Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Peptide-based Self-assembly: Design, Bioactive Properties, and Its Applications

Author(s): He Diao, Yunhua Lu, Yun Ling, Yingjie Shen, Jingmou Yu* and Kun Ma*

Volume 29, Issue 9, 2023

Published on: 20 February, 2023

Page: [640 - 651] Pages: 12

DOI: 10.2174/1381612829666230213152259

Price: $65

Abstract

The self-assembly of peptides is very popular in biomedical fields. Peptide-based assemblies have been used as an ideal candidate for drug/gene delivery, tissue engineering, and antibacterial/anticancer agents. The morphology and structure of peptide self-assembly can be changed by altering the molecular structure and the self-assembly conditions. Engineering peptide assemblies present great potential in medical fields. In this review, the structure and function of peptide self-assembly have been described. Also, the advances in peptide- based self-assembly have been highlighted in biomedical applications, such as drug packaging and delivery, tissue engineering, antibacterial agents, siRNA-targeted delivery and vaccines. Moreover, the challenges and future perspectives of the self-assembly of polypeptides are discussed.

Keywords: Peptides, self-assembly, biomedicine, drug delivery, tissue engineering, antibacterial agents.

[1]
Xiang Y, Zhang J, Mao H, et al. Highly tough, stretchable, and enzymatically degradable hydrogels modulated by bioinspired hydrophobic beta-sheet peptides. Biomacromolecules 2021; 22(11): 4846-56.
[http://dx.doi.org/10.1021/acs.biomac.1c01134] [PMID: 34706536]
[2]
Zhang P, Li M, Xiao C, Chen X. Stimuli-responsive polypeptides for controlled drug delivery. Chem Commun 2021; 57(75): 9489-503.
[http://dx.doi.org/10.1039/D1CC04053G] [PMID: 34546261]
[3]
Van Coillie S, Wiernicki B, Xu J. Molecular and cellular functions of CTLA-4. Adv Exp Med Biol 2020; 1248: 7-32.
[http://dx.doi.org/10.1007/978-981-15-3266-5_2] [PMID: 32185705]
[4]
Cai L, Liu S, Guo J, Jia YG. Polypeptide-based self-healing hydrogels: Design and biomedical applications. Acta Biomater 2020; 113: 84-100.
[http://dx.doi.org/10.1016/j.actbio.2020.07.001] [PMID: 32634482]
[5]
Augustine R, Kalva N, Kim HA, Zhang Y, Kim I. pH-responsive polypeptide-based smart nano-carriers for theranostic applications. Molecules 2019; 24(16): 2961.
[http://dx.doi.org/10.3390/molecules24162961] [PMID: 31443287]
[6]
Colzani M, Malcor JD, Hunter EJ, et al. Modulating hESC-derived cardiomyocyte and endothelial cell function with triple-helical peptides for heart tissue engineering. Biomaterials 2021; 269: 120612.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120612] [PMID: 33385684]
[7]
Patil NA, Thombare VJ, Li R, et al. An efficient approach for the design and synthesis of antimicrobial peptide-peptide nucleic acid conjugates. Front Chem 2022; 10: 843163.
[http://dx.doi.org/10.3389/fchem.2022.843163] [PMID: 35372270]
[8]
Wang X, Song Z, Wei S, et al. Polypeptide-based drug delivery systems for programmed release. Biomaterials 2021; 275: 120913.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120913] [PMID: 34217020]
[9]
Zhang L, Huang Y, Lindstrom AR, Lin TY, Lam KS, Li Y. Peptide-based materials for cancer immunotherapy. Theranostics 2019; 9(25): 7807-25.
[http://dx.doi.org/10.7150/thno.37194] [PMID: 31695802]
[10]
Cai C, Lin J, Lu Y, Zhang Q, Wang L. Polypeptide self-assemblies: Nanostructures and bioapplications. Chem Soc Rev 2016; 45(21): 5985-6012.
[http://dx.doi.org/10.1039/C6CS00013D] [PMID: 27722321]
[11]
Diaferia C, Avitabile C, Leone M, et al. Diphenylalanine motif drives self-assembling in hybrid PNA-peptide conjugates. Chemistry 2021; 27(57): 14307-16.
[http://dx.doi.org/10.1002/chem.202102481] [PMID: 34314536]
[12]
Avitabile C, Diaferia C, Roviello V, et al. Fluorescence and morphology of self-assembled nucleobases and their diphenylalanine hybrid aggregates. Chemistry 2019; 25(65): 14850-7.
[http://dx.doi.org/10.1002/chem.201902709] [PMID: 31566814]
[13]
Zhang Y, He P, Zhang P, Yi X, Xiao C, Chen X. Polypeptides- drug conjugates for anticancer therapy. Adv Healthc Mater 2021; 10(11): 2001974.
[http://dx.doi.org/10.1002/adhm.202001974] [PMID: 33929786]
[14]
Varanko AK, Su JC, Chilkoti A. Elastin-like polypeptides for biomedical applications. Annu Rev Biomed Eng 2020; 22(1): 343-69.
[http://dx.doi.org/10.1146/annurev-bioeng-092419-061127] [PMID: 32343908]
[15]
Li T, Lu XM, Zhang MR, Hu K, Li Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact Mater 2022; 11: 268-82.
[http://dx.doi.org/10.1016/j.bioactmat.2021.09.029] [PMID: 34977431]
[16]
Zagorodko O, Arroyo-Crespo JJ, Nebot VJ, Vicent MJ. Polypeptide-based conjugates as therapeutics: Opportunities and challenges. Macromol Biosci 2017; 17(1): 1600316.
[http://dx.doi.org/10.1002/mabi.201600316] [PMID: 27753211]
[17]
Qi GB, Gao YJ, Wang L, Wang H. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv Mater 2018; 30(22): 1703444.
[http://dx.doi.org/10.1002/adma.201703444] [PMID: 29460400]
[18]
La Manna S, Di Natale C, Onesto V, Marasco D. Self-assembling peptides: From design to biomedical applications. Int J Mol Sci 2021; 22(23): 12662.
[http://dx.doi.org/10.3390/ijms222312662] [PMID: 34884467]
[19]
Zhao L, Li N, Wang K, Shi C, Zhang L, Luan Y. A review of polypeptide-based polymersomes. Biomaterials 2014; 35(4): 1284-301.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.063] [PMID: 24211077]
[20]
Sahajpal K, Shekhar S, Kumar A, et al. Dynamic protein and polypeptide hydrogels based on Schiff base co-assembly for biomedicine. J Mater Chem B Mater Biol Med 2022; 10(17): 3173-98.
[http://dx.doi.org/10.1039/D2TB00077F] [PMID: 35352081]
[21]
Wang Y, Zhang X, Wan K, Zhou N, Wei G, Su Z. Supramolecular peptide nano-assemblies for cancer diagnosis and therapy: From molecular design to material synthesis and function-specific applications. J Nanobiotechnology 2021; 19(1): 253.
[http://dx.doi.org/10.1186/s12951-021-00999-x] [PMID: 34425823]
[22]
Tian J, Li Y, Ma B, Tan Z, Shang S. Automated peptide synthesizers and glycoprotein synthesis. Front Chem 2022; 10: 896098.
[http://dx.doi.org/10.3389/fchem.2022.896098] [PMID: 35601548]
[23]
Bąchor U, Lizak A, Bąchor R, Mączyński M. 5-Amino-3-methyl-isoxazole-4-carboxylic acid as a novel unnatural amino acid in the solid phase synthesis of α/β-mixed peptides. Molecules 2022; 27(17): 5612.
[http://dx.doi.org/10.3390/molecules27175612] [PMID: 36080386]
[24]
Wan J, Alewood PF. Peptide-decorated dendrimers and their bioapplications. Angew Chem Int Ed 2016; 55(17): 5124-34.
[http://dx.doi.org/10.1002/anie.201508428] [PMID: 26990715]
[25]
Zhang Y, Lu Y, Zhang Y, et al. Tumor-targeting micelles based on linear dendritic PEG-PTX8 conjugate for triple negative breast cancer therapy. Mol Pharm 2017; 14(10): 3409-21.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00430] [PMID: 28832164]
[26]
Xu L, Xu N, Wang L, et al. Spontaneously restoring specific bioaffinity of RGD in linear RGD-containing peptides by conjugation with zwitterionic dendrimers. Acta Biomater 2022; 148: 61-72.
[http://dx.doi.org/10.1016/j.actbio.2022.06.025] [PMID: 35728789]
[27]
Dhall A, Patiyal S, Sharma N, Usmani SS, Raghava GPS. Computer-aided prediction and design of IL-6 inducing peptides: IL-6 plays a crucial role in COVID-19. Brief Bioinform 2021; 22(2): 936-45.
[http://dx.doi.org/10.1093/bib/bbaa259] [PMID: 33034338]
[28]
Porto WF, Irazazabal L, Alves ESF, et al. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat Commun 2018; 9(1): 1490.
[http://dx.doi.org/10.1038/s41467-018-03746-3] [PMID: 29662055]
[29]
Sanchis I, Spinelli R, Aschemacher N, Siano AS. Rational design and synthesis of modified natural peptides from Boana pulchella (anura) as acetylcholinesterase inhibitors and antioxidants. Amino Acids 2022; 54(2): 181-92.
[http://dx.doi.org/10.1007/s00726-021-03096-3] [PMID: 34738177]
[30]
Chang R, Zou Q, Xing R, Yan X. Peptide-based supramolecular nanodrugs as a new generation of therapeutic toolboxes against cancer. Adv Ther 2019; 2(8): 1900048.
[http://dx.doi.org/10.1002/adtp.201900048]
[31]
Edwards-Gayle CJC, Hamley IW. Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials. Org Biomol Chem 2017; 15(28): 5867-76.
[http://dx.doi.org/10.1039/C7OB01092C] [PMID: 28661532]
[32]
Hutchinson JA, Burholt S, Hamley IW. Peptide hormones and lipopeptides: From self-assembly to therapeutic applications. J Pept Sci 2017; 23(2): 82-94.
[http://dx.doi.org/10.1002/psc.2954] [PMID: 28127868]
[33]
Sha X, Li P, Feng Y, et al. Self-assembled peptide nanofibrils designed to release membrane-lysing antimicrobial peptides. ACS Appl Bio Mater 2020; 3(6): 3648-55.
[http://dx.doi.org/10.1021/acsabm.0c00281] [PMID: 35025235]
[34]
Nazeer N, Simmons JR, Rainey JK, Rodriguez-Lecompte JC, Ahmed M. Antibacterial activities of physiologically stable, self-assembled peptide nanoparticles. J Mater Chem B Mater Biol Med 2021; 9(43): 9041-54.
[http://dx.doi.org/10.1039/D1TB01864G] [PMID: 34664611]
[35]
Mikhalevich V, Craciun I, Kyropoulou M, Palivan CG, Meier W. Amphiphilic peptide self-assembly: Expansion to hybrid materials. Biomacromolecules 2017; 18(11): 3471-80.
[http://dx.doi.org/10.1021/acs.biomac.7b00764] [PMID: 28776980]
[36]
Tesauro D, Accardo A, Diaferia C, et al. Peptide-based drug-delivery systems in biotechnological applications: Recent advances and perspectives. Molecules 2019; 24(2): 351.
[http://dx.doi.org/10.3390/molecules24020351] [PMID: 30669445]
[37]
Barile L, Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Ther 2017; 174: 63-78.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.020] [PMID: 28202367]
[38]
Li Q, Zhang J, Wang Y, et al. Self-assembly of peptide hierarchical helical arrays with sequence-encoded circularly polarized luminescence. Nano Lett 2021; 21(15): 6406-15.
[http://dx.doi.org/10.1021/acs.nanolett.1c00697] [PMID: 34014681]
[39]
Wang Y, Jiang W, Jiang Y, Julian McClements D, Liu F, Liu X. Self-assembled nano-micelles of lactoferrin peptides: Structure, physicochemical properties, and application for encapsulating and delivering curcumin. Food Chem 2022; 387: 132790.
[http://dx.doi.org/10.1016/j.foodchem.2022.132790] [PMID: 35421649]
[40]
Janković P, Šantek I, Pina AS, Kalafatovic D. Exploiting peptide self-assembly for the development of minimalistic viral mimetics. Front Chem 2021; 9: 723473.
[http://dx.doi.org/10.3389/fchem.2021.723473] [PMID: 34395387]
[41]
Guo RC, Zhang XH, Ji L, et al. Recent progress of therapeutic peptide based nanomaterials: From synthesis and self-assembly to cancer treatment. Biomater Sci 2020; 8(22): 6175-89.
[http://dx.doi.org/10.1039/D0BM01358G] [PMID: 33026364]
[42]
Hamley IW, Castelletto V. Self-assembly of peptide bioconjugates: Selected recent research highlights. Bioconjug Chem 2017; 28(3): 731-9.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00284] [PMID: 27348697]
[43]
Yang X, Wang Y, Qi W, et al. Disulfide crosslinking and helical coiling of peptide micelles facilitate the formation of a printable hydrogel. J Mater Chem B Mater Biol Med 2019; 7(18): 2981-8.
[http://dx.doi.org/10.1039/C8TB03121E]
[44]
Assane IM, Santos-Filho NA, Sousa EL, Arruda Brasil MCO, Cilli EM, Pilarski F. Cytotoxicity and antimicrobial activity of synthetic peptides alone or in combination with conventional antimicrobials against fish pathogenic bacteria. J Appl Microbiol 2021; 131(4): 1762-74.
[http://dx.doi.org/10.1111/jam.15080] [PMID: 33742508]
[45]
Zhang X, Liu W, Wang H, et al. Self-assembled thermosensitive luminescent nanoparticles with peptide-Au conjugates for cellular imaging and drug delivery. Chin Chem Lett 2020; 31(3): 859-64.
[http://dx.doi.org/10.1016/j.cclet.2019.06.032]
[46]
Jiang Q, Liu X, Liang G, Sun X. Self-assembly of peptide nanofibers for imaging applications. Nanoscale 2021; 13(36): 15142-50.
[http://dx.doi.org/10.1039/D1NR04992E] [PMID: 34494635]
[47]
Grønlien KG, Pedersen ME, Sanden KW, Høst V, Karlsen J, Tønnesen HH. Collagen from Turkey (Meleagris gallopavo) tendon: A promising sustainable biomaterial for pharmaceutical use. Sustain Chem Pharm 2019; 13: 100166.
[http://dx.doi.org/10.1016/j.scp.2019.100166]
[48]
He C, Zhuang X, Tang Z, Tian H, Chen X. Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery. Adv Healthc Mater 2012; 1(1): 48-78.
[http://dx.doi.org/10.1002/adhm.201100008] [PMID: 23184687]
[49]
Zheng S, Cai Y, Hong Y, et al. Legumain/pH dual-responsive lytic peptide–paclitaxel conjugate for synergistic cancer therapy. Drug Deliv 2022; 29(1): 1764-75.
[http://dx.doi.org/10.1080/10717544.2022.2081380] [PMID: 35638851]
[50]
Berillo D, Yeskendir A, Zharkinbekov Z, Raziyeva K, Saparov A. Peptide-based drug delivery systems. Medicina 2021; 57(11): 1209.
[http://dx.doi.org/10.3390/medicina57111209] [PMID: 34833427]
[51]
El-Gamal FR, Akl MA, Mowafy HA, Mukai H, Kawakami S, Afouna MI. Synthesis and evaluation of high functionality and quality cell-penetrating peptide conjugated lipid for octaarginine modified PEGylated liposomes In U251 and U87 glioma cells. J Pharm Sci 2022; 111(6): 1719-27.
[http://dx.doi.org/10.1016/j.xphs.2021.11.022] [PMID: 34863974]
[52]
Yu J, Xie X, Zheng M, et al. Fabrication and characterization of nuclear localization signal-conjugated glycol chitosan micelles for improving the nuclear delivery of doxorubicin. Int J Nanomedicine 2012; 7: 5079-90.
[http://dx.doi.org/10.2147/IJN.S36150] [PMID: 23049255]
[53]
Morisco A, Accardo A, Tesauro D, Palumbo R, Benedetti E, Morelli G. Peptide-labeled supramolecular aggregates as selective doxorubicin carriers for delivery to tumor cells. Biopolymers 2011; 96(1): 88-96.
[http://dx.doi.org/10.1002/bip.21491] [PMID: 20560147]
[54]
Accardo A, Morisco A, Palladino P, Palumbo R, Tesauro D, Morelli G. Amphiphilic CCK peptides assembled in supramolecular aggregates: Structural investigations and in vitro studies. Mol Biosyst 2011; 7(3): 862-70.
[http://dx.doi.org/10.1039/C0MB00238K] [PMID: 21157624]
[55]
Zhu YS, Tang K, Lv J. Peptide-drug conjugate-based novel molecular drug delivery system in cancer. Trends Pharmacol Sci 2021; 42(10): 857-69.
[http://dx.doi.org/10.1016/j.tips.2021.07.001] [PMID: 34334251]
[56]
Schuster S, Juhász É, Halmos G, Neundorf I, Gennari C, Mező G. Development and biochemical characterization of self-immolative linker containing GnRH-III-drug conjugates. Int J Mol Sci 2022; 23(9): 5071.
[http://dx.doi.org/10.3390/ijms23095071] [PMID: 35563462]
[57]
Damen M, Izidoro M, Okamoto D, et al. Cationic geminoid peptide amphiphiles inhibit DENV2 protease, furin, and viral replication. Molecules 2022; 27(10): 3217.
[http://dx.doi.org/10.3390/molecules27103217] [PMID: 35630694]
[58]
Song Z, Chen X, You X, et al. Self-assembly of peptide amphiphiles for drug delivery: The role of peptide primary and secondary structures. Biomater Sci 2017; 5(12): 2369-80.
[http://dx.doi.org/10.1039/C7BM00730B] [PMID: 29051950]
[59]
Lin W, Ma G, Yuan Z, et al. Development of zwitterionic polypeptide nanoformulation with high doxorubicin loading content for targeted drug delivery. Langmuir 2019; 35(5): 1273-83.
[http://dx.doi.org/10.1021/acs.langmuir.8b00851] [PMID: 29933695]
[60]
Sheikh A, Md S, Kesharwani P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J Control Release 2021; 340: 221-42.
[http://dx.doi.org/10.1016/j.jconrel.2021.10.028] [PMID: 34757195]
[61]
Bai Q, Teng L, Zhang X, Dong CM. Multifunctional single-component polypeptide hydrogels: The gelation mechanism, superior biocompatibility, high performance hemostasis, and scarless wound healing. Adv Healthc Mater 2022; 11(6): 2101809.
[http://dx.doi.org/10.1002/adhm.202101809] [PMID: 34865324]
[62]
Altunbas A, Pochan DJ. Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. Top Curr Chem 2011; 310: 135-67.
[http://dx.doi.org/10.1007/128_2011_206] [PMID: 21809190]
[63]
Kubota R, Torigoe S, Liu S, Hamachi I. In situ real-time confocal imaging of a self-assembling peptide-grafted polymer showing pH-responsive hydrogelation. Chem Lett 2020; 49(11): 1319-23.
[http://dx.doi.org/10.1246/cl.200513]
[64]
Shen Y, Fu X, Fu W, Li Z. Biodegradable stimuli-responsive polypeptide materials prepared by ring opening polymerization. Chem Soc Rev 2015; 44(3): 612-22.
[http://dx.doi.org/10.1039/C4CS00271G] [PMID: 25335988]
[65]
Zhang S, Jiang G, Prabhakaran MP, Qin X, Ramakrishna S. Evaluation of electrospun biomimetic substrate surface-decorated with nanohydroxyapatite precipitation for osteoblasts behavior. Mater Sci Eng C 2017; 79: 687-96.
[http://dx.doi.org/10.1016/j.msec.2017.05.113] [PMID: 28629069]
[66]
Wei M, Hsu YI, Asoh TA, Sung MH, Uyama H. Design of injectable poly(γ-glutamic acid)/chondroitin sulfate hydrogels with mineralization ability. ACS Appl Bio Mater 2022; 5(4): 1508-18.
[http://dx.doi.org/10.1021/acsabm.1c01269] [PMID: 35286062]
[67]
Mou C, Wang X, Teng J, Xie Z, Zheng M. Injectable self-healing hydrogel fabricated from antibacterial carbon dots and ɛ-polylysine for promoting bacteria-infected wound healing. J Nanobiotechnology 2022; 20(1): 368.
[http://dx.doi.org/10.1186/s12951-022-01572-w] [PMID: 35953858]
[68]
Sharma P, Pal VK, Roy S. An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering. Biomater Sci 2021; 9(11): 3911-38.
[http://dx.doi.org/10.1039/D0BM02049D] [PMID: 33973582]
[69]
Wang ZH, Chang YY, Wu JG, et al. Novel 3D neuron regeneration scaffolds based on synthetic polypeptide containing neuron cue. Macromol Biosci 2018; 18(3): 1700251.
[http://dx.doi.org/10.1002/mabi.201700251] [PMID: 29231281]
[70]
Li Y, Ma Z, Ren Y, et al. Tissue engineering strategies for peripheral nerve regeneration. Front Neurol 2021; 12: 768267.
[http://dx.doi.org/10.3389/fneur.2021.768267] [PMID: 34867754]
[71]
Sharma KK, Sharma K, Kudwal A, Khan SI, Jain R. Peptide-heterocycle conjugates as antifungals against Cryptococcosis. Asian J Org Chem 2022; 11(7)
[http://dx.doi.org/10.1002/ajoc.202200196]
[72]
Yang S, Wang Y, Tan J, Teo JY, Tan KH, Yang YY. Antimicrobial polypeptides capable of membrane translocation for treatment of MRSA wound infection in vivo. Adv Healthc Mater 2022; 11(6): 2101770.
[http://dx.doi.org/10.1002/adhm.202101770] [PMID: 34846807]
[73]
Tian X, Sun F, Zhou XR, Luo SZ, Chen L. Role of peptide self-assembly in antimicrobial peptides. J Pept Sci 2015; 21(7): 530-9.
[http://dx.doi.org/10.1002/psc.2788] [PMID: 26100854]
[74]
Mwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: New hope in the war against multidrug resistance. Zool Res 2019; 40(6): 488-505.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2019.062] [PMID: 31592585]
[75]
Zeng ZZ, Huang SH, Alezra V, Wan Y. Antimicrobial peptides: Triumphs and challenges. Future Med Chem 2021; 13(16): 1313-5.
[http://dx.doi.org/10.4155/fmc-2021-0134] [PMID: 34148371]
[76]
Yan Y, Li Y, Zhang Z, et al. Advances of peptides for antibacterial applications. Colloids Surf B Biointerfaces 2021; 202: 111682.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111682] [PMID: 33714188]
[77]
Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev 2006; 19(3): 491-511.
[http://dx.doi.org/10.1128/CMR.00056-05] [PMID: 16847082]
[78]
Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev 2021; 179: 114008.
[http://dx.doi.org/10.1016/j.addr.2021.114008] [PMID: 34673132]
[79]
Browne K, Chakraborty S, Chen R, et al. A new era of antibiotics: The clinical potential of antimicrobial peptides. Int J Mol Sci 2020; 21(19): 7047.
[http://dx.doi.org/10.3390/ijms21197047] [PMID: 32987946]
[80]
Tai W. Current aspects of siRNA bioconjugate for in vitro and in vivo delivery. Molecules 2019; 24(12): 2211.
[http://dx.doi.org/10.3390/molecules24122211] [PMID: 31200490]
[81]
Wang Q, Xue Y, Zhang L, et al. Mechanism of siRNA production by a plant Dicer-RNA complex in dicing-competent conformation. Science 2021; 374(6571): 1152-7.
[http://dx.doi.org/10.1126/science.abl4546] [PMID: 34648373]
[82]
Baxi K, Sawarkar S, Momin M, Patel V, Fernandes T. Vaginal siRNA delivery: Overview on novel delivery approaches. Drug Deliv Transl Res 2020; 10(4): 962-74.
[http://dx.doi.org/10.1007/s13346-020-00741-4] [PMID: 32170657]
[83]
Deptuła M, Wardowska A, Dzierżyńska M, Rodziewicz-Motowidło S, Pikuła M. Antibacterial peptides in dermatology-strategies for evaluation of allergic potential. Molecules 2018; 23(2): 414.
[http://dx.doi.org/10.3390/molecules23020414] [PMID: 29443886]
[84]
Eguchi A, Dowdy SF. siRNA delivery using peptide transduction domains. Trends Pharmacol Sci 2009; 30(7): 341-5.
[http://dx.doi.org/10.1016/j.tips.2009.04.009] [PMID: 19545914]
[85]
Tai W, Gao X. Functional peptides for siRNA delivery. Adv Drug Deliv Rev 2017; 110-111: 157-68.
[http://dx.doi.org/10.1016/j.addr.2016.08.004] [PMID: 27530388]
[86]
Wang J, Chen G, Liu N, et al. Strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes. Adv Colloid Interface Sci 2022; 302: 102638.
[http://dx.doi.org/10.1016/j.cis.2022.102638] [PMID: 35299136]
[87]
Sajid MI, Mandal D, El-Sayed NS, Lohan S, Moreno J, Tiwari RK. Oleyl conjugated histidine-arginine cell-penetrating peptides as promising agents for siRNA delivery. Pharmaceutics 2022; 14(4): 881.
[http://dx.doi.org/10.3390/pharmaceutics14040881] [PMID: 35456715]
[88]
Osipova O, Zakharova N, Pyankov I, et al. Amphiphilic pH-sensitive polypeptides for siRNA delivery. J Drug Deliv Sci Technol 2022; 69: 103135.
[http://dx.doi.org/10.1016/j.jddst.2022.103135]
[89]
Qiu Y, Clarke M, Wan LTL, Lo JCK, Mason AJ, Lam JKW. Optimization of PEGylated KL4 peptide for siRNA delivery with improved pulmonary tolerance. Mol Pharm 2021; 18(6): 2218-32.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c01242] [PMID: 34014665]
[90]
Cummings JC, Zhang H, Jakymiw A. Peptide carriers to the rescue: Overcoming the barriers to siRNA delivery for cancer treatment. Transl Res 2019; 214: 92-104.
[http://dx.doi.org/10.1016/j.trsl.2019.07.010] [PMID: 31404520]
[91]
Glover DJ, Lipps HJ, Jans DA. Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 2005; 6(4): 299-310.
[http://dx.doi.org/10.1038/nrg1577] [PMID: 15761468]
[92]
Kim SW, Kim NY, Choi YB, Park SH, Yang JM, Shin S. RNA interference in vitro and in vivo using an arginine peptide/siRNA complex system. J Control Release 2010; 143(3): 335-43.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.009] [PMID: 20079391]
[93]
Hamley IW. Lipopeptides for vaccine development. Bioconjug Chem 2021; 32(8): 1472-90.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00258] [PMID: 34228433]
[94]
O’Neill CL, Shrimali PC, Clapacs ZP, Files MA, Rudra JS. Peptide-based supramolecular vaccine systems. Acta Biomater 2021; 133: 153-67.
[http://dx.doi.org/10.1016/j.actbio.2021.05.003] [PMID: 34010691]
[95]
Malonis RJ, Lai JR, Vergnolle O. Peptide-based vaccines: Current progress and future challenges. Chem Rev 2020; 120(6): 3210-29.
[http://dx.doi.org/10.1021/acs.chemrev.9b00472] [PMID: 31804810]
[96]
Immanuel C, Ramanathan A, Balasubramaniyan M, et al. Immunoprophylaxis of multi-antigen peptide (MAP) vaccine for human lymphatic filariasis. Immunol Res 2017; 65(3): 729-38.
[http://dx.doi.org/10.1007/s12026-017-8911-5] [PMID: 28432603]
[97]
Li Y, Zheng K, Tan Y, et al. A recombinant multi-epitope peptide vaccine based on MOMP and CPSIT_p6 protein protects against Chlamydia psittaci lung infection. Appl Microbiol Biotechnol 2019; 103(2): 941-52.
[http://dx.doi.org/10.1007/s00253-018-9513-4] [PMID: 30467705]
[98]
Medha P, Priyanka , Sharma S, Sharma M. Design of a peptide-based vaccine from late stage specific immunogenic cross-reactive antigens of PE/PPE proteins of Mycobacterium tuberculosis. Eur J Pharm Sci 2022; 168: 106051.
[http://dx.doi.org/10.1016/j.ejps.2021.106051] [PMID: 34744006]
[99]
Cuzzubbo S, Banissi C, Rouchon MS, et al. The adjuvant effect of melanin is superior to incomplete Freund’s adjuvant in subunit/peptide vaccines in mice. Cancer Immunol Immunother 2020; 69(12): 2501-12.
[http://dx.doi.org/10.1007/s00262-020-02631-7] [PMID: 32561966]
[100]
Coffman RL, Sher A, Seder RA. Vaccine adjuvants: Putting innate immunity to work. Immunity 2010; 33(4): 492-503.
[http://dx.doi.org/10.1016/j.immuni.2010.10.002] [PMID: 21029960]
[101]
Wylie B, Ong F, Belhoul-Fakir H, et al. Targeting cross-presentation as a route to improve the efficiency of peptide-based cancer vaccines. Cancers 2021; 13: 6189.
[http://dx.doi.org/10.3390/cancers13246189]
[102]
Petitdidier E, Pagniez J, Pissarra J, et al. Peptide-based vaccine successfully induces protective immunity against canine visceral leishmaniasis. NPJ Vaccines 2019; 4(1): 49.
[http://dx.doi.org/10.1038/s41541-019-0144-2] [PMID: 31815006]
[103]
Mørk SK, Kadivar M, Bol KF, et al. Personalized therapy with peptide-based neoantigen vaccine (EVX-01) including a novel adjuvant, CAF®09b, in patients with metastatic melanoma. OncoImmunology 2022; 11(1): 2023255.
[http://dx.doi.org/10.1080/2162402X.2021.2023255] [PMID: 35036074]
[104]
Rausch S, Gouttefangeas C, Hennenlotter J, et al. Results of a phase 1/2 study in metastatic renal cell carcinoma patients treated with a patient-specific adjuvant multi-peptide vaccine after resection of metastases. Eur Urol Focus 2019; 5(4): 604-7.
[http://dx.doi.org/10.1016/j.euf.2017.09.009] [PMID: 28988765]
[105]
Kawamura J, Sugiura F, Sukegawa Y, et al. Cytotoxic T lymphocyte response to peptide vaccination predicts survival in stage III colorectal cancer. Cancer Sci 2018; 109(5): 1545-51.
[http://dx.doi.org/10.1111/cas.13547] [PMID: 29473265]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy