Review Article

天然存在的黄酮;生物活性、化学特征和硅片药物发现

卷 31, 期 1, 2024

发表于: 19 May, 2023

页: [62 - 101] 页: 40

弟呕挨: 10.2174/0929867330666230221111941

价格: $65

Open Access Journals Promotions 2
摘要

氧杂蒽酮是分布广泛的多酚,普遍存在于高等植物中;藤黄果、海藻属、金丝桃属、柏拉图属、芒果属、龙胆属和獐牙菜属。氧杂蒽酮三环支架能够与不同的生物靶点相互作用,表现出抗菌和细胞毒作用,以及对骨关节炎、疟疾和心血管疾病的有效作用。因此,在本文中,我们重点关注 2017-2020 年 Xanthon 分离化合物的最新更新的药理作用、应用和临床前研究。我们发现只有α-山竹素、藤黄酸和芒果苷进行了临床前研究,特别强调抗癌、糖尿病、抗菌和保肝疗法的开发。进行分子对接计算以预测氧杂蒽酮衍生化合物对 SARS-CoV-2 Mpro 的结合亲和力。结果显示,角黄酮 E 和羊肚菌酸对 SARS-CoV-2 Mpro 表现出良好的结合亲和力,对接分数分别为 -11.2 和 -11.0 kcal/mol。结合特征表明角黄酮 E 和羊肚菌酸能够分别与 Mpro 活性位点的关键氨基酸形成九个和五个氢键。总之,角黄酮 E 和羊肚菌酸是有前景的抗 COVID-19 候选药物,值得进一步详细的体内实验评估和临床评估。

关键词: 黄酮,心血管保护,II期临床试验,生物活性,SARS-CoV-2主要蛋白,分子对接。

[1]
El-Seedi, H.; El-Ghorab, D.; El-Barbary, M.; Zayed, M.; Göransson, U.; Larsson, S.; Verpoorte, R. Naturally occurring xanthones; latest investigations: isolation, structure elucidation and chemosystematic significance. Curr. Med. Chem., 2009, 16(20), 2581-2626.
[http://dx.doi.org/10.2174/092986709788682056] [PMID: 19601799]
[2]
El-Seedi, H.; El-Barbary, M.; El-Ghorab, D.; Bohlin, L.; Borg-Karlson, A.K.; Göransson, U.; Verpoorte, R. Recent insights into the biosynthesis and biological activities of natural xanthones. Curr. Med. Chem., 2010, 17(9), 854-901.
[http://dx.doi.org/10.2174/092986710790712147] [PMID: 20156171]
[3]
Lesch, B.; Bräse, S. A short, atom-economical entry to tetrahydroxanthenones. Angew. Chem. Int. Ed., 2004, 43(1), 115-118.
[http://dx.doi.org/10.1002/anie.200352154] [PMID: 14694488]
[4]
Salman, Z.; Yu-Qing, J.; Bin, L.; Cai-Yun, P.; Iqbal, C.M.; Atta-ur, R.; Wei, W. Antioxidant nature adds further therapeutic value: an updated review on natural xanthones and their glycosides. Digital Chinese Med., 2019, 2(3), 166-192.
[http://dx.doi.org/10.1016/j.dcmed.2019.12.005]
[5]
Klein-Júnior, L.C.; Campos, A.; Niero, R.; Corrêa, R.; Vander Heyden, Y.; Filho, V.C. Xanthones and cancer: from natural sources to mechanisms of action. Chem. Biodivers., 2020, 17(2), e1900499-e1900499.
[http://dx.doi.org/10.1002/cbdv.201900499] [PMID: 31794156]
[6]
Araújo, J.; Fernandes, C.; Pinto, M.; Tiritan, M.; Elizabeth Tiritan, M.; Tiritan, M.E. Chiral derivatives of xanthones with antimicrobial activity. Molecules, 2019, 24(2), 314.
[http://dx.doi.org/10.3390/molecules24020314] [PMID: 30654546]
[7]
Fotie, J.; Nkengfack, A.E.; Rukunga, G.; Tolo, F.; Peter, M.G.; Heydenreich, M.; Fomum, Z.T. In-vivo antimalarial activity of some oxygenated xanthones. Ann. Trop. Med. Parasitol., 2003, 97(7), 683-688.
[http://dx.doi.org/10.1179/000349803225002390] [PMID: 14613627]
[8]
Auranwiwat, C.; Limtharakul, T.; Pyne, S.G.; Rattanajak, R.; Kamchonwongpaisan, S. A new xanthone and a biphenyl from the flower and twig extracts of Garcinia mckeaniana. Nat. Prod. Res., 2019, 35(20), 3404-3409.
[PMID: 31842629]
[9]
Lannang, A.M.; Louh, G.N.; Lontsi, D.; Specht, S.; Sarite, S.R.; Flörke, U.; Hussain, H.; Hoerauf, A.; Krohn, K. Antimalarial compounds from the root bark of Garcinia polyantha Olv. J. Antibiot. (Tokyo), 2008, 61(8), 518-523.
[http://dx.doi.org/10.1038/ja.2008.70] [PMID: 18997392]
[10]
El-Seedi, H.R.; Khalifa, S.A.M.; Yosri, N.; Khatib, A.; Chen, L.; Saeed, A.; Efferth, T.; Verpoorte, R. Plants mentioned in the Islamic Scriptures (Holy Qur’ân and Ahadith): Traditional uses and medicinal importance in contemporary times. J. Ethnopharmacol., 2019, 243, 112007.
[http://dx.doi.org/10.1016/j.jep.2019.112007] [PMID: 31170516]
[11]
El-Seedi, H.R.; Khalifa, S.A.M.; Mohamed, A.H.; Yosri, N.; Zhao, C.; El-Wakeil, N.; Attia, N.F.; Xu, B.; AbdElhafez, A.E.R.; Boskabady, M.H.; Elseedy, S.; Efferth, T.; Verpoorte, R. Plant extracts and compounds for combating schistosomiasis. Phytochem. Rev., 2022, 1-16.
[http://dx.doi.org/10.1007/s11101-022-09836-x]
[12]
Yosri, N.; Alsharif, S.M.; Xiao, J.; Musharraf, S.G.; Zhao, C.; Saeed, A.; Gao, R.; Said, N.S.; Di Minno, A.; Daglia, M.; Guo, Z.; Khalifa, S.A.M.; El-Seedi, H.R. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biomed. Pharmacother., 2023, 158, 114104.
[http://dx.doi.org/10.1016/j.biopha.2022.114104] [PMID: 36516694]
[13]
Khalifa, S.A.M.; Yosri, N.; El-Mallah, M.F.; Ghonaim, R.; Guo, Z.; Musharraf, S.G.; Du, M.; Khatib, A.; Xiao, J.; Saeed, A.; El-Seedi, H.H.R.; Zhao, C.; Efferth, T.; El-Seedi, H.R. Screening for natural and derived bio-active compounds in preclinical and clinical studies: One of the frontlines of fighting the coronaviruses pandemic. Phytomedicine, 2021, 85, 153311.
[http://dx.doi.org/10.1016/j.phymed.2020.153311] [PMID: 33067112]
[14]
Yosri, N.; Abd El-Wahed, A.A.; Ghonaim, R.; Khattab, O.M.; Sabry, A.; Ibrahim, M.A.A.; Moustafa, M.F.; Guo, Z.; Zou, X.; Algethami, A.F.M.; Masry, S.H.D.; AlAjmi, M.F.; Afifi, H.S.; Khalifa, S.A.M.; El-Seedi, H.R. Anti-viral and immunomodulatory properties of propolis: chemical diversity, pharmacological properties, preclinical and clinical applications, and in silico potential against SARS-CoV-2. Foods, 2021, 10(8), 1776.
[http://dx.doi.org/10.3390/foods10081776] [PMID: 34441553]
[15]
Ibrahim, S.R.M.; Mohamed, G.A.; Elfaky, M.A.; Zayed, M.F.; El-Kholy, A.A.; Abdelmageed, O.H.; Ross, S.A. Mangostanaxanthone VII, a new cytotoxic xanthone from Garcinia mangostana. Z Naturforsch CJ Biosci. C, 2018, 73(5–6), 185-189.
[16]
Sukandar, E.R.; Ersam, T.; Fatmawati, S.; Siripong, P.; Aree, T.; Tip-pyang, S. Cylindroxanthones A–C, three new xanthones and their cytotoxicity from the stem bark of Garcinia cylindrocarpa. Fitoterapia, 2016, 108, 62-65.
[http://dx.doi.org/10.1016/j.fitote.2015.11.017] [PMID: 26611370]
[17]
Caicedo, D.; Díaz, O.; Devesa, P.; Devesa, J. Growth hormone (GH) and cardiovascular system. Int. J. Mol. Sci., 2018, 19(1), 290.
[http://dx.doi.org/10.3390/ijms19010290] [PMID: 29346331]
[18]
Jantan, I.; Pisar, M.M.; Idris, M.S.; Taher, M.; Ali, R.M. In vitro inhibitory effect of rubraxanthone isolated from Garcinia parvifolia on platelet-activating factor receptor binding. Planta Med., 2002, 68(12), 1133-1134.
[http://dx.doi.org/10.1055/s-2002-36343] [PMID: 12494345]
[19]
Jiang, D.J.; Dai, Z.; Li, Y.J. Pharmacological effects of xanthones as cardiovascular protective agents. Cardiovasc. Drug Rev., 2004, 22(2), 91-102.
[http://dx.doi.org/10.1111/j.1527-3466.2004.tb00133.x] [PMID: 15179447]
[20]
He, Q.; He, L.; Xu, S.; Deng, Q. Effect of xanthone from Canscora lucidissima on cultured myocytes anoxia-reoxygenation injuries. Zhong Yao Cai, 2000, 23(7), 399-401.
[PMID: 12575167]
[21]
Gärtner, A.; Pereira, T.; Simões, M.J.; Armada-da-Silva, P.A.S.; França, M.L.; Sousa, R.; Bompasso, S.; Raimondo, S.; Shirosaki, Y.; Nakamura, Y.; Hayakawa, S.; Osakah, A.; Porto, B.; Luís, A.L.; Varejão, A.S.; Maurício, A.C. Use of hybrid chitosan membranes and human mesenchymal stem cells from the Wharton jelly of umbilical cord for promoting nerve regeneration in an axonotmesis rat model. Neural Regen. Res., 2012, 7(29), 2247-2258.
[PMID: 25538746]
[22]
Wang, W.; Liao, Y.; Huang, X.; Tang, C.; Cai, P. A novel xanthone dimer derivative with antibacterial activity isolated from the bark of Garcinia mangostana. Nat. Prod. Res., 2018, 32(15), 1769-1774.
[http://dx.doi.org/10.1080/14786419.2017.1402315] [PMID: 29132213]
[23]
van den Berg, M.A.; Albang, R.; Albermann, K.; Badger, J.H.; Daran, J.M.; M Driessen, A.J.; Garcia-Estrada, C.; Fedorova, N.D.; Harris, D.M.; Heijne, W.H.M.; Joardar, V.; W Kiel, J.A.K.; Kovalchuk, A.; Martín, J.F.; Nierman, W.C.; Nijland, J.G.; Pronk, J.T.; Roubos, J.A.; van der Klei, I.J.; van Peij, N.N.M.E.; Veenhuis, M.; von Döhren, H.; Wagner, C.; Wortman, J.; Bovenberg, R.A.L. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol., 2008, 26(10), 1161-1168.
[http://dx.doi.org/10.1038/nbt.1498] [PMID: 18820685]
[24]
Zhen, X.; Gong, T.; Wen, Y.H.; Yan, D.J.; Chen, J.J.; Zhu, P. Chrysoxanthones A–C, three new xanthone–chromanone heterdimers from sponge-associated Penicillium chrysogenum HLS111 treated with histone deacetylase inhibitor. Mar. Drugs, 2018, 16(10), 357.
[http://dx.doi.org/10.3390/md16100357] [PMID: 30275353]
[25]
Wei, F.; Zhang, T.; Yang, Z.; Wei, J.C.; Shen, H.F.; Xiao, D.; Wang, Q.; Yang, P.; Chen, H.C.; Hu, H.; Chen, Z.P.; Huang, Q.; Li, W.L.; Cao, J. Gambogic acid efficiently kills stem-like colorectal cancer cells by upregulating ZFP36 expression. Cell. Physiol. Biochem., 2018, 46(2), 829-846.
[http://dx.doi.org/10.1159/000488740] [PMID: 29627822]
[26]
Sivaranjani, M.; Prakash, M.; Gowrishankar, S.; Rathna, J.; Pandian, S.K.; Ravi, A.V. In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl. Microbiol. Biotechnol., 2017, 101(8), 3349-3359.
[http://dx.doi.org/10.1007/s00253-017-8231-7] [PMID: 28343241]
[27]
Yang, S.Q.; Li, X.M.; Xu, G.M.; Li, X.; An, C.Y.; Wang, B.G. Antibacterial anthraquinone derivatives isolated from a mangrove-derived endophytic fungus Aspergillus nidulans by ethanol stress strategy. J. Antibiot. (Tokyo), 2018, 71(9), 778-784.
[http://dx.doi.org/10.1038/s41429-018-0063-x] [PMID: 29717199]
[28]
Koh, J.J.; Qiu, S.; Zou, H.; Lakshminarayanan, R.; Li, J.; Zhou, X.; Tang, C.; Saraswathi, P.; Verma, C.; Tan, D.T.H.; Tan, A.L.; Liu, S.; Beuerman, R.W. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim. Biophys. Acta Biomembr., 2013, 1828(2), 834-844.
[http://dx.doi.org/10.1016/j.bbamem.2012.09.004] [PMID: 22982495]
[29]
El-Seedi, H.R.; Yosri, N.; Khalifa, S.A.M.; Guo, Z.; Musharraf, S.G.; Xiao, J.; Saeed, A.; Du, M.; Khatib, A.; Abdel-Daim, M.M.; Efferth, T.; Göransson, U.; Verpoorte, R. Exploring natural products-based cancer therapeutics derived from egyptian flora. J. Ethnopharmacol., 2021, 269, 113626.
[http://dx.doi.org/10.1016/j.jep.2020.113626] [PMID: 33248183]
[30]
Laopian, F.; Kaennakam, S.; Rassamee, K.; Siripong, P.; Tip-pyang, S.; Calaxanthones, A.C. Calaxanthones A-C, three new xanthones from the roots of Calophyllum calaba and the cytotoxicity. Nat. Prod. Res., 2019, 33(11), 1584-1590.
[http://dx.doi.org/10.1080/14786419.2018.1425849] [PMID: 29334257]
[31]
Chukaew, A.; Saithong, S.; Chusri, S.; Limsuwan, S.; Watanapokasin, R.; Voravuthikunchai, S.P.; Chakthong, S. Cytotoxic xanthones from the roots of Mesua ferrea L. Phytochemistry, 2019, 157, 64-70.
[http://dx.doi.org/10.1016/j.phytochem.2018.10.008] [PMID: 30368220]
[32]
Ibrahim, S.R.M.; Abdallah, H.M.; El-Halawany, A.M.; Radwan, M.F.; Shehata, I.A.; Al-Harshany, E.M.; Zayed, M.F.; Mohamed, G.A. Garcixanthones B and C, new xanthones from the pericarps of Garcinia mangostana and their cytotoxic activity. Phytochem. Lett., 2018, 25, 12-16.
[http://dx.doi.org/10.1016/j.phytol.2018.03.009]
[33]
Duan, D.; Zhang, B.; Yao, J.; Liu, Y.; Sun, J.; Ge, C.; Peng, S.; Fang, J. Gambogic acid induces apoptosis in hepatocellular carcinoma SMMC-7721 cells by targeting cytosolic thioredoxin reductase. Free Radic. Biol. Med., 2014, 69, 15-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.12.027] [PMID: 24407164]
[34]
Xu, L.; Meng, X.; Xu, N.; Fu, W.; Tan, H.; Zhang, L.; Zhou, Q.; Qian, J.; Tu, S.; Li, X.; Lao, Y.; Xu, H. Gambogenic acid inhibits fibroblast growth factor receptor signaling pathway in erlotinib-resistant non-small-cell lung cancer and suppresses patient-derived xenograft growth. Cell Death Dis., 2018, 9(3), 262.
[http://dx.doi.org/10.1038/s41419-018-0314-6] [PMID: 29449529]
[35]
Banik, K.; Harsha, C.; Bordoloi, D.; Lalduhsaki Sailo, B.; Sethi, G.; Leong, H.C.; Arfuso, F.; Mishra, S.; Wang, L.; Kumar, A.P.; Kunnumakkara, A.B. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer. Cancer Lett., 2018, 416, 75-86.
[http://dx.doi.org/10.1016/j.canlet.2017.12.014] [PMID: 29246645]
[36]
Zhang, K.; Gu, Q.; Yang, K.; Ming, X.; Wang, J. Anticarcinogenic effects of α-mangostin: a review. Planta Med., 2017, 83(03/04), 188-202.
[37]
Shiozaki, T.; Fukai, M.; Hermawati, E.; Juliawaty, L.D.; Syah, Y.M.; Hakim, E.H.; Puthongking, P.; Suzuki, T.; Kinoshita, K.; Takahashi, K.; Koyama, K. Anti-angiogenic effect of α-mangostin. J. Nat. Med., 2013, 67(1), 202-206.
[http://dx.doi.org/10.1007/s11418-012-0645-z] [PMID: 22382862]
[38]
Zhang, H.; Tan, Y.; Zhao, L.; Wang, L.; Fu, N.; Zheng, S.; Shen, X. Anticancer activity of dietary xanthone α-mangostin against hepatocellular carcinoma by inhibition of STAT3 signaling via stabilization of SHP1. Cell Death Dis., 2020, 11(1), 63.
[http://dx.doi.org/10.1038/s41419-020-2227-4] [PMID: 31980595]
[39]
Delgado-Hernández, R.; Hernández-Balmaseda, I.; Rodeiro-Guerra, I.; Cesar Rodriguez Gonzalez, J.; De Wever, O.; Logie, E.; Declerck, K.; Pérez-Novo, C.; Vanden Berghe, W. Anti-angiogenic effects of mangiferin and mechanism of action in metastatic melanoma. Melanoma Res., 2020, 30(1), 39-51.
[http://dx.doi.org/10.1097/CMR.0000000000000647] [PMID: 31651714]
[40]
Staud, R.; Weyl, E.E.; Price, D.D.; Robinson, M.E. Mechanical and heat hyperalgesia highly predict clinical pain intensity in patients with chronic musculoskeletal pain syndromes. J. Pain, 2012, 13(8), 725-735.
[http://dx.doi.org/10.1016/j.jpain.2012.04.006] [PMID: 22739051]
[41]
Arendt-Nielsen, L.; Graven-Nielsen, T. Translational musculoskeletal pain research. Best Pract. Res. Clin. Rheumatol., 2011, 25(2), 209-226.
[http://dx.doi.org/10.1016/j.berh.2010.01.013] [PMID: 22094197]
[42]
Huh, J.E.; Koh, P.S.; Seo, B.K.; Park, Y.C.; Baek, Y.H.; Lee, J.D.; Park, D.S. Mangiferin reduces the inhibition of chondrogenic differentiation by IL-1β in mesenchymal stem cells from subchondral bone and targets multiple aspects of the Smad and SOX9 pathways. Int. J. Mol. Sci., 2014, 15(9), 16025-16042.
[http://dx.doi.org/10.3390/ijms150916025] [PMID: 25216336]
[43]
Goldring, M.B.; Berenbaum, F. Emerging targets in osteoarthritis therapy. Curr. Opin. Pharmacol., 2015, 22, 51-63.
[http://dx.doi.org/10.1016/j.coph.2015.03.004] [PMID: 25863583]
[44]
Pardo-Andreu, G.L.; Barrios, M.F.; Curti, C.; Hernández, I.; Merino, N.; Lemus, Y.; Martínez, I.; Riaño, A.; Delgado, R. Protective effects of Mangifera indica L. extract (Vimang), and its major component mangiferin, on iron-induced oxidative damage to rat serum and liver. Pharmacol. Res., 2008, 57(1), 79-86.
[http://dx.doi.org/10.1016/j.phrs.2007.12.004] [PMID: 18243014]
[45]
Garrido-Suárez, B.B.; Garrido, G.; García, M.E.; Delgado-Hernández, R. Antihyperalgesic effects of an aqueous stem bark extract of Mangifera indica L.: role of mangiferin isolated from the extract. Phytother. Res., 2014, 28(11), 1646-1653.
[http://dx.doi.org/10.1002/ptr.5177] [PMID: 24849742]
[46]
Li, H.; Lan, T.; Yun, C.; Yang, K.; Du, Z.; Luo, X.; Hao, E.; Deng, J. Mangiferin exerts neuroprotective activity against lead-induced toxicity and oxidative stress via Nrf2 pathway. Chin. Herb. Med., 2020, 12(1), 36-46.
[http://dx.doi.org/10.1016/j.chmed.2019.12.002] [PMID: 36117559]
[47]
Lwin, O.M.; Giribabu, N.; Kilari, E.K.; Salleh, N. Topical administration of mangiferin promotes healing of the wound of streptozotocin-nicotinamide-induced type-2 diabetic male rats. J. Dermatolog. Treat., 2021, 32(8), 1039-1048.
[http://dx.doi.org/10.1080/09546634.2020.1721419] [PMID: 32013660]
[48]
Yang, S.; Kuang, G.; Zhang, L.; Wu, S.; Zhao, Z.; Wang, B.; Yin, X.; Gong, X.; Wan, J. Mangiferin attenuates LPS/D-GalN-induced acute liver injury by promoting HO-1 in kupffer cells. Front. Immunol., 2020, 11, 285.
[http://dx.doi.org/10.3389/fimmu.2020.00285] [PMID: 32158448]
[49]
Quadri, F.; Telang, M.; Mandhare, A. Therapeutic and cosmetic applications of mangiferin: an updated patent review (patents published after 2013). Expert Opin. Ther. Pat., 2019, 29(6), 463-479.
[http://dx.doi.org/10.1080/13543776.2019.1620205] [PMID: 31094584]
[50]
Imran, M.; Arshad, M.S.; Butt, M.S.; Kwon, J.H.; Arshad, M.U.; Sultan, M.T. Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis., 2017, 16(1), 84.
[http://dx.doi.org/10.1186/s12944-017-0449-y] [PMID: 28464819]
[51]
Wei, Z.; Zhaoxiang, Y.; Yunqi, G.; Xiaohui, G.; Liming, S.; Xujuan, Y. Mango leaf extract and application thereof. C.N. Patent 103768112A, 2014.
[52]
Charles, B.B.; Lai-ming, C.P.; Martin, P. Cancer treatment by combination therapy. U.S. Patent 7510830, 2009.
[53]
Šiler, B.; Živković, S.; Banjanac, T.; Cvetković, J.; Nestorović Živković, J.; Ćirić, A.; Soković, M.; Mišić, D. Centauries as underestimated food additives: Antioxidant and antimicrobial potential. Food Chem., 2014, 147, 367-376.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.007] [PMID: 24206732]
[54]
Chang, L.W.; Juang, L.J.; Wang, B.S.; Wang, M.Y.; Tai, H.M.; Hung, W.J.; Chen, Y.J.; Huang, M.H. Antioxidant and antityrosinase activity of mulberry (Morus alba L.) twigs and root bark. Food Chem. Toxicol., 2011, 49(4), 785-790.
[http://dx.doi.org/10.1016/j.fct.2010.11.045] [PMID: 21130832]
[55]
Mi Moon, K.; Young Kim, C.; Yeul Ma, J.; Lee, B. Xanthone-related compounds as an anti-browning and antioxidant food additive. Food Chem., 2019, 274, 345-350.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.144] [PMID: 30372949]
[56]
Wan, B.K.; Siow, L.F. Spray dried xanthone: Physicochemical properties, storage stability and controlled release. J. Food Process Eng., 2017, 40(2), e12407-e12407.
[http://dx.doi.org/10.1111/jfpe.12407]
[57]
Ho, L.Y.; Lim, Y.Y.; Tan, C.P.; Siow, L.F. Comparison of physicochemical properties and aqueous solubility of xanthone prepared via oil-in-water emulsion and complex coacervation techniques. Int. J. Food Prop., 2018, 21(1), 784-798.
[http://dx.doi.org/10.1080/10942912.2018.1446022]
[58]
Wang, F.; Ma, H.; Liu, Z.; Huang, W.; Xu, X.; Zhang, X. α-Mangostin inhibits DMBA/TPA-induced skin cancer through inhibiting inflammation and promoting autophagy and apoptosis by regulating PI3K/Akt/mTOR signaling pathway in mice. Biomed. Pharmacother., 2017, 92, 672-680.
[http://dx.doi.org/10.1016/j.biopha.2017.05.129] [PMID: 28582759]
[59]
Parkhe, A.; Parekh, P.; Nalla, L.V.; Sharma, N.; Sharma, M.; Gadepalli, A.; Kate, A.; Khairnar, A. Protective effect of alpha mangostin on rotenone induced toxicity in rat model of Parkinson’s disease. Neurosci. Lett., 2020, 716, 134652.
[http://dx.doi.org/10.1016/j.neulet.2019.134652] [PMID: 31778768]
[60]
Abuzaid, A.S.; Iskandar, E.Y.; Kurniati, N.F.; Adanyana, I.K. Preventive effect on obesity of mangosteen (Garcinia mangostana L.) pericarp ethanolic extract by reduction of fatty acid synthase level in monosodium glutamate and high-calorie diet-induced male wistar rats. Asian J. Pharm. Clin. Res., 2016, 9(3), 257-260.
[61]
Aisha, A.F.A.; Abdulmajid, A.M.S.; Ismail, Z.; Alrokayan, S.A.; Abu-Salah, K.M. Development of polymeric nanoparticles of Garcinia mangostana xanthones in eudragit RL100/RS100 for anti-colon cancer drug delivery. J. Nanomater., 2015, 2015, 701979.
[http://dx.doi.org/10.1155/2015/701979]
[62]
El-Seedi, H.R.; Salem, M.A.; Khattab, O.M.; El-Wahed, A.A.; El-Kersh, D.M.; Khalifa, S.A.M.; Saeed, A.; Abdel-Daim, M.M.; Hajrah, N.H.; Alajlani, M.M.; Halabi, M.F.; Jassbi, A.R.; Musharraf, S.G.; Farag, M.A. Dietary xanthones. In: Handbook of Dietary Phytochemicals; Springer: Berlin, Germany, 2020.
[http://dx.doi.org/10.1007/978-981-13-1745-3_11-1]
[63]
Yao, L.; Gu, X.; Song, Q.; Wang, X.; Huang, M.; Hu, M.; Hou, L.; Kang, T.; Chen, J.; Chen, H.; Gao, X. Nanoformulated alpha-mangostin ameliorates Alzheimer’s disease neuropathology by elevating LDLR expression and accelerating amyloid-beta clearance. J. Control. Release, 2016, 226, 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.055] [PMID: 26836197]
[64]
Feng, J.; Xu, M.; Wang, J.; Zhou, S.; Liu, Y.; Liu, S.; Huang, Y.; Chen, Y.; Chen, L.; Song, Q.; Gong, J.; Lu, H.; Gao, X.; Chen, J. Sequential delivery of nanoformulated α-mangostin and triptolide overcomes permeation obstacles and improves therapeutic effects in pancreatic cancer. Biomaterials, 2020, 241, 119907.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119907] [PMID: 32120315]
[65]
Velderrain-Rodríguez, G.; Torres-Moreno, H.; Villegas-Ochoa, M.; Ayala-Zavala, J.; Robles-Zepeda, R.; Wall-Medrano, A.; González-Aguilar, G. Gallic acid content and an antioxidant mechanism are responsible for the antiproliferative activity of ‘ataulfo’mango peel on LS180 cells. Molecules, 2018, 23(3), 695.
[http://dx.doi.org/10.3390/molecules23030695] [PMID: 29562699]
[66]
Saha, S.; Sadhukhan, P.; Sil, P.C. Mangiferin: A xanthonoid with multipotent anti-inflammatory potential. Biofactors, 2016, 42(5), 459-474.
[http://dx.doi.org/10.1002/biof.1292] [PMID: 27219011]
[67]
Guo, H.W.; Yun, C.X.; Hou, G.H.; Du, J.; Huang, X.; Lu, Y.; Keller, E.T.; Zhang, J.; Deng, J.G. Mangiferin attenuates TH1/TH2 cytokine imbalance in an ovalbumin-induced asthmatic mouse model. PLoS One, 2014, 9(6), e100394.
[http://dx.doi.org/10.1371/journal.pone.0100394] [PMID: 24955743]
[68]
Bhatt, L.; Sebastian, B.; Joshi, V. Mangiferin protects rat myocardial tissue against cyclophosphamide induced cardiotoxicity. J. Ayurveda Integr. Med., 2017, 8(2), 62-67.
[http://dx.doi.org/10.1016/j.jaim.2017.04.006] [PMID: 28610894]
[69]
Wightman, E.L.; Jackson, P.A.; Forster, J.; Khan, J.; Wiebe, J.C.; Gericke, N.; Kennedy, D.O. Acute effects of a polyphenol-rich leaf extract of Mangifera indica L. (Zynamite) on cognitive function in healthy adults: A double-blind, placebo-controlled crossover study. Nutrients, 2020, 12(8), 2194.
[http://dx.doi.org/10.3390/nu12082194] [PMID: 32717999]
[70]
Patra, N.; Dehury, N.; Pal, A.; Behera, A.; Patra, S. Preparation and mechanistic aspect of natural xanthone functionalized gold nanoparticle. Mater. Sci. Eng. C, 2018, 90(90), 439-445.
[http://dx.doi.org/10.1016/j.msec.2018.04.091] [PMID: 29853110]
[71]
Khurana, R.K.; Gaspar, B.L.; Welsby, G.; Katare, O.P.; Singh, K.K.; Singh, B. Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems. Drug Deliv. Transl. Res., 2018, 8(3), 617-632.
[http://dx.doi.org/10.1007/s13346-018-0498-4] [PMID: 29637488]
[72]
Jeetah, R.; Bhaw-Luximon, A.; Jhurry, D. Nanopharmaceutics: phytochemical-based controlled or sustained drug-delivery systems for cancer treatment. J. Biomed. Nanotechnol., 2014, 10(9), 1810-1840.
[http://dx.doi.org/10.1166/jbn.2014.1884] [PMID: 25992442]
[73]
Zhang, Z.H.; Wang, X.P.; Ayman, W.Y.; Munyendo, W.L.L.; Lv, H.X.; Zhou, J.P. Studies on lactoferrin nanoparticles of gambogic acid for oral delivery. Drug Deliv., 2013, 20(2), 86-93.
[http://dx.doi.org/10.3109/10717544.2013.766781] [PMID: 23495734]
[74]
Teixeira, M.; Cerqueira, F.; Maurício Barbosa, C.; São José Nascimento, M.; Pinto, M. Improvement of the inhibitory effect of xanthones on NO production by encapsulation in PLGA nanocapsules. J. Drug Target., 2005, 13(2), 129-135.
[http://dx.doi.org/10.1080/10611860400027717] [PMID: 15823964]
[75]
Panthong, A.; Norkaew, P.; Kanjanapothi, D.; Taesotikul, T.; Anantachoke, N.; Reutrakul, V. Anti-inflammatory, analgesic and antipyretic activities of the extract of gamboge from Garcinia hanburyi Hook f. J. Ethnopharmacol., 2007, 111(2), 335-340.
[http://dx.doi.org/10.1016/j.jep.2006.11.038] [PMID: 17360136]
[76]
Zhao, L.; Zhen, C.; Wu, Z.; Hu, R.; Zhou, C.; Guo, Q. General pharmacological properties, developmental toxicity, and analgesic activity of gambogic acid, a novel natural anticancer agent. Drug Chem. Toxicol., 2010, 33(1), 88-96.
[http://dx.doi.org/10.3109/01480540903173534] [PMID: 20001662]
[77]
Leet, J.E.; Fairchild, C.R.; Mamber, S.W.; Xiaohong, L. Cytotoxic xanthone compounds. U.S. patent 20100311826A1, 2010.
[78]
Foulger, S. Skin care compositions containing xanthones. U.S. patent 11/474,084, 2007.
[79]
Ibrahim, M.A.A.; Abdeljawaad, K.A.A.; Abdelrahman, A.H.M.; Hegazy, M.E.F. Natural-like products as potential SARS-CoV-2 Mpro inhibitors: in-silico drug discovery. J. Biomol. Struct. Dyn., 2021, 39(15), 5722-5734.
[http://dx.doi.org/10.1080/07391102.2020.1790037] [PMID: 32643529]
[80]
Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Hegazy, M.E.F. In-silico drug repurposing and molecular dynamics puzzled out potential SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn., 2021, 39(15), 5756-5767.
[http://dx.doi.org/10.1080/07391102.2020.1791958] [PMID: 32684114]
[81]
Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Hussien, T.A.; Badr, E.A.A.; Mohamed, T.A.; El-Seedi, H.R.; Pare, P.W.; Efferth, T.; Hegazy, M.E.F. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Comput. Biol. Med., 2020, 126, 104046.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104046] [PMID: 33065388]
[82]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[83]
Gordon, J.C.; Myers, J.B.; Folta, T.; Shoja, V.; Heath, L.S.; Onufriev, A. H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res., 2005, 33(Suppl. 2), W368-W371.
[http://dx.doi.org/10.1093/nar/gki464] [PMID: 15980491]
[84]
Hawkins, P.C.D.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model., 2010, 50(4), 572-584.
[http://dx.doi.org/10.1021/ci100031x] [PMID: 20235588]
[85]
Dewar, M.J.S.; Thiel, W. Ground states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen. J. Am. Chem. Soc., 1977, 99(15), 4907-4917.
[http://dx.doi.org/10.1021/ja00457a005]
[86]
a) Fe, S. SZYBKI 1.9.0.3, OpenEye Scientific Software, NM, USA , 2016. ;
b) Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[87]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[88]
Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron, 1980, 36(22), 3219-3228.
[http://dx.doi.org/10.1016/0040-4020(80)80168-2]
[89]
Kamel, R.A.; Abdel-Razek, A.S.; Hamed, A.; Ibrahim, R.R.; Stammler, H.G.; Frese, M.; Sewald, N.; Shaaban, M. Isoshamixanthone: a new pyrano xanthone from endophytic Aspergillus sp. ASCLA and absolute configuration of epiisoshamixanthone. Nat. Prod. Res., 2020, 34(8), 1080-1090.
[http://dx.doi.org/10.1080/14786419.2018.1548458] [PMID: 30663363]
[90]
Jin, S.; Shi, K.; Liu, L.; Chen, Y.; Yang, G. Xanthones from the bark of Garcinia xanthochymus and the mechanism of induced apoptosis in human hepatocellular carcinoma HepG2 cells via the mitochondrial pathway. Int. J. Mol. Sci., 2019, 20(19), 4803.
[http://dx.doi.org/10.3390/ijms20194803] [PMID: 31569691]
[91]
Raksat, A.; Maneerat, W.; Andersen, R.J.; Pyne, S.G.; Laphookhieo, S. A tocotrienol quinone dimer and xanthones from the leaf extract of Garcinia nigrolineata. Fitoterapia, 2019, 136, 104175.
[http://dx.doi.org/10.1016/j.fitote.2019.104175] [PMID: 31095982]
[92]
Fredimoses, M.; Zhou, X.; Ai, W.; Tian, X.; Yang, B.; Lin, X.; Liu, J.; Liu, Y. Emerixanthone E, a new xanthone derivative from deep sea fungus Emericella sp. SCSIO 05240. Nat. Prod. Res., 2019, 33(14), 2088-2094.
[http://dx.doi.org/10.1080/14786419.2018.1487966] [PMID: 29911443]
[93]
Mi, C.N.; Li, W.; Chen, H.Q.; Wang, J.; Cai, C.H.; Li, S.P.; Mei, W.L.; Dai, H.F. Two new compounds from the roots of Swietenia macrophylla. J. Asian Nat. Prod. Res., 2019, 21(10), 1005-1012.
[http://dx.doi.org/10.1080/10286020.2018.1488831] [PMID: 29947263]
[94]
Liangsakul, P.; Kuhakarn, C.; Hongthong, S.; Jariyawat, S.; Suksen, K.; Akkarawongsapat, R.; Limthongkul, J.; Napaswad, C.; Reutrakul, V. Anti-HIV 1 activity of xanthones from the bark of Mammea harmandii. Nat. Prod. Commun., 2018, 13(1), 1934578X1801300116.
[http://dx.doi.org/10.1177/1934578X1801300116]
[95]
Niu, S.L.; Li, D.H.; Li, X.Y.; Wang, Y.T.; Li, S.G.; Bai, J.; Pei, Y.H.; Jing, Y.K.; Li, Z.L.; Hua, H.M. Bioassay-and chemistry-guided isolation of scalemic caged prenylxanthones from the leaves of Garcinia bracteata. J. Nat. Prod., 2018, 81(4), 749-757.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00454] [PMID: 29565129]
[96]
Chen, B.; Li, E.; Liu, L.; Liao, M.; Zhu, Z.; Zhuang, W.; Bao, L.; Liu, H. Botryane sesquiterpenoids, cyclopentadepsipeptides, xanthones, and trichothecenes from Trichoderma oligosporum. Planta Med., 2018, 84(14), 1055-1063.
[http://dx.doi.org/10.1055/a-0593-6030] [PMID: 29566409]
[97]
Wu, Z.H.; Liu, D.; Xu, Y.; Chen, J.L.; Lin, W.H. Antioxidant xanthones and anthraquinones isolated from a marine-derived fungus Aspergillus versicolor. Chin. J. Nat. Med., 2018, 16(3), 219-224.
[http://dx.doi.org/10.1016/S1875-5364(18)30050-5] [PMID: 29576058]
[98]
Taniguchi, K.; Funasaki, M.; Kishida, A.; Sadhu, S.K.; Ahmed, F.; Ishibashi, M.; Ohsaki, A. Two new coumarins and a new xanthone from the leaves of Rhizophora mucronata. Bioorg. Med. Chem. Lett., 2018, 28(6), 1063-1066.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.022] [PMID: 29475587]
[99]
Li, Z.P.; Song, Y.H.; Uddin, Z.; Wang, Y.; Park, K.H. Inhibition of protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase by xanthones from Cratoxylum cochinchinense, and their kinetic characterization. Bioorg. Med. Chem., 2018, 26(3), 737-746.
[http://dx.doi.org/10.1016/j.bmc.2017.12.043] [PMID: 29306546]
[100]
Pailee, P.; Kuhakarn, C.; Sangsuwan, C. Anti-HIV and cytotoxic biphenyls, benzophenones and xanthones from stems, leaves and twigs of Garcinia speciosa. Phytochemistry., 2018, 147, 68-79.
[101]
Mathioudaki, A.; Berzesta, A.; Kypriotakis, Z.; Skaltsa, H.; Heilmann, J. Phenolic metabolites from Hypericum kelleri Bald., an endemic species of Crete (Greece). Phytochemistry, 2018, 146, 1-7.
[http://dx.doi.org/10.1016/j.phytochem.2017.11.009] [PMID: 29190454]
[102]
Yang, B.; Tao, H.; Lin, X.; Wang, J.; Liao, S.; Dong, J.; Zhou, X.; Liu, Y. Prenylated indole alkaloids and chromone derivatives from the fungus Penicillium sp. SCSIO041218. Tetrahedron, 2018, 74(1), 77-82.
[http://dx.doi.org/10.1016/j.tet.2017.11.038]
[103]
Tao, H.; Wei, X.; Lin, X.; Zhou, X.; Dong, J.; Yang, B. Penixanthones A and B, two new xanthone derivatives from fungus Penicillium sp. SYFz-1 derived of mangrove soil sample. Nat. Prod. Res., 2017, 31(19), 2218-2222.
[http://dx.doi.org/10.1080/14786419.2017.1297442] [PMID: 28299980]
[104]
Trinh, B.T.D.; Quach, T.T.T.; Bui, D.N.; Staerk, D.; Nguyen, L.H.D.; Jäger, A.K. Xanthones from the twigs of Garcinia oblongifolia and their antidiabetic activity. Fitoterapia, 2017, 118, 126-131.
[http://dx.doi.org/10.1016/j.fitote.2017.03.003] [PMID: 28322990]
[105]
Arthan, S.; Tantapakul, C.; Kanokmedhakul, K.; Soytong, K.; Kanokmedhakul, S. A new xanthone from the fungus Apiospora montagnei. Nat. Prod. Res., 2017, 31(15), 1766-1771.
[http://dx.doi.org/10.1080/14786419.2017.1290622] [PMID: 28278634]
[106]
Li, C.; Zhang, J.; Shao, C.; Ding, W.; She, Z.; Lin, Y. A new xanthone derivative from the co-culture broth of two marine fungi (strain No. E33 and K38). Chem. Nat. Compd., 2011, 47(3), 382-384.
[http://dx.doi.org/10.1007/s10600-011-9939-8]
[107]
Tan, X.F.; Uddin, Z.; Park, C.; Song, Y.H.; Son, M.; Lee, K.W.; Park, K.H. Competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors, prenylated caged xanthones from Garcinia hanburyi and their inhibitory mechanism. Bioorg. Med. Chem., 2017, 25(8), 2498-2506.
[http://dx.doi.org/10.1016/j.bmc.2017.03.010] [PMID: 28318895]
[108]
Jo, Y.H.; Kim, S.B.; Liu, Q.; Hwang, B.Y.; Lee, M.K. Prenylated xanthones from the roots of Cudrania tricuspidata as inhibitors of lipopolysaccharide-stimulated nitric oxide production. Arch. Pharm. (Weinheim), 2017, 350(1), e1600263-e1600269.
[http://dx.doi.org/10.1002/ardp.201600263] [PMID: 27902844]
[109]
Dong, B.; Zheng, Y.F.; Wen, H.M.; Wang, X.Z.; Xiong, H.W.; Wu, H.; Li, W. Two new xanthone epimers from the processed gamboge. Nat. Prod. Res., 2017, 31(7), 817-821.
[http://dx.doi.org/10.1080/14786419.2016.1247079] [PMID: 27809607]
[110]
Li, H.; Chen, T.; Sun, J.; Wang, W.; Li, Y. Separation of six xanthones from Swertia franchetiana by high-speed countercurrent chromatography. J. Sep. Sci., 2017, 40(11), 2515-2521.
[http://dx.doi.org/10.1002/jssc.201601134] [PMID: 28164437]
[111]
Salleh, W.M.N.H.W.; On, S.; Ahmad, F.; Sirat, H.M.; Taher, M.; Sarker, S.D.; Nahar, L. A new xanthone and a new benzophenone from the roots of Garcinia hombroniana. Phytochem. Lett., 2020, 35, 216-219.
[http://dx.doi.org/10.1016/j.phytol.2019.12.011]
[112]
He, K.; Fan, L.L.; Wu, T.T.; Du, J. A new xanthone glycoside from Pyrrosia sheareri. Nat. Prod. Res., 2019, 33(20), 2982-2987.
[http://dx.doi.org/10.1080/14786419.2018.1514398] [PMID: 30488728]
[113]
Chitchumroonchokchai, C.; Riedl, K.M.; Suksumrarn, S.; Clinton, S.K.; Kinghorn, A.D.; Failla, M.L. Xanthones in mangosteen juice are absorbed and partially conjugated by healthy adults. J. Nutr., 2012, 142(4), 675-680.
[http://dx.doi.org/10.3945/jn.111.156992] [PMID: 22399525]
[114]
Beidou, Z. Application of 7-chloro-1, 3-dihydroxy xanthone in preparing antitumor drugs. C.N. Patent 108938620B, 2020.
[115]
Li, Ling A kind of xanthone compound, preparation method and application. C.N. Patent 109912623A, 2019.
[116]
Guoyong, L.; Liyu, H. New application of the Garcinia mangostana in terms for the treatment of FSGS medicine is prepared. C.N. Patent 106539843A, 2017.
[117]
Jingtao, Z.; Nan, H.; Zhenzhen, Y.; Yingping, Z. Application of the neomangiferin in vascular endothelial cell is protected. C.N. Patent 107397754A, 2017.
[118]
Li, C.; Yuying, L.; Xinxin, L.; Siyuan, W.; Qinying, L.; Miao, C.; Qinqing, Z. Application of iso-penicillium xanthone A from Penicillium oxalicum in aspect of melanoma. C.N. Patent 110922377A, 2020.
[119]
Hongxi, X.; Yuehoon, T.; Wenwei, F.; Zhchao, X.; Jiling, F.; Hongsheng, T. Garoliganthone C and its pharmaceutical composition and purposes. C.N. Patent 107382950A, 2017.
[120]
Ling, L.; Zhihong, Z.; Yanfen, N.; Lihu, G.; Hua, L.; Qiang, L. The new application of α-mangostin prevention hyperuricemia and gout. C.N. Patent 108785300A, 2018.
[121]
Hongxi, X.; Wenwei, F.; Rong, W.; Baojun, Z.; Jinling, Y.; Zhijun, S.; Hongsheng, T. A kind of medicinal usage of xanthones compound A. C.N. Patent 108272790A, 2018.
[122]
Beidou, Z.; Xiaojing, P.; Menghan, H. Application of -1,3 dihydroxy xanthone of 7- Nitros in terms of preparing antitumor drug. C.N. Patent 108619132A, 2018.
[123]
Idowu, O.C. Mangiferin as a protective agent against mitochondrial DNA damage and skin-care compositions comprising same. W.O. Patent 2019150087A1, 2019.
[124]
Yingyin, S.; Wan, H. Mangiferin treats or prevents the application in drug induccd acute liver damage drug in preparation. C.N. Patent 109331010A, 2019.
[125]
Berk, M.; Wendy, L. Xanthone-rich plant extracts or compounds therefrom for modulating diseases of the central nervous system and related disorders. A.U. Patent 2015222697A1, 2016.
[126]
Li, X.; Liang, J. Medicine with blood pressure reducing effect and production method of medicine. C.N. Patent 104873488A, 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy