Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Review Article

Potential Perspectives and Sustainability of Bioplastics Developed from Horticulture

Author(s): Pinki Saini*, Unaiza Iqbal and Mazia Ahmed

Volume 14, Issue 1, 2023

Published on: 13 March, 2023

Page: [11 - 25] Pages: 15

DOI: 10.2174/2772574X14666230220143602

Price: $65

Open Access Journals Promotions 2
Abstract

In recent times, bioplastics have become an integrated sustainable alternative to plastic management to lessen the dependency on fossil fuels as well as better plastic disposal methods. Through this study, the focus is laid upon the dire need for developing bio-plastics for transforming to a sustainable future as bio-plastics are renewable, more feasible, and a sustainable option when compared to the high-energy consuming conventional oil-based plastics. Bioplastics might not be a one-stop solution for all environmental issues caused by plastics, but it will be a beneficial step for expanding biodegradable polymer as society’s current concerns about the environment makes this an ideal time for further growth of biopolymers. Moreover, the potential market for agricultural materials in bioplastics is leading to an economic push toward the growth of the bioplastic industry, thus providing better alternatives for a future sustainable environment. The objective of the review is to provide detailed knowledge about plastics obtained from various renewable sources, their production, life cycle, market share, applications, and roles to act as a sustainable source of synthetic plastics, thereby featuring various possibilities and potentialities of bioplastics to perform as an alternative solution for waste reduction.

Keywords: Bioplastics, disposable, polymer, renewable, sustainable, bio-polymer, waste reduction.

Graphical Abstract
[1]
Hoppenheidt K, Trankler J. Biodegradable plastics and biowaste options for common treatment. InProceedings of BIOWASTE’95 Conference. Asiborg, Denmark 1995.
[2]
Harding K, Dennis J, Vonblottnitz H, Harrison S. Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J Biotechnol 2007; 130(1): 57-66.
[http://dx.doi.org/10.1016/j.jbiotec.2007.02.012] [PMID: 17400318]
[3]
Tokiwa Y, Calabia BP. Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 2006; 72(2): 244-51.
[http://dx.doi.org/10.1007/s00253-006-0488-1] [PMID: 16823551]
[4]
Demirbas A. Biodegradable plastics from renewable resources. Energy Sources A Recovery Util Environ Effects 2007; 29(5): 419-24.
[http://dx.doi.org/10.1080/009083190965820]
[5]
Widdecke H, Otten H, Marek A, Apelt S. Bioplastics 07/08 Processing Parameters and technical characteristics, a global overview. CTC GmbH Fachhochschule Braunschweig/Wolfenbuttel 2008.
[6]
(a) Iles A, Martin AN. Expanding bioplastics production: sustainable business innovation in the chemical industry. J Clean Prod 2013; 45: 38-49.
[http://dx.doi.org/10.1016/j.jclepro.2012.05.008];
(b) Renewable Carbon Publications. Available from: www.bio-based.eu/markets
[7]
Reddy RL, Reddy VS, Gupta GA. Study of bio-plastics as green and sustainable alternative to plastics. Int J Emerg Technol Adv Eng 2013; 3(5): 76-81.
[8]
Cuq B, Gontard N, Guilbert S. Proteins as agricultural polymers for packaging production. Cereal Chem 1998; 75(1): 1-9.
[http://dx.doi.org/10.1094/CCHEM.1998.75.1.1]
[9]
Karana E. Characterization of ‘natural’ and ‘high-quality’ materials to improve perception of bio-plastics. J Clean Prod 2012; 37: 316-25.
[http://dx.doi.org/10.1016/j.jclepro.2012.07.034]
[10]
Snell KD, Peoples OP. PHA bioplastic: A value‐added coproduct for biomass biorefineries. Biofpr 2009; 3(4): 456-67.
[11]
Mumtaz T, Yahaya NA, Abd-Aziz S, et al. Turning waste to wealth-biodegradable plastics polyhydroxyalkanoates from palm oil mill effluent - a Malaysian perspective. J Clean Prod 2010; 18(14): 1393-402.
[http://dx.doi.org/10.1016/j.jclepro.2010.05.016]
[12]
Bengtsson S, Werker A, Christensson M, Welander T. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresour Technol 2008; 99(3): 509-16.
[http://dx.doi.org/10.1016/j.biortech.2007.01.020] [PMID: 17360180]
[13]
Solaiman DKY, Ashby RD, Foglia TA, Marmer WN. Conversion of agricultural feedstock and coproducts into poly(hydroxyalkanoates). Appl Microbiol Biotechnol 2006; 71(6): 783-9.
[http://dx.doi.org/10.1007/s00253-006-0451-1] [PMID: 16708192]
[14]
Gómez-Martínez D, Partal P, Martínez I, Gallegos C. Rheological behaviour and physical properties of controlled-release gluten-based bioplastics. Bioresour Technol 2009; 100(5): 1828-32.
[http://dx.doi.org/10.1016/j.biortech.2008.10.016] [PMID: 19022663]
[15]
Mohanty AK, Tummala P, Liu W, Misra M, Mulukutla PV, Drzal LT. Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. J Polym Environ 2005; 13(3): 279-85.
[http://dx.doi.org/10.1007/s10924-005-4762-6]
[16]
Kim S. Processing and properties of gluten/zein composite. Bioresour Technol 2008; 99(6): 2032-6.
[http://dx.doi.org/10.1016/j.biortech.2007.02.050] [PMID: 17482808]
[17]
(a) Jerez A, Partal P, Martínez I, Gallegos C, Guerrero A. Egg white-based bioplastics developed by thermomechanical processing. J Food Eng 2007; 82(4): 608-17.
[http://dx.doi.org/10.1016/j.jfoodeng.2007.03.020];
(b) Jerez A, Partal P, Martínez I, Gallegos C, Guerrero A. Protein-based bioplastics: Effect of thermo-mechanical processing. Rheol Acta 2007; 46(5): 711-20. b
[http://dx.doi.org/10.1007/s00397-007-0165-z]
[18]
(a) Edgar KJ, Buchanan CM, Debenham JS, et al. Advances in cellulose ester performance and application. Prog Polym Sci 2001; 26(9): 1605-88. http://dx.doi.org/10.1016/S0079-6700(01)00027-2;
(b) Zhang S, Xia C, Dong Y, et al. Soy protein isolate-based films reinforced by surface modified cellulose nanocrystal. Ind Crops Prod 2016; 80: 207-13.
[http://dx.doi.org/10.1016/j.indcrop.2015.11.070]
[19]
Dhall RK. Advances in edible coatings for fresh fruits and vegetables: A review. Crit Rev Food Sci Nutr 2013; 53(5): 435-50.
[http://dx.doi.org/10.1080/10408398.2010.541568] [PMID: 23391012]
[20]
Borges JP, Godinho MH, Martins AF, Trindade AC, Belgacem MN. Cellulose-based composite films. Mech Compos Mater 2001; 37(3): 257-64.
[http://dx.doi.org/10.1023/A:1010650803273]
[21]
Villalobos R, Chanona J, Hernández P, Gutiérrez G, Chiralt A. Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food Hydrocoll 2005; 19(1): 53-61.
[http://dx.doi.org/10.1016/j.foodhyd.2004.04.014]
[22]
Bourtoom T. Edible films and coatings: Characteristics and properties. Int Food Res J 2008; 15(3): 237-48.
[23]
Wang Q, Cai J, Zhang L, et al. A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem A Mater Energy Sustain 2013; 1(22): 6678-86.
[http://dx.doi.org/10.1039/c3ta11130j]
[24]
Maftoonazad N, Ramaswamy HS. Postharvest shelf-life extension of avocados using methyl cellulose-based coating. Lebensm Wiss Technol 2005; 38(6): 617-24.
[http://dx.doi.org/10.1016/j.lwt.2004.08.007]
[25]
Rohmawati B, Atikah Nata Sya’idah F, Rhismayanti R, Alighiri D, Tirza Eden W. Synthesis of bioplastic-based renewable cellulose acetate from teak wood (Tectona grandis) biowaste using glycerol-chitosan plasticizer. Orient J Chem 2018; 34(4): 1810-6.
[http://dx.doi.org/10.13005/ojc/3404014]
[26]
Komarek RJ, Gardner RM, Buchanan CM, Gedon S. Biodegradation of radiolabeled cellulose acetate and cellulose propionate. J Appl Polym Sci 1993; 50(10): 1739-46.
[http://dx.doi.org/10.1002/app.1993.070501009]
[27]
Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP. Compostability of bioplastic packaging materials: An overview. Macromol Biosci 2007; 7(3): 255-77.
[http://dx.doi.org/10.1002/mabi.200600168] [PMID: 17370278]
[28]
Jabeen N, Majid I, Nayik GA. Bioplastics and food packaging: A review. Cogent Food Agric 2015; 1(1): 1117749.
[http://dx.doi.org/10.1080/23311932.2015.1117749]
[29]
Byun Y, Kim YT. Bioplastics for food packaging: Chemistry and physics. In: Innovations in food packaging. Academic Press : Cambridge 2014; pp. 353-68.
[http://dx.doi.org/10.1016/B978-0-12-394601-0.00014-X]
[30]
Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S. Poly‐Lactic Acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 2010; 9(5): 552-71.
[http://dx.doi.org/10.1111/j.1541-4337.2010.00126.x] [PMID: 33467829]
[31]
Auras RA, Singh SP, Singh JJ. Evaluation of oriented poly(lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packag Technol Sci 2005; 18(4): 207-16.
[http://dx.doi.org/10.1002/pts.692]
[32]
Koide S, Shi J. Microbial and quality evaluation of green peppers stored in biodegradable film packaging. Food Control 2007; 18(9): 1121-5.
[http://dx.doi.org/10.1016/j.foodcont.2006.07.013]
[33]
Iotti M, Fabbri P, Messori M, Pilati F, Fava P. Organic–inorganic hybrid coatings for the modification of barrier properties of poly (lactic acid) films for food packaging applications. J Polym Environ 2009; 17(1): 10-9.
[http://dx.doi.org/10.1007/s10924-009-0120-4]
[34]
Hirvikorpi T, Vähä-Nissi M, Nikkola J, Harlin A, Karppinen M. Thin Al2O3 barrier coatings onto temperature-sensitive packaging materials by atomic layer deposition. Surf Coat Tech 2011; 205(21-22): 5088-92.
[http://dx.doi.org/10.1016/j.surfcoat.2011.05.017]
[35]
Arrieta MP, López J, Ferrándiz S, Peltzer MA. Characterization of PLA-limonene blends for food packaging applications. Polym Test 2013; 32(4): 760-8.
[http://dx.doi.org/10.1016/j.polymertesting.2013.03.016]
[36]
Gao H, Fang X, Chen H, Qin Y, Xu F, Jin TZ. Physiochemical properties and food application of antimicrobial PLA film. Food Control 2017; 73: 1522-31.
[http://dx.doi.org/10.1016/j.foodcont.2016.11.017]
[37]
Bor Y, Alin J, Hakkarainen M. Electrospray ionization-mass spectrometry analysis reveals migration of cyclic lactide oligomers from polylactide packaging in contact with ethanolic food simulant. Packag Technol Sci 2012; 25(7): 427-33.
[http://dx.doi.org/10.1002/pts.990]
[38]
Murariu M, Dubois P. PLA composites: From production to properties. Adv Drug Deliv Rev 2016; 107: 17-46.
[http://dx.doi.org/10.1016/j.addr.2016.04.003] [PMID: 27085468]
[39]
Domenek S, Feuilloley P, Gratraud J, Morel MH, Guilbert S. Biodegradability of wheat gluten based bioplastics. Chemosphere 2004; 54(4): 551-9.
[http://dx.doi.org/10.1016/S0045-6535(03)00760-4] [PMID: 14581057]
[40]
Kumar R, Zhang L. Soy protein films with the hydrophobic surface created through non-covalent interactions. Ind Crops Prod 2009; 29(2-3): 485-94.
[http://dx.doi.org/10.1016/j.indcrop.2008.09.010]
[41]
Paetau I, Chen CZ, Jane J. Biodegradable plastic made from soybean products. 1. Effect of preparation and processing on mechanical properties and water absorption. Ind Eng Chem Res 1994; 33(7): 1821-7.
[http://dx.doi.org/10.1021/ie00031a023]
[42]
Netravali AN, Huang X, Mizuta K. Advanced ‘green’ composites. Adv Compos Mater 2007; 16(4): 269-82.
[http://dx.doi.org/10.1163/156855107782325230]
[43]
Zhang J, Mungara P, Jane J. Mechanical and thermal properties of extruded soy protein sheets. Polymer 2001; 42(6): 2569-78.
[http://dx.doi.org/10.1016/S0032-3861(00)00624-8]
[44]
Sue HJ, Wang S, Jane JL. Morphology and mechanical behaviour of engineering soy plastics. Polymer 1997; 38(20): 5035-40.
[http://dx.doi.org/10.1016/S0032-3861(97)00048-7]
[45]
Otaigbe JU, Adams DO. Bioabsorbable soy protein plastic composites: Effect of polyphosphate fillers on water absorption and mechanical properties. J Environ Polym Degrad 1997; 5(4): 199-208.
[46]
Park SK, Hettiarachchy NS, Were L. Degradation behavior of soy protein-wheat gluten films in simulated soil conditions. J Agric Food Chem 2000; 48(7): 3027-31.
[http://dx.doi.org/10.1021/jf0000272] [PMID: 10898660]
[47]
Tummala P, Liu W, Drzal LT, Mohanty AK, Misra M. Influence of plasticizers on thermal and mechanical properties and morphology of soy-based bioplastics. Ind Eng Chem Res 2006; 45(22): 7491-6.
[http://dx.doi.org/10.1021/ie060439l]
[48]
Kalapathy U, Hettiarachchy NS, Myers D, Hanna MA. Modification of soy proteins and their adhesive properties on woods. J Am Oil Chem Soc 1995; 72(5): 507-10.
[http://dx.doi.org/10.1007/BF02638849]
[49]
Stuchell YM, Krochta JM. Enzymatic treatments and thermal effects on edible soy protein films. J Food Sci 1994; 59(6): 1332-7.
[http://dx.doi.org/10.1111/j.1365-2621.1994.tb14709.x]
[50]
Wang S, Zhang S, Jane J, Sue HJ. Effects of polyols on mechanical-properties of soy-protein plastics. In abstracts of papers of the American chemical society 1995 Apr 2 (Vol. 209, pp. 57-PMSE). PO box 57136, Washington, DC 20037-0136: Amer Chemical SOC.
[51]
Jiménez A, Fabra MJ, Talens P, Chiralt A. Edible and biodegradable starch films: A review. Food Bioprocess Technol 2012; 5(6): 2058-76.
[http://dx.doi.org/10.1007/s11947-012-0835-4]
[52]
Liao HT, Wu CS. Preparation and characterization of ternary blends composed of polylactide, poly(ɛ-caprolactone) and starch. Mater Sci Eng A 2009; 515(1-2): 207-14.
[http://dx.doi.org/10.1016/j.msea.2009.03.003]
[53]
Gadhave RV, Das A, Mahanwar PA, Gadekar PT. Starch based bio-plastics: The future of sustainable packaging. Open J Polym Chemy 2018; 8(2): 21-33.
[http://dx.doi.org/10.4236/ojpchem.2018.82003]
[54]
Nikolic V, Velickovic S, Popovic A. Biodegradation of polystyrene-graft-starch copolymers in three different types of soil. Environ Sci Pollut Res Int 2014; 21(16): 9877-86.
[http://dx.doi.org/10.1007/s11356-014-2946-0] [PMID: 24792982]
[55]
Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 2005; 93(3): 467-74.
[http://dx.doi.org/10.1016/j.foodchem.2004.10.024]
[56]
Gonzalez-Gutierrez J, Partal P, Garcia-Morales M, Gallegos C. Development of highly-transparent protein/starch-based bioplastics. Bioresour Technol 2010; 101(6): 2007-13.
[http://dx.doi.org/10.1016/j.biortech.2009.10.025] [PMID: 19900806]
[57]
Medina-Jaramillo C, Ochoa-Yepes O, Bernal C, Famá L. Active and smart biodegradable packaging based on starch and natural extracts. Carbohydr Polym 2017; 176: 187-94.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.079] [PMID: 28927597]
[58]
Varda M, Nishith D, Darshan M. Production and evaluation of microbial plastic for its degradation capabilities. J Environ Res Dev 2014; 8(4): 934.
[59]
(a) Patel A. Life cycle assessment of synthetic and biological polyesters. Proceedings of the International Symposium on Biological Polyesters 2002. Munster, Germany. 2002.;
(b) Raigond P, Sood S, Kalia A. Antimicrobial activity of potato starch-based active biodegradable nanocomposite films. Potato Res 2019; 62: 69-83.
[http://dx.doi.org/10.1007/s11540-018-9397-9]
[60]
Xu Q, Chen C, Rosswurm K, Yao T, Janaswamy S. A facile route to prepare cellulose-based films. Carbohydr Polym 2016; 149: 274-81.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.114] [PMID: 27261751]
[61]
Blakistone B, Sand CK. Using sustainable packaging technologies to respond to consumer, retailer, and seafood industry needs. In International Smoked Seafood Conference Proceedings 2007 Mar 5 (pp 75-79).
[62]
Makino Y, Hirata T. Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycaprolactone. Postharvest Biol Technol 1997; 10(3): 247-54.
[http://dx.doi.org/10.1016/S0925-5214(96)01402-0]
[63]
Kristo E, Biliaderis C. Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym 2007; 68(1): 146-58.
[http://dx.doi.org/10.1016/j.carbpol.2006.07.021]
[64]
Benyathiar P, Almenar E, Auras R, Ryser E, Harte J, Siddiq M. A sustainable package for fresh cut green salad. InUnited Fresh 2009 Convention 2009.
[65]
Popa M, Belc N. Packaging. In: Food Safety. Springer: Boston 2007; pp. 68-87.
[http://dx.doi.org/10.1007/978-0-387-33957-3_4]
[66]
Almenar E, Samsudin H, Auras R, Harte J. Consumer acceptance of fresh blueberries in bio-based packages. J Sci Food Agric 2010; 90(7): 1121-8.
[http://dx.doi.org/10.1002/jsfa.3922] [PMID: 20393992]
[67]
Peelman N, Ragaert P, De Meulenaer B, et al. Application of bioplastics for food packaging. Trends Food Sci Technol 2013; 32(2): 128-41.
[http://dx.doi.org/10.1016/j.tifs.2013.06.003]
[68]
Okamoto K, Ichikawa T, Yokohara T, Yamaguchi M. Miscibility, mechanical and thermal properties of poly(lactic acid)/polyester-diol blends. Eur Polym J 2009; 45(8): 2304-12.
[http://dx.doi.org/10.1016/j.eurpolymj.2009.05.011]
[69]
Pillin I, Montrelay N, Grohens Y. Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor? Polymer 2006; 47(13): 4676-82.
[http://dx.doi.org/10.1016/j.polymer.2006.04.013]
[70]
Haugaard V, Weber C, Danielsen B, Bertelsen G. Quality changes in orange juice packed in materials based on polylactate. Eur Food Res Technol 2002; 214(5): 423-8.
[http://dx.doi.org/10.1007/s00217-001-0474-x]
[71]
Lehermeier HJ, Dorgan JR, Way JD. Gas permeation properties of poly(lactic acid). J Membr Sci 2001; 190(2): 243-51.
[http://dx.doi.org/10.1016/S0376-7388(01)00446-X]
[72]
Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci 2008; 33(8): 820-52.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.05.004]
[73]
Rhim JW, Kim JH. Properties of poly(lactide)-coated paperboard for the use of 1-way paper cup. J Food Sci 2009; 74(2): E105-11.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01073.x] [PMID: 19323738]
[74]
Cannarsi M, Baiano A, Marino R, Sinigaglia M, Del Nobile MA. Use of biodegradable films for fresh cut beef steaks packaging. Meat Sci 2005; 70(2): 259-65.
[http://dx.doi.org/10.1016/j.meatsci.2005.01.006] [PMID: 22063482]
[75]
Gontard N, Thibault R, Cuq B, Guilbert S. Influence of relative humidity and film composition on oxygen and carbon dioxide permeabilities of edible films. J Agric Food Chem 1996; 44(4): 1064-9.
[http://dx.doi.org/10.1021/jf9504327]
[76]
Gironès J, López JP, Mutjé P, Carvalho AJF, Curvelo AAS, Vilaseca F. Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Compos Sci Technol 2012; 72(7): 858-63.
[http://dx.doi.org/10.1016/j.compscitech.2012.02.019]
[77]
Ma X, Chang PR, Yu J. Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydr Polym 2008; 72(3): 369-75.
[78]
Ma X, Chang PR, Yu J. Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers. Compos Sci Technol 2008; 68(1): 268-73.
[79]
Ifezue C. The effect of bio-based films on quality and shelf life of fresh celery. (Doctoral dissertation, Clemson University)..
[80]
Han JH. Edible films and coatings: a review. Innovations in food packaging 2014 Jan 1:213-55
[81]
Vieira MGA, da Silva MA, dos Santos LO, Beppu MM. Natural-based plasticizers and biopolymer films: A review. Eur Polym J 2011; 47(3): 254-63.
[http://dx.doi.org/10.1016/j.eurpolymj.2010.12.011]
[82]
Kale G, Auras R, Singh SP. Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions. Packag Technol Sci 2007; 20(1): 49-70.
[http://dx.doi.org/10.1002/pts.742]
[83]
Philp JC, Ritchie RJ, Guy K. Biobased plastics in a bioeconomy. Trends Biotechnol 2013; 31(2): 65-7.
[http://dx.doi.org/10.1016/j.tibtech.2012.11.009] [PMID: 23333433]
[84]
Yang Q, Fukuzumi H, Saito T, Isogai A, Zhang L. Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules 2011; 12(7): 2766-71.
[http://dx.doi.org/10.1021/bm200766v] [PMID: 21657790]
[85]
Bastioli C, Ed. Handbook of biodegradable polymers. Smithers Rapra Publishing: Shrewsbury 2005.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy