(17), 175705.
[http://dx.doi.org/10.1088/1361-6528/ab6ab9] [PMID: 31931488]
[44]
Cabral, F.V.; Pelegrino, M.T.; Seabra, A.B.; Ribeiro, M.S. Nitric-oxide releasing chitosan nanoparticles towards effective treatment of cutaneous leishmaniasis. Nitric Oxide, 2021, 113-114, 31-38.
[http://dx.doi.org/10.1016/j.niox.2021.04.008] [PMID: 33940194]
[45]
Gungor, S.; Rezigue, M. Nanocarriers mediated topical drug delivery for psoriasis treatment. Curr. Drug Metab., 2017, 18(5), 454-468.
[http://dx.doi.org/10.2174/1389200218666170222145240] [PMID: 28228078]
[46]
Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci., 2020, 7, 587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997]
[47]
Parvez, S.; Yadagiri, G.; Gedda, M.R.; Singh, A.; Singh, O.P.; Verma, A. Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: An effective oral combination against experimental murine visceral leishmaniasis. Sci. Rep., 2020, 10(1), 12243.
[http://dx.doi.org/10.1038/s41598-020-69276-5]
[48]
Khosravi, M.; Mohammad Rahimi, H.; Doroud, D.; Mirsamadi, E.S.; Mirjalali, H.; Zali, M.R. In vitro evaluation of mannosylated paromomycin-loaded solid lipid nanoparticles on acute toxoplasmosis. Front. Cell. Infect. Microbiol., 2020, 10, 33.
[http://dx.doi.org/10.3389/fcimb.2020.00033]
[49]
Yaeger, R.G.; Protozoa Protozoa: Structure, Classification, Growth, and Development. In: Baron S, editor. Medical Microbiology. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston; , 1996; Chapter 77, .
[PMID: 21413323]
[50]
Harvey, R.A.; Champe, P.C.; Fisher, B.F. Microbiology, 2nd ed.; Lippincott Williams & Wilkins: Philadelphia, 2007.
[51]
Markell, E.K.; Voge, M. Medical parasitology, 4th ed; Saunders: USA, 1976.
[52]
Rashidzadeh, H.; Tabatabaei Rezaei, S.J.; Adyani, S.M.; Abazari, M.; Rahamooz Haghighi, S.; Abdollahi, H.; Ramazani, A. Recent advances in targeting malaria with nanotechnology-based drug carriers. Pharm. Dev. Technol., 2021, 26(8), 807-823.
[http://dx.doi.org/10.1080/10837450.2021.1948568] [PMID: 34190000]
[53]
Sinha, S.; Medhi, B.; Sehgal, R. Challenges of drug-resistant malaria. Parasite, 2014, 21, 61.
[http://dx.doi.org/10.1051/parasite/2014059]
[54]
Tang, Y.Q.; Ye, Q.; Huang, H.; Zheng, W.Y. An Overview of available antimalarials: Discovery, mode of action and drug resistance. Curr. Mol. Med., 2020, 20(8), 583-592.
[http://dx.doi.org/10.2174/1566524020666200207123253] [PMID: 32031068]
[55]
Conrad, M.D.; Rosenthal, P.J. Antimalarial drug resistance in Africa: The calm before the storm? Lancet Infect. Dis., 2019, 19(10), e338-e351.
[http://dx.doi.org/10.1016/S1473-3099(19)30261-0] [PMID: 31375467]
[56]
Alven, S.; Aderibigbe, B. Combination therapy strategies for the treatment of malaria. Molecules, 2019, 24(19), 3601.
[http://dx.doi.org/10.3390/molecules24193601]
[57]
Blasco, B.; Leroy, D.; Fidock, D.A. Antimalarial drug resistance: Linking Plasmodium falciparum parasite biology to the clinic. Nat. Med., 2017, 23(8), 917-928.
[http://dx.doi.org/10.1038/nm.4381]
[58]
Santos-Magalhães, N.S.; Mosqueira, V.C.F. Nanotechnology applied to the treatment of malaria. Adv. Drug Deliv. Rev., 2010, 62(4-5), 560-575.
[http://dx.doi.org/10.1016/j.addr.2009.11.024] [PMID: 19914313]
[59]
Bagheri, A.R.; Golenser, J.; Greiner, A. Controlled and manageable release of antimalarial Artemisone by encapsulation in biodegradable carriers. Eur. Polym. J., 2020, 129, 109625.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109625]
[60]
Thakkar, M.S.B. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies. Drug Deliv. Transl. Res., 2016, 6(4), 414-425.
[http://dx.doi.org/10.1007/s13346-016-0290-2] [PMID: 27067712]
[61]
Paleos, C.M.; Tsiourvas, D.; Sideratou, Z.; Tziveleka, L.A. Drug delivery using multifunctional dendrimers and hyperbranched polymers. Expert Opin. Drug Deliv., 2010, 7(12), 1387-1398.
[http://dx.doi.org/10.1517/17425247.2010.534981] [PMID: 21080860]
[62]
Vieira Gonzaga, R.; da Silva Santos, S.; da Silva, J.V.; Campos Prieto, D.; Feliciano Savino, D.; Giarolla, J. Targeting groups employed in selective dendrons and dendrimers. Pharmaceutics, 2018, 10(4), 219.
[http://dx.doi.org/10.3390/pharmaceutics10040219]
[63]
Elmi, T.; Shafiee Ardestani, M.; Hajialiani, F.; Motevalian, M.; Mohamadi, M.; Sadeghi, S.; Zamani, Z.; Tabatabaie, F. Novel chloroquine loaded curcumin based anionic linear globular dendrimer G2: A metabolomics study on Plasmodium falciparum in vitro using 1HNMR spectroscopy. Parasitology, 2020, 147(7), 747-759.
[http://dx.doi.org/10.1017/S0031182020000372] [PMID: 32102701]
[64]
Martí Coma-Cros, E.; Lancelot, A.; San Anselmo, M.; Neves Borgheti-Cardoso, L.; Valle-Delgado, J.J.; Serrano, J.L.; Fernàndez-Busquets, X.; Sierra, T. Micelle carriers based on dendritic macromolecules containing bis-MPA and glycine for antimalarial drug delivery. Biomater. Sci., 2019, 7(4), 1661-1674.
[http://dx.doi.org/10.1039/C8BM01600C] [PMID: 30741274]
[65]
Martí Coma-Cros, E.; Biosca, A.; Marques, J.; Carol, L.; Urbán, P.; Berenguer, D.; Riera, M.; Delves, M.; Sinden, R.; Valle-Delgado, J.; Spanos, L.; Siden-Kiamos, I.; Pérez, P.; Paaijmans, K.; Rottmann, M.; Manfredi, A.; Ferruti, P.; Ranucci, E.; Fernàndez-Busquets, X. Polyamidoamine nanoparticles for the oral administration of antimalarial drugs. Pharmaceutics, 2018, 10(4), 225.
[http://dx.doi.org/10.3390/pharmaceutics10040225] [PMID: 30423797]
[66]
Owonubi, S.J.; Aderibigbe, B.A.; Mukwevho, E.; Sadiku, E.R.; Ray, S.S. Characterization and in vitro release kinetics of antimalarials from whey protein-based hydrogel biocomposites. Int. J. Ind. Chem., 2018, 9(1), 39-52.
[http://dx.doi.org/10.1007/s40090-018-0139-2]
[67]
Dandekar, P.P.; Jain, R.; Patil, S.; Dhumal, R.; Tiwari, D.; Sharma, S.; Vanage, G.; Patravale, V. Curcumin-loaded hydrogel nanoparticles: Application in anti-malarial therapy and toxicological evaluation. J. Pharm. Sci., 2010, 99(12), 4992-5010.
[http://dx.doi.org/10.1002/jps.22191] [PMID: 20821383]
[68]
Aderibigbe, B.A.; Mhlwatika, Z. Dual release kinetics of antimalarials from soy protein isolate-carbopol-polyacrylamide based hydrogels. J. Appl. Polym. Sci., 2016, 133(37)
[http://dx.doi.org/10.1002/app.43918]
[69]
Aditya, N.P.; Vathsala, P.G.; Vieira, V.; Murthy, R.S.R.; Souto, E.B. Advances in nanomedicines for malaria treatment. Adv. Colloid Interface Sci., 2013, 201-202, 1-17.
[http://dx.doi.org/10.1016/j.cis.2013.10.014] [PMID: 24192063]
[70]
Rajendran, V.; Rohra, S.; Raza, M.; Hasan, G.M.; Dutt, S. Stearylamine liposomal delivery of monensin in combination with free artemisinin eliminates blood stages of Plasmodium falciparum in culture and P. berghei infection in murine malaria. Antimicrob. Agents Chemother., 2013, 60(3), 1304-1318.
[71]
Urbán, P.; Estelrich, J.; Adeva, A.; Cortés, A.; Fernàndez-Busquets, X. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors. Nanoscale Res. Lett., 2011, 6(1), 620.
[http://dx.doi.org/10.1186/1556-276X-6-620] [PMID: 22151840]
[72]
Algehani, A.; Jaber, F.; Khan, A.; Alsulami, M.N. Review on trypanosomiasis and their prevalence in some country on the Red Sea. Braz. J. Biol., 2021, 83, e251671.
[73]
Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human African trypanosomiasis. Lancet, 2010, 375(9709), 148-159.
[74]
Apted, F.I. Trypanosomiasis African trypanosomiasis: Human. Trop. Dis. Bull., 1965, 62, 369-383.
[75]
Muraca, G.; Berti, I.R.; Sbaraglini, M.L.; Fávaro, W.J.; Durán, N.; Castro, G.R.; Talevi, A. Trypanosomatid-caused conditions: State of the art of therapeutics and potential applications of lipid-based nanocarriers. Front Chem., 2020, 8, 601151.
[http://dx.doi.org/10.3389/fchem.2020.601151] [PMID: 33324615]
[76]
Barrett, M.P.; Boykin, D.W.; Brun, R. Tidwell, RR Human African trypanosomiasis: Pharmacological re-engagement with a neglected disease. Br. J. Pharmacol., 2007, 152(8), 1155-1171.
[http://dx.doi.org/10.1038/sj.bjp.0707354]
[77]
Yang, S.; Wenzler, T.; Miller, P.N.; Wu, H.; Boykin, D.W.; Brun, R. Pharmacokinetic comparison to determine the mechanisms underlying the differential efficacies of cationic diamidines against first- and second-stage human African trypanosomiasis. Antimicrob. Agents Chemother., 2014, 58(7), 4064-4074.
[http://dx.doi.org/10.1128/AAC.02605-14]
[78]
Nagle, A.S.; Khare, S.; Kumar, A.B.; Supek, F.; Buchynskyy, A.; Mathison, C.J. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem. Rev., 2014, 114(22), 11305-11347.
[http://dx.doi.org/10.1021/cr500365f]
[79]
Omarch, G.; Kippie, Y.; Mentor, S.; Ebrahim, N.; Fisher, D.; Murilla, G.; Swai, H.; Dube, A. Comparative in vitro transportation of pentamidine across the blood-brain barrier using polycaprolactone nanoparticles and phosphatidylcholine liposomes. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1428-1436.
[http://dx.doi.org/10.1080/21691401.2019.1596923] [PMID: 31007068]
[80]
Arrúa, E.C.; Seremeta, K.P.; Bedogni, G.R.; Okulik, N.B.; Salomon, C.J. Nanocarriers for effective delivery of benznidazole and nifurtimox in the treatment of chagas disease: A review. Acta Trop., 2019, 198, 105080.
[http://dx.doi.org/10.1016/j.actatropica.2019.105080] [PMID: 31299283]
[81]
Yamagata, Y.; Nakagawa, J. Control of Chagas disease. Adv. Parasitol., 2006, 61, 129-165.
[http://dx.doi.org/10.1016/S0065-308X(05)61004-4] [PMID: 16735164]
[82]
Rodríguez-Morales, O.; Monteón-Padilla, V.; Carrillo-Sánchez, S.C.; Rios-Castro, M.; Martínez-Cruz, M.; Carabarin-Lima, A. Ex perimental vaccines against Chagas disease: A journey through history. J. Immunol. Res. 2015, 2015.
[http://dx.doi.org/10.1155/2015/489758]
[83]
Jackson, Y.; Alirol, E.; Getaz, L.; Wolff, H.; Combescure, C.; Chappuis, F. Tolerance and safety of nifurtimox in patients with chronic chagas disease. Clin. Infect. Dis., 2010, 51(10), e69-e75.
[http://dx.doi.org/10.1086/656917] [PMID: 20932171]
[84]
Bern, C. Antitrypanosomal therapy for chronic Chagas’ disease. N. Engl. J. Med., 2011, 364(26), 2527-2534.
[http://dx.doi.org/10.1056/NEJMct1014204] [PMID: 21714649]
[85]
Gonzalez-Martin, G.; Merino, I.; Rodriguez-Cabezas, M.N.; Torres, M.; Nuáez, R.; Osuna, A. Characterization and trypanocidal activity of nifurtimox-containing and empty nanoparticles of polyethylcyanoacrylates. J. Pharm. Pharmacol., 2011, 50(1), 29-35.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb03301.x] [PMID: 9580223]
[86]
Scalise, M.L.; Arrua, E.C.; Rial, M.S.; Esteva, M.I.; Salomon, C.J.; Fichera, L.E. Promising efficacy of benznidazole nanoparticles in acute Trypanosoma cruzi murine model: In vitro and in vivo studies. Am. J. Trop. Med. Hyg., 2016, 95(2), 388-393.
[http://dx.doi.org/10.4269/ajtmh.15-0889]
[87]
Cencig, S.; Coltel, N.; Truyens, C.; Carlier, Y. Parasitic loads in tissues of mice infected with Trypanosoma cruzi and treated with AmBisome. PLoS Negl. Trop. Dis., 2011, 5(6), e1216.
[http://dx.doi.org/10.1371/journal.pntd.0001216]
[88]
Mungroo, M.R.; Khan, N.A.; Anwar, A.; Siddiqui, R. Nanovehicles in the improved treatment of infections due to brain-eating amoebae. Int. Microbiol., 2021, 25(2), 225-235.
[http://dx.doi.org/10.1007/s10123-021-00201-0] [PMID: 34368912]
[89]
Walvekar, S.; Anwar, A.; Anwar, A.; Sridewi, N.; Khalid, M.; Yow, Y.Y.; Khan, N.A. Anti-amoebic potential of azole scaffolds and nanoparticles against pathogenic Acanthamoeba. Acta Trop., 2020, 211, 105618.
[http://dx.doi.org/10.1016/j.actatropica.2020.105618] [PMID: 32628912]
[90]
Anwar, A.; Soomaroo, A.; Anwar, A.; Siddiqui, R.; Khan, N.A. Metformin-coated silver nanoparticles exhibit anti-acanthamoebic activities against both trophozoite and cyst stages. Exp. Parasitol., 2020, 215, 107915.
[http://dx.doi.org/10.1016/j.exppara.2020.107915] [PMID: 32461112]
[91]
Padzik, M.; Hendiger, E.B.; Chomicz, L.; Grodzik, M.; Szmidt, M.; Grobelny, J.; Lorenzo-Morales, J. Tannic acid-modified silver nanoparticles as a novel therapeutic agent against Acanthamoeba. Parasitol. Res., 2018, 117(11), 3519-3525.
[http://dx.doi.org/10.1007/s00436-018-6049-6] [PMID: 30112674]
[92]
Said, D.; Elsamad, L.; Gohar, Y.M. Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents. Parasitol. Res., 2012, 111(2), 545-554.
[93]
Al-Ardi, M.H. Anti-parasitic activity of nano Citrullus colocynthis and nano Capparis spinose against Trichomonas vaginalis in vitro. J. Parasit. Dis., 2021, 45(3), 845-850.
[http://dx.doi.org/10.1007/s12639-021-01371-4]
[94]
Bavand, Z.; Gholami, S.; Honari, S.; Rahimi Esboei, B.; Torabi, N. Effect of gold nanoparticles on giardia lamblia cyst stage in in vitro. J. Arak Univ. Med. Sci., 2014, 16(10), 27-37.
[95]
Jafarpour Azami, S.; Mohammad Rahimi, H.; Mirjalali, H.; Zali, M.R. Unravelling Toxoplasma treatment: Conventional drugs toward nanomedicine. World J. Microbiol. Biotechnol., 2021, 37(3), 48.
[http://dx.doi.org/10.1007/s11274-021-03000-x] [PMID: 33566198]
[96]
Flegr, J.; Horacek, J. Negative effects of latent toxoplasmosis on mental health. Front. Psychiatry, 2019, 10, 1012.
[http://dx.doi.org/10.3389/fpsyt.2019.01012]
[97]
Webster, J.P.; Dubey, J.P. Toxoplasmosis of animals and humans.Parasites & Vectors; CRC Press: Boca Raton, 2010, p. 940.
[98]
Melchor, S.J.; Ewald, S.E. Disease tolerance in toxoplasma infection. Front. Cell. Infect. Microbiol., 2019, 185.
[http://dx.doi.org/10.3389/fcimb.2019.00185]
[99]
Mcauley, J.B.; Jones, J.L.; Singh, K. Toxoplasma.Manual of Clinical Microbiology; Wiley Online: Hoboken, 2015, pp. 2373-2386.
[100]
El-Zawawy, L.A.; El-Said, D.; Mossallam, S.F.; Ramadan, H.S.; Younis, S.S. Triclosan and triclosan-loaded liposomal nanoparticles in the treatment of acute experimental toxoplasmosis. Exp. Parasitol., 2015, 149, 54-64.
[http://dx.doi.org/10.1016/j.exppara.2014.12.007] [PMID: 25499511]
[101]
Gaafar, M.R.; Mady, R.F.; Diab, R.G.; Shalaby, T.I. Chitosan and silver nanoparticles: Promising anti-toxoplasma agents. Exp. Parasitol., 2014, 143, 30-38.
[http://dx.doi.org/10.1016/j.exppara.2014.05.005] [PMID: 24852215]
[102]
Ebrahimi, M.; Montazeri, M.; Ahmadi, A.; Nami, S.; Hamishehkar, H.; Shahrivar, F.; Bakhtiar, N.M.; Nissapatorn, V.; Spotin, A.; Ahmadpour, E. Nanoliposomes increases Anti-Trichomonas vaginalis and apoptotic activities of metronidazole. Acta Trop., 2021, 224, 106156.
[http://dx.doi.org/10.1016/j.actatropica.2021.106156] [PMID: 34599888]
[103]
Elmi, T.; Rahimi Esboei, B.; Sadeghi, F.; Zamani, Z.; Didehdar, M.; Fakhar, M.; Chabra, A.; Hajialiani, F.; Namazi, M.J.; Tabatabaie, F. In vitro antiprotozoal effects of nano-chitosan on Plasmodium falciparum, Giardia lamblia and Trichomonas vaginalis. Acta Parasitol., 2021, 66(1), 39-52.
[http://dx.doi.org/10.1007/s11686-020-00255-6] [PMID: 32666158]
[104]
Fahmy, A.; Fahmy, Z.; Aly, E.; Elshenawy, A. El- Wakil, E. Therapeutic potential of Commiphora molmol extract loaded on chitosan nanofibers against experimental cryptosporidiosis. Parasitol. United J., 2021, 14(1), 39-45.
[http://dx.doi.org/10.21608/puj.2021.55537.1102]
[105]
Ahmed, S.A.; El-Mahallawy, H.S.; Karanis, P. Inhibitory activity of chitosan nanoparticles against Cryptosporidium parvum oocysts. Parasitol. Res., 2019, 118(7), 2053-2063.
[http://dx.doi.org/10.1007/s00436-019-06364-0] [PMID: 31187224]
[106]
Hassan, D.; Farghali, M.; Eldeek, H.; Gaber, M.; Elossily, N.; Ismail, T. Antiprotozoal activity of silver nanoparticles against Cryptosporidium parvum oocysts: New insights on their feasibility as a water disinfectant. J. Microbiol. Methods, 2019, 165, 105698.
[http://dx.doi.org/10.1016/j.mimet.2019.105698] [PMID: 31446036]
[107]
Saleem, K.; Khursheed, Z.; Hano, C.; Anjum, I.; Anjum, S. Applications of nanomaterials in Leishmaniasis: A focus on recent advances and challenges. Nanomaterials., 2019, 9(12), 1749.
[http://dx.doi.org/10.3390/nano9121749]
[108]
Kammona, O.; Tsanaktsidou, E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int. J. Pharm., 2021, 605, 120761.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120761] [PMID: 34081999]
[109]
Igbineweka, O.O.; Aghedo, F.I.; Idusuyi, O.; Hussain, N.A.; Microbiology, E. Evaluating the efficacy of topical silver nitrate and intramuscular antimonial drugs in the treatment of cutaneous leishmaniasis in sokoto, Nigeria. Afr. J. Clin. Exp. Microbiol., 2012, 13(2), 90-97.
[http://dx.doi.org/10.4314/ajcem.v13i2.6]
[110]
Chakravarty, J.; Sundar, S. Drug resistance in leishmaniasis. J. Glob. Infect. Dis., 2010, 2(2), 167-176.
[http://dx.doi.org/10.4103/0974-777X.62887]
[111]
Sundar, S.; Singh, A.; Rai, M.; Prajapati, V.K.; Singh, A.K.; Ostyn, B.; Boelaert, M.; Dujardin, J.C.; Chakravarty, J. Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin. Infect. Dis., 2012, 55(4), 543-550.
[http://dx.doi.org/10.1093/cid/cis474] [PMID: 22573856]
[112]
Karamanidou, T.; Bourganis, V.; Kammona, O.; Kiparissides, C. Lipid-based nanocarriers for the oral administration of biopharmaceutics. Nanomedicine, 2016, 11(22), 3009-3032.
[http://dx.doi.org/10.2217/nnm-2016-0265] [PMID: 27781558]
[113]
Meheus, F.; Balasegaram, M.; Olliaro, P.; Sundar, S.; Rijal, S.; Faiz, M.A. Cost-effectiveness analysis of combination therapies for visceral leishmaniasis in the Indian subcontinent. PLoS Negl. Trop. Dis., 2010, 4(9), e818.
[http://dx.doi.org/10.1371/journal.pntd.0000818]
[114]
Sánchez-Moreno, P.; Ortega-Vinuesa, J.L.; Martín-Rodríguez, A.; Boulaiz, H.; Marchal-Corrales, J.A.; Peula-García, J.M. Characterization of different functionalized lipidic nanocapsules as potential drug carriers. Int. J. Mol. Sci., 2012, 13(2), 2405-2424.
[http://dx.doi.org/10.3390/ijms13022405] [PMID: 22408461]
[115]
Van de Ven, H.; Vermeersch, M.; Matheeussen, A.; Vandervoort, J.; Weyenberg, W.; Apers, S.; Cos, P.; Maes, L.; Ludwig, A. PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: Factor influence study and in vitro efficacy evaluation. Int. J. Pharm., 2011, 420(1), 122-132.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.016] [PMID: 21864661]
[116]
Asthana, S.; Jaiswal, A.K.; Gupta, P.K.; Pawar, V.K.; Dube, A.; Chourasia, M.K. Immunoadjuvant chemotherapy of visceral leishmaniasis in hamsters using amphotericin B-encapsulated nanoemulsion template-based chitosan nanocapsules. Antimicrob. Agents Chemother., 2013, 57(4), 1714-1722.
[http://dx.doi.org/10.1128/AAC.01984-12]
[117]
Khatami, M.; Alijani, H.; Sharifi, I.; Sharifi, F.; Pourseyedi, S.; Kharazi, S. eishmanicidal activity of biogenic Fe3O4 nanoparticles. Sci. Pharm., 2017, 85(4), 36-22.
[http://dx.doi.org/10.3390/scipharm85040036]
[118]
Beheshti, N.; Soflaei, S.; Shakibaie, M.; Yazdi, M.H.; Ghaffarifar, F.; Dalimi, A.; Shahverdi, A.R. Efficacy of biogenic selenium nanoparticles against Leishmania major: In vitro and in vivo studies. J. Trace Elem. Med. Biol., 2013, 27(3), 203-207.
[http://dx.doi.org/10.1016/j.jtemb.2012.11.002] [PMID: 23219368]
[119]
Jebali, A.; Kazemi, B. Nano-based antileishmanial agents: A toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol. In vitro, 2013, 27(6), 1896-1904.
[http://dx.doi.org/10.1016/j.tiv.2013.06.002] [PMID: 23806227]
[120]
Barros, D.; Costa Lima, S.A.; Cordeiro-da-Silva, A. Surface functionalization of polymeric nanospheres modulates macrophage activation: Relevance in Leishmaniasis therapy. Nanomedicine, 2015, 10(3), 387-403.
[http://dx.doi.org/10.2217/nnm.14.116] [PMID: 25707974]
[121]
Prajapati, V.K.; Awasthi, K.; Gautam, S.; Yadav, T.P.; Rai, M.; Srivastava, O.N. Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J. Antimicrob. Chemother., 2011, 66(4), 874-879.
[http://dx.doi.org/10.1093/jac/dkr002]
[122]
Hotez, P.J.; Brindley, P.J.; Bethony, J.M.; King, C.H.; Pearce, E.J.; Jacobson, J. Helminth infections: The great neglected tropical diseases. J. Clin. Invest., 2008, 118(4), 1311-1321.
[http://dx.doi.org/10.1172/JCI34261]
[123]
Phillips, J.A.; Vargas, S.J.S.; Pawar, S; Koprivnikar, J; Benesh, DP; Molnar, PK The effects of phylogeny, habitat and host characteristics on the thermal sensitivity of helminth development. Proc. Biol. Sci., 2022, 289(1968), 20211878.
[http://dx.doi.org/10.1098/rspb.2021.1878]
[124]
Whitehead, B.; Christiansen, S.; Ostergaard, L.; Nejsum, P. Helminths and COVID-19 susceptibility, disease progression, and vaccination efficacy. Trends Parasitol., 2022, 38(4), 277-279.
[http://dx.doi.org/10.1016/j.pt.2022.01.007]
[125]
Lombardo, J.F.; Pórfido, J.L.; Sisti, M.S.; Giorello, A.N.; Rodríguez, S.; Córsico, B.; Franchini, G.R. Function of lipid binding proteins of parasitic helminths: Still a long road. Parasitol. Res., 2022, 121(4), 1117-1129.
[http://dx.doi.org/10.1007/s00436-022-07463-1] [PMID: 35169885]
[126]
Scholz, T.; Kuchta, R.; Oros, M. Tapeworms as pathogens of fish: A review. J. Fish Dis., 2021, 44(12), 1883-1900.
[http://dx.doi.org/10.1111/jfd.13526] [PMID: 34529835]
[127]
Bhandari, R.; Chamlagain, R.; Sutanto, E.; Adam, H.; Dhungana, A.; Ali, A.A.; Piya, B.; Ubaid, A.; Neumayr, A. Intestinal perforation due to adult tapeworm of Taenia: A case report and review of the literature. Clin. Med. Insights Case Rep., 2022, 15.
[http://dx.doi.org/10.1177/11795476211072670] [PMID: 35125899]
[128]
Aranda-López, Y.; López-López, L.; Castro, K.E.N.; Ponce-Regalado, M.D.; Becerril-Villanueva, L.E.; Girón-Pérez, M.I.; Del Río-Araiza, V.H.; Morales-Montor, J. Cysticidal effect of a pure naphthoquinone on Taenia crassiceps cysticerci. Parasitol. Res., 2021, 120(11), 3783-3794.
[http://dx.doi.org/10.1007/s00436-021-07281-x] [PMID: 34549347]
[129]
Goyal, S.; Goyal, S. Cysticercosis: A case of missed diagnosis. Diagn. Cytopathol., 2022, 50(8), E214-E216.
[http://dx.doi.org/10.1002/dc.24957] [PMID: 35302290]
[130]
Silva, L.D.; Lima, N.F.; Arrua, E.C.; Salomon, C.J.; Vinaud, M.C.; Research, T. In vivo treatment of experimental neurocysticercosis with praziquantel nanosuspensions - a metabolic approach. Drug Deliv. Transl. Res., 2018, 8(5), 1265-1273.
[http://dx.doi.org/10.1007/s13346-018-0576-7] [PMID: 30117119]
[131]
Pensel, P.; Paredes, A.; Albani, C.M.; Allemandi, D.; Sanchez Bruni, S.; Palma, S.D.; Elissondo, M.C. Albendazole nanocrystals in experimental alveolar echinococcosis: Enhanced chemoprophylactic and clinical efficacy in infected mice. Vet. Parasitol., 2018, 251, 78-84.
[http://dx.doi.org/10.1016/j.vetpar.2017.12.022] [PMID: 29426481]
[132]
Fabbri, J.; Pensel, P.E.; Albani, C.M.; Arce, V.B.; Mártire, D.O.; Elissondo, M.C. Drug repurposing for the treatment of alveolar echinococcosis: In vitro and in vivo effects of silica nanoparticles modified with dichlorophen. Parasitology, 2019, 146(13), 1620-1630.
[http://dx.doi.org/10.1017/S0031182019001057] [PMID: 31397256]
[133]
Fateh, R.; Norouzi, R.; Mirzaei, E.; Nissapatron, V.; Nawaz, M.; Khalifeh-Gholi, M.; Hamta, A.; Adnani Sadati, S.J.; Siyadatpanah, A.; Fattahi Bafghi, A. In vitro evaluation of albendazole nanocrystals against Echinococcus granulosus protoscolices. Ann. Parasitol., 2021, 67(2), 203-212.
[http://dx.doi.org/10.17420/ap6702.330] [PMID: 34592087]
[134]
Dermauw, V.; Muchai, J.; Al Kappany, Y.; Fajardo Castaneda, A.L. Dorny, P Human fascioliasis in Africa: A systematic review. PLoS One, 2021, 16(12), e0261166.
[http://dx.doi.org/10.1371/journal.pone.0261166]
[135]
Real, D.; Hoffmann, S.; Leonardi, D.; Salomon, C.; Goycoolea, F.M. Chitosan-based nanodelivery systems applied to the development of novel triclabendazole formulations. PLoS One, 2018, 13(12), e0207625.
[http://dx.doi.org/10.1371/journal.pone.0207625]
[136]
Zajíčková, M.; Nguyen, L.T.; Skálová, L.; Raisová Stuchlíková, L.; Matoušková, P. Anthelmintics in the future: Current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov. Today, 2020, 25(2), 430-437.
[http://dx.doi.org/10.1016/j.drudis.2019.12.007] [PMID: 31883953]
[137]
Vlaar, L.E.; Bertran, A.; Rahimi, M.; Dong, L.; Kammenga, J.E.; Helder, J. On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. Parasit. Vectors, 2021, 14(1), 554.
[http://dx.doi.org/10.1186/s13071-021-04953-6]
[138]
Roeber, F.; Jex, A.R.; Gasser, R.B. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance - an Australian perspective. Parasit. Vectors, 2013, 6(1), 153.
[http://dx.doi.org/10.1186/1756-3305-6-153]
[139]
Payne, L.; Fitchett, J.R. Bringing neglected tropical diseases into the spotlight. Trends Parasitol., 2010, 26(9), 421-423.
[http://dx.doi.org/10.1016/j.pt.2010.06.002] [PMID: 20591739]
[140]
Ayech, A.; Josende, M.E.; Ventura-Lima, J.; Ruas, C.; Gelesky, M.A.; Ale, A.; Cazenave, J.; Galdopórpora, J.M.; Desimone, M.F.; Duarte, M.; Halicki, P.; Ramos, D.; Carvalho, L.M.; Leal, G.C.; Monserrat, J.M. Toxicity evaluation of nanocrystalline silver-impregnated coated dressing on the life cycle of worm Caenorhabditis elegans. Ecotoxicol. Environ. Saf., 2020, 197, 110570.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110570] [PMID: 32311611]
[141]
Charão, M.F.; Souto, C.; Brucker, N.; Barth, A.; Jornada, D.S.; Fagundez, D.; Ávila, D.S.; Eifler-Lima, V.L.; Guterres, S.S.; Pohlmann, A.R.; Garcia, S.C. Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage. Int. J. Nanomedicine, 2015, 10, 5093-5106.
[http://dx.doi.org/10.2147/IJN.S84909] [PMID: 26300641]
[142]
Chen, L.; Li, J.; Chen, Z.; Gu, Z.; Yan, L.; Zhao, F.; Zhang, A. Toxicological evaluation of graphene-family nanomaterials. J. Nanosci. Nanotechnol., 2020, 20(4), 1993-2006.
[http://dx.doi.org/10.1166/jnn.2020.17364] [PMID: 31492205]
[143]
Wu, T.; Xu, H.; Liang, X.; Tang, M. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. Chemosphere, 2019, 221, 708-726.
[http://dx.doi.org/10.1016/j.chemosphere.2019.01.021] [PMID: 30677729]
[144]
Bortolozzo, L.S.; Côa, F.; Khan, L.U.; Medeiros, A.M.Z.; Da Silva, G.H.; Delite, F.S.; Strauss, M.; Martinez, D.S.T. Mitigation of graphene oxide toxicity in C. elegans after chemical degradation with sodium hypochlorite. Chemosphere, 2021, 278, 130421.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130421] [PMID: 33839394]
[145]
Luo, X.; Xu, S.; Yang, Y.; Zhang, Y.; Wang, S.; Chen, S.; Xu, A.; Wu, L. A novel method for assessing the toxicity of silver nanoparticles in Caenorhabditis elegans. Chemosphere, 2017, 168, 648-657.
[http://dx.doi.org/10.1016/j.chemosphere.2016.11.011] [PMID: 27836269]
[146]
Miyako, E.; Chechetka, S.A.; Doi, M.; Yuba, E.; Kono, K. In vivo remote control of reactions in Caenorhabditis elegans by using supramolecular nanohybrids of carbon nanotubes and liposomes. Angew. Chem. Int. Ed., 2015, 54(34), 9903-9906.
[http://dx.doi.org/10.1002/anie.201504987] [PMID: 26140479]
[147]
Immanuel, C.; Ramanathan, A.; Balasubramaniyan, M.; Khatri, V.K.; Amdare, N.P.; Rao, D.N.; Reddy, M.V.R.; Perumal, K. Immunoprophylaxis of multi-antigen peptide (MAP) vaccine for human lymphatic filariasis. Immunol. Res., 2017, 65(3), 729-738.
[http://dx.doi.org/10.1007/s12026-017-8911-5] [PMID: 28432603]
[148]
Ali, M.; Afzal, M.; Bhattacharya, S.M.; Ahmad, F.J.; Dinda, A.K. Nanopharmaceuticals to target antifilarials: A comprehensive review. Expert Opin. Drug Deliv., 2013, 10(5), 665-678.
[http://dx.doi.org/10.1517/17425247.2013.771630] [PMID: 23427945]
[149]
Roy, P.; Saha, S.K.; Gayen, P.; Chowdhury, P.; Sinha Babu, S.P. Exploration of antifilarial activity of gold nanoparticle against human and bovine filarial parasites: A nanomedicinal mechanistic approach. Colloids Surf. B Biointerfaces, 2018, 161, 236-243.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.057] [PMID: 29080508]
[150]
Chapman, P.R.; Giacomin, P.; Loukas, A.; McCarthy, J.S. Experimental human hookworm infection: A narrative historical review. PLoS Negl. Trop. Dis., 2021, 15(12), e0009908.
[http://dx.doi.org/10.1371/journal.pntd.0009908]
[151]
Bartlett, S.; Eichenberger, R.M.; Nevagi, R.J.; Ghaffar, K.A.; Marasini, N.; Dai, Y.; Loukas, A.; Toth, I.; Skwarczynski, M. Lipopeptide-based oral vaccine against hookworm infection. J. Infect. Dis., 2020, 221(6), 934-942.
[http://dx.doi.org/10.1093/infdis/jiz528] [PMID: 31621864]
[152]
Shalash, A.O.; Becker, L.; Yang, J.; Giacomin, P.; Pearson, M.; Hussein, W.M. Oral peptide vaccine against hookworm infection: Correlation of antibody titers with protective efficacy. Vaccines, 2021, 9(9), 1034.
[http://dx.doi.org/10.3390/vaccines9091034]
[153]
Carbonell, C.; Rodriguez-Alonso, B.; Lopez-Bernus, A.; Almeida, H.; Galindo-Perez, I.; Velasco-Tirado, V. Clinical spectrum of schistosomiasis: An update. J. Clin. Med., 2021, 10(23), 5521.
[http://dx.doi.org/10.3390/jcm10235521]
[154]
Aruleba, R.T.; Adekiya, T.A.; Oyinloye, B.E.; Masamba, P.; Mbatha, L.S.; Pretorius, A.; Kappo, A.P. PZQ therapy: How close are we in the development of effective alternative anti-schistosomal drugs? Infect. Disord. Drug Targets, 2019, 19(4), 337-349.
[http://dx.doi.org/10.2174/1871526519666181231153139] [PMID: 30599112]
[155]
Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; Machado, L.F.; Bortoleti, B.T.S.; Sahd, C.S.; Chagas, A.F.; Assolini, J.P.; Oliveira, F.J.A.; Pavanelli, W.R.; Conchon-Costa, I.; Costa, I.N.; Melanda, F.N. Nanotechnology as a potential therapeutic alternative for schistosomiasis. Acta Trop., 2017, 174, 64-71.
[http://dx.doi.org/10.1016/j.actatropica.2017.06.025] [PMID: 28668252]
[156]
Labib El Gendy, A.E.M.; Mohammed, F.A.; Abdel-Rahman, S.A.; Shalaby, T.I.A.; Fathy, G.M.; Mohammad, S.M. Effect of nanoparticles on the therapeutic efficacy of praziquantel against Schistosoma mansoni infection in murine models. J. Parasit. Dis., 2019, 43(3), 416-425.
[http://dx.doi.org/10.1007/s12639-019-01106-6]
[157]
Frezza, T.F.; de Souza, A.L.R.; Ribeiro Prado, C.C.; de Oliveira, C.N.F.; Gremião, M.P.D.; Giorgio, S.; Dolder, M.A.H.; Joazeiro, P.P.; Allegretti, S.M. Effectiveness of hyperbaric oxygen for experimental treatment of Schistosomiasis mansoni using praziquantel-free and encapsulated into liposomes: Assay in adult worms and oviposition. Acta Trop., 2015, 150, 182-189.
[http://dx.doi.org/10.1016/j.actatropica.2015.07.022] [PMID: 26215128]
[158]
Dkhil, M.A.; Khalil, M.F.; Bauomy, A.A.; Diab, M.S.; Al-Quraishy, S. Efficacy of gold nanoparticles against nephrotoxicity induced by Schistosoma mansoni infection in mice. Biomed. Environ. Sci., 2016, 29(11), 773-781.
[http://dx.doi.org/10.3967/bes2016.104] [PMID: 27998383]
[159]
Radwan, A.; El-Lakkany, N.M.; William, S.; El-Feky, G.S.; Al-Shorbagy, M.Y.; Saleh, S.; Botros, S. A novel praziquantel solid lipid nanoparticle formulation shows enhanced bioavailability and antischistosomal efficacy against murine S. mansoni infection. Parasit. Vectors, 2019, 12(1), 304.
[http://dx.doi.org/10.1186/s13071-019-3563-z] [PMID: 31208446]
[160]
Amara, R.; Ramadan, A.; El-Moslemany, R.; Eissa, M.; El-Azzouni, M.; El-Khordagui, L. Praziquantel-lipid nanocapsules: An oral nanotherapeutic with potential Schistosoma mansoni tegumental targeting. Int. J. Nanomedicine, 2018, 13, 4493-4505.
[http://dx.doi.org/10.2147/IJN.S167285] [PMID: 30122922]
[161]
Marques, J.; Valle-Delgado, J.J.; Urban, P.; Baro, E.; Prohens, R.; Mayor, A. Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery. Nanomedicine, 2017, 13(2), 515-525.
[http://dx.doi.org/10.1016/j.nano.2016.09.010]
[162]
Jain, V.; Gupta, A.; Pawar, V.K.; Asthana, S.; Jaiswal, A.K.; Dube, A.; Chourasia, M.K. Chitosan-assisted immunotherapy for intervention of experimental leishmaniasis via amphotericin B-loaded solid lipid nanoparticles. Appl. Biochem. Biotechnol., 2014, 174(4), 1309-1330.
[http://dx.doi.org/10.1007/s12010-014-1084-y] [PMID: 25106894]
[163]
Arruebo, M.; Valladares, M.; González-Fernández, A. Antibody-conjugated nanoparticles for biomedical applications. J. Nanomater., 2009, 2009, 439389.
[164]
Greene, M.K.; Richards, D.A.; Nogueira, J.C.F.; Campbell, K.; Smyth, P.; Fernández, M.; Scott, C.J.; Chudasama, V. Forming next-generation antibody-nanoparticle conjugates through the oriented installation of non-engineered antibody fragments. Chem. Sci., 2018, 9(1), 79-87.
[http://dx.doi.org/10.1039/C7SC02747H] [PMID: 29629076]
[165]
Catuogno, S.; Esposito, C.L.; de Franciscis, V. Aptamer-mediated targeted delivery of therapeutics: An update. Pharmaceuticals, 2016, 9(4), 69.
[http://dx.doi.org/10.3390/ph9040069]
[166]
Reverdatto, S.; Burz, D.S.; Shekhtman, A. Peptide aptamers: Development and applications. Curr. Top. Med. Chem., 2015, 15(1082), 101.
[http://dx.doi.org/10.2174/1568026615666150413153143]
[167]
Mansour, J.; Mansour, T.E. Targets in the Tegument of Flatworms.Chemotherapeutic Targets in Parasites; Cambridge University Press: Cambridge, 2002, pp. 189-214.
[168]
El Ridi, R.; Tallima, H.; Migliardo, F. Biochemical and biophysical methodologies open the road for effective schistosomiasis therapy and vaccination. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(1), 3613-3620.
[http://dx.doi.org/10.1016/j.bbagen.2016.03.036] [PMID: 27062905]
[169]
Cabezas-Cruz, A.; Valdes, J.J.; Lancelot, J.; Pierce, R.J. Fast evolutionary rates associated with functional loss in class I glucose transporters of Schistosoma mansoni. BMC Genomics, 2015, 16(1), 980.
[http://dx.doi.org/10.1186/s12864-015-2144-6]
[170]
Roberts, A.J.; Kon, T.; Knight, P.J.; Sutoh, K.; Burgess, S.A. Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol., 2013, 14(11), 713-726.
[http://dx.doi.org/10.1038/nrm3667]
[171]
Githui, E.K.; Damian, R.T.; Aman, R.A.; Ali, M.A.; Kamau, J.M. Schistosoma spp.: Isolation of microtubule associated proteins in the tegument and the definition of dynein light chains components. Exp. Parasitol., 2009, 121(1), 96-104.
[http://dx.doi.org/10.1016/j.exppara.2008.10.007] [PMID: 18996374]
[172]
Faghiri, Z.; Skelly, P.J. The role of tegumental aquaporin from the human parasitic worm, Schistosoma monsoni, in osmoregulation and drug uptake. FASEB J., 2009, 23(8), 2780-2789.
[http://dx.doi.org/10.1096/fj.09-130757] [PMID: 19364765]
[173]
Braschi, S.; Borges, W.C.; Wilson, R.A. Proteomic analysis of the shistosome tegument and its surface membranes. Mem. Inst. Oswaldo Cruz, 2006, 101(Suppl. 1), 205-212.
[http://dx.doi.org/10.1590/S0074-02762006000900032] [PMID: 17308771]
[174]
Sotillo, J.; Pearson, M.; Becker, L.; Mulvenna, J.; Loukas, A. A quantitative proteomic analysis of the tegumental proteins from Schistosoma mansoni schistosomula reveals novel potential therapeutic targets. Int. J. Parasitol., 2015, 45(8), 505-516.
[http://dx.doi.org/10.1016/j.ijpara.2015.03.004] [PMID: 25910674]
[175]
Albuquerque, E.X.; Pereira, E.F.; Alkondon, M.; Rogers, S.W. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol. Rev., 2009, 89(1), 73-120.
[http://dx.doi.org/10.1152/physrev.00015.2008]
[176]
MacDonald, K.; Buxton, S.; Kimber, M.J.; Day, T.A.; Robertson, A.P.; Ribeiro, P. Functional characterization of a novel family of acetylcholine-gated chloride channels in Schistosoma mansoni. PLoS Pathog., 2014, 10(6), e1004181.
[http://dx.doi.org/10.1371/journal.ppat.1004181]
[177]
Eissa, M.M.; El-Azzouni, M.Z.; El-Khordagui, L.K.; Abdel Bary, A.; El-Moslemany, R.M.; Abdel Salam, S.A. Single oral fixed-dose praziquantel-miltefosine nanocombination for effective control of experimental Schistosomiasis mansoni. Parasit. Vectors, 2020, 13(1), 474.
[http://dx.doi.org/10.1186/s13071-020-04346-1]
[178]
Abd El Wahab, W.M.; El-Badry, A.A.; Mahmoud, S.S.; El-Badry, Y.A.; El-Badry, M.A.; Hamdy, D.A. Ginger (Zingiber Officinale)-derived nanoparticles in Schistosoma mansoni infected mice: Hepatoprotective and enhancer of etiological treatment. PLoS Negl. Trop. Dis., 2021, 15(5), e0009423.
[http://dx.doi.org/10.1371/journal.pntd.0009423]
[179]
Obeid, M.A.; Gany, S.A.S.; Gray, A.I.; Young, L.; Igoli, J.O.; Ferro, V.A. Niosome-encapsulated balanocarpol: Compound isolation, characterisation, and cytotoxicity evaluation against human breast and ovarian cancer cell lines. Nanotechnology, 2020, 31(19), 195101.
[http://dx.doi.org/10.1088/1361-6528/ab6d9c] [PMID: 31958777]
[180]
Aljabali, A.A.A.; Obeid, M.A. Inorganic-organic nanomaterials for therapeutics and molecular imaging applications. Nanosci. Nanotechnol. Asia, 2020, 10(6), 748-765.
[http://dx.doi.org/10.2174/2210681209666190807145229]
[181]
Welearegay, T.G.; Diouani, M.F.; Österlund, L.; Ionescu, F.; Belgacem, K.; Smadhi, H.; Khaled, S.; Kidar, A.; Cindemir, U.; Laouini, D.; Ionescu, R. Ligand-capped ultrapure metal nanoparticle sensors for the detection of cutaneous leishmaniasis disease in exhaled breath. ACS Sens., 2018, 3(12), 2532-2540.
[http://dx.doi.org/10.1021/acssensors.8b00759] [PMID: 30403135]
[182]
Obeid, M.A.; Teeravatcharoenchai, T.; Connell, D.; Niwasabutra, K.; Hussain, M.; Carter, K.; Ferro, V.A. Examination of the effect of niosome preparation methods in encapsulating model antigens on the vesicle characteristics and their ability to induce immune responses. J. Liposome Res., 2021, 31(2), 195-202.
[http://dx.doi.org/10.1080/08982104.2020.1768110] [PMID: 32396752]
[183]
Aljabali, A.A.; Obeid, M.A.; Amawi, H.A.; Rezigue, M.M.; Hamzat, Y.; Satija, S. Application of nanomaterials in the diagnosis and treatment of genetic disorders.Applications of Nanomaterials in Human Health; Springer, 2020, pp. 125-146.
[http://dx.doi.org/10.1007/978-981-15-4802-4_7]
[184]
Wu, Y.; Liu, J.; Lin, Y.; Weng, R.; Chen, R.; Li, J.; Lv, Z. Diagnosis, monitoring, and control of schistosomiasis-An update. J. Biomed. Nanotechnol., 2018, 14(3), 430-455.
[http://dx.doi.org/10.1166/jbn.2018.2517] [PMID: 29663919]
[185]
Feng, Z.Q.; Zhong, S.G.; Li, Y.H.; Li, Y.Q.; Qiu, Z.N.; Wang, Z.M.; Li, J.; Dong, L.; Guan, X.H. Nanoparticles as a vaccine adjuvant of anti-idiotypic antibody against schistosomiasis. Chin. Med. J. (Engl.), 2004, 117(1), 83-87.
[PMID: 14733780]
[186]
Aly, I. Efficacy of iron oxide nanoparticles in diagnosis of schistosomiasis. Al-Azhar Int. Med. J., 2020, 1(2), 219-224.
[http://dx.doi.org/10.21608/aimj.2020.21461.1031]
[187]
Aly, I.; Zalat, R.; El Aswad, B.E.D.W.; Moharm, I.M.; Masoud, B.M. Novel nanomagnetic beads based-latex agglutination assay for rapid diagnosis of human schistosomiasis haematobium. Biomed. Opt. Express, 2014, 7(12), 977-983.
[188]
Aly, I.; Taher, E.E. EL nain, G.; EL Sayed, H.; Mohammed, F.A.; Hamad, R.S.; Bayoumy, E.M. Advantages of bioconjugated silica-coated nanoparticles as an innovative diagnosis for human toxoplasmosis. Acta Trop., 2018, 177, 19-24.
[http://dx.doi.org/10.1016/j.actatropica.2017.09.024] [PMID: 28964770]
[189]
Sharma, M.K.; Agarwal, G.S.; Rao, V.K.; Upadhyay, S.; Merwyn, S.; Gopalan, N.; Rai, G.P.; Vijayaraghavan, R.; Prakash, S. Amperometric immunosensor based on gold nanoparticles/alumina sol-gel modified screen-printed electrodes for antibodies to Plasmodium falciparum histidine rich protein-2. Analyst, 2010, 135(3), 608-614.
[http://dx.doi.org/10.1039/b918880k] [PMID: 20174718]
[190]
Guirgis, B.S.S.; Sá e Cunha, C.; Gomes, I.; Cavadas, M.; Silva, I.; Doria, G.; Blatch, G.L.; Baptista, P.V.; Pereira, E.; Azzazy, H.M.E.; Mota, M.M.; Prudêncio, M.; Franco, R. Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection. Anal. Bioanal. Chem., 2012, 402(3), 1019-1027.
[http://dx.doi.org/10.1007/s00216-011-5489-y] [PMID: 22089818]
[191]
Jeon, W.; Lee, S.; Dh, M.; Ban, C. A colorimetric aptasensor for the diagnosis of malaria based on cationic polymers and gold nanoparticles. Anal. Biochem., 2013, 439(1), 11-16.
[http://dx.doi.org/10.1016/j.ab.2013.03.032] [PMID: 23583275]
[192]
Safarpour, H.; Majdi, H.; Masjedi, A.; Pagheh, A.S.; Pereira, M.L.; Rodrigues Oliveira, S.M.; Ahmadpour, E. Development of optical biosensor using protein a-conjugated chitosan-gold nanoparticles for diagnosis of cystic echinococcosis. Biosensors, 2021, 11(5), 134.
[http://dx.doi.org/10.3390/bios11050134] [PMID: 33923009]
[193]
Andreadou, M.; Liandris, E.; Gazouli, M.; Taka, S.; Antoniou, M.; Theodoropoulos, G.; Tachtsidis, I.; Goutas, N.; Vlachodimitropoulos, D.; Kasampalidis, I.; Ikonomopoulos, J. A novel non-amplification assay for the detection of Leishmania spp. in clinical samples using gold nanoparticles. J. Microbiol. Methods, 2014, 96, 56-61.
[http://dx.doi.org/10.1016/j.mimet.2013.10.011] [PMID: 24184015]
[194]
Jiang, S.; Hua, E.; Liang, M.; Liu, B.; Xie, G. A novel immunosensor for detecting toxoplasma gondii-specific IgM based on goldmag nanoparticles and graphene sheets. Colloids Surf. B Biointerfaces, 2013, 101, 481-486.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.021] [PMID: 23010058]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy