Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

Programmed Cell Death Protein 1 (PD-1) in Relation to PANoptosis: Immune Pharmacological Targets for Management of Breast Adenocarcinoma

Author(s): Subarnarekha Maitra, Debarati Bhattacharya, Souvik Paul, Payel Ghosh Chowdhury, Dipanjan Mandal, Pallab Kanti Haldar, Ashok Kumar Balaraman and Asis Bala*

Volume 23, Issue 13, 2023

Published on: 03 May, 2023

Page: [1571 - 1585] Pages: 15

DOI: 10.2174/1871530323666230213121803

Price: $65

Abstract

Programmed cell death protein 1 or Programmed death-1 (PD-1) and Programmed Cell Death Ligand 1 (PD-L1) research have tremendously been taken into great consideration in the field of cancer immune pharmacology. Cancer immunotherapy has been convoyed by a capable outcome over the past few years. PD-1 and PD-L1 play a pivotal role in attenuating immune involvement, modulating the activity of T-cells, and promoting different types of programmed cell death. Participation of antigen-specific T cells and regulatory T cells and their acute mutations during cancer cell invasion and migration may lead to challenges for three programmed cell death methods, namely, pyroptosis, apoptosis, and necroptosis called “PANoptosis”. This review aimed to explore the correlation between the PD-1/PD-L1 pathway in “PANoptosis” using available recently published literature with several schematic representations. Hopefully, the review will facilitate the biomedical scientist targeting cancer immune pharmacological aspect for the management of Breast Adenocarcinoma shortly.

Keywords: Programmed death-1 (PD-1), programmed cell death ligand 1 (PD-L1), breast adenocarcinoma, pyroptosis, apoptosis, necroptosis, immune pharmacological targets.

Next »
Graphical Abstract
[1]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mor-tality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity 2020; 52(1): 17-35.
[http://dx.doi.org/10.1016/j.immuni.2019.12.011] [PMID: 31940268]
[3]
Qu X, Tang Y, Hua S. Immunological approaches towards cancer and inflammation: A cross talk. Front Immunol 2018; 9: 563.
[http://dx.doi.org/10.3389/fimmu.2018.00563] [PMID: 29662489]
[4]
Joshi NS, Akama-Garren EH, Lu Y, et al. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 2015; 43(3): 579-90.
[http://dx.doi.org/10.1016/j.immuni.2015.08.006] [PMID: 26341400]
[5]
Justice MJ, Dhillon P. Using the mouse to model human disease: increasing validity and reproducibility. Dis Model Mech 2016; 9(2): 101-3.
[http://dx.doi.org/10.1242/dmm.024547] [PMID: 26839397]
[6]
Ventola CL. Cancer immunotherapy, Part 2: Efficacy, safety, and other clinical considerations. P&T 2017; 42(7): 452-63.
[PMID: 28674473]
[7]
Sever R, Brugge JS. Signal transduction in cancer. Cold Spring Harb Perspect Med 2015; 5(4): a006098.
[http://dx.doi.org/10.1101/cshperspect.a006098]
[8]
Han Y, Liu D, Li L. PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res 2020; 10(3): 727-42.
[PMID: 32266087]
[9]
Jin HT, Ahmed R, Okazaki T. Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol 2010; 350: 17-37.
[http://dx.doi.org/10.1007/82_2010_116] [PMID: 21061197]
[10]
Salem ML, Alenzi FQ, Nath N, et al. Plasticity of T cell differentiation and cytokine signature: a double-edged sword for immune responses. Immunol Endocr Metab Agents Med Chem 2009; 9(2): 90-105.
[http://dx.doi.org/10.2174/187152209789000687]
[11]
Mantovani A, Barajon I, Garlanda C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev 2018; 281(1): 57-61.
[http://dx.doi.org/10.1111/imr.12614] [PMID: 29247996]
[12]
Jiao P, Geng Q, Jin P, et al. Small molecules as PD-1/PD-L1 pathway modulators for cancer immunother-apy. Curr Pharm Des 2019; 24(41): 4911-20.
[http://dx.doi.org/10.2174/1381612824666181112114958] [PMID: 30417781]
[13]
Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003; 3(5): 362-74.
[http://dx.doi.org/10.1038/nrc1075] [PMID: 12724734]
[14]
Pijuan J, Barceló C, Moreno DF, et al. In vitro cell migration, invasion, and adhe-sion assays: From cell imaging to data analysis. Front Cell Dev Biol 2019; 7: 107.
[http://dx.doi.org/10.3389/fcell.2019.00107] [PMID: 31259172]
[15]
Gkretsi V, Stylianopoulos T. Cell adhesion and matrix stiffness: coordinating cancer cell invasion and metastasis. Front Oncol 2018; 8: 145.
[http://dx.doi.org/10.3389/fonc.2018.00145] [PMID: 29780748]
[16]
Wei SC, Yang J. Forcing through tumor metastasis: The interplay between tissue rigidity and epithelial-mesenchymal transition. Trends Cell Biol 2016; 26(2): 111-20.
[http://dx.doi.org/10.1016/j.tcb.2015.09.009] [PMID: 26508691]
[17]
Roccuzzo G, Giordano S, Fava P, et al. Immune check point inhibitors in primary cutaneous t-cell lymphomas: biologic rationale, clinical results and future perspectives. Front Oncol 2021; 11: 733770.
[http://dx.doi.org/10.3389/fonc.2021.733770] [PMID: 34485162]
[18]
Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 2014; 15(12): 1243-53.
[http://dx.doi.org/10.15252/embr.201439246] [PMID: 25381661]
[19]
Jiang S, Ling C, Li W, Jiang H, Zhi Q, Jiang M. Molecular mechanisms of anti-cancer activities of β-elemene: Targeting hallmarks of cancer. Anticancer Agents Med Chem 2016; 16(11): 1426-34.
[http://dx.doi.org/10.2174/1871520616666160211123424] [PMID: 26863884]
[20]
Li X, Liu C, Chen P, Han D. Micro-/nano-scale biointerfaces, mechanical coupling and cancer therapy. Curr Top Med Chem 2017; 17(16): 1872-86.
[http://dx.doi.org/10.2174/1568026617666161122120854] [PMID: 27875976]
[21]
Vairavan R, Abdullah O, Retnasamy PB, Sauli Z, Shahimin MM, Retnasamy V. A brief review on breast carcinoma and delibera-tion on current non invasive imaging techniques for detection. Curr Med Imaging Rev 2019; 15(2): 85-121.
[http://dx.doi.org/10.2174/1573405613666170912115617]
[22]
Ehnman M, Chaabane W, Haglund F, Tsagkozis P. The tumor microenvironment of pediatric sarcoma: mesenchymal mechanisms regulating cell migration and metastasis. Curr Oncol Rep 2019; 21(10): 90.
[http://dx.doi.org/10.1007/s11912-019-0839-6] [PMID: 31418125]
[23]
Jain L, Abraham S, Shord SS. The interactions of anti-cancer drugs approved in the last decade in the United States with membrane transporters. Anticancer Agents Med Chem 2010; 10(8): 601-16.
[http://dx.doi.org/10.2174/187152010794473966] [PMID: 21194401]
[24]
Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog 2013; 18(1 - 2): 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40] [PMID: 23237552]
[25]
Lintz M, Muñoz A, Reinhart-King CA. The mechanics of single cell and collective migration of tumor cells. J Biomech Eng 2017; 139(2): 021005.
[http://dx.doi.org/10.1115/1.4035121] [PMID: 27814431]
[26]
Astudillo P, Larraín J. Wnt signaling and cell-matrix adhesion. Curr Mol Med 2014; 14(2): 209-20.
[http://dx.doi.org/10.2174/1566524014666140128105352] [PMID: 24467207]
[27]
Castañeda V, Cerda M, Santibáñez F, et al. Computa-tional methods for analysis of dynamic events in cell migration. Curr Mol Med 2014; 14(2): 291-307.
[http://dx.doi.org/10.2174/1566524014666140128113952] [PMID: 24467201]
[28]
Chuai M, Hughes D, Weijer CJ. Collective epithelial and mesenchymal cell migration during gastrulation. Curr Genomics 2012; 13(4): 267-77.
[http://dx.doi.org/10.2174/138920212800793357] [PMID: 23204916]
[29]
Banh C, Brossay L. Immune receptors, cadherins and their interactions. Curr Immunol Rev 2009; 5(1): 2-9.
[http://dx.doi.org/10.2174/157339509787314440]
[30]
Calvo A, Moglia C, Balma M, Chiò A. Involvement of immune response in the pathogenesis of amyotrophic lateral sclerosis: a thera-peutic opportunity? CNS Neurol Disord Drug Targets 2010; 9(3): 325-30.
[http://dx.doi.org/10.2174/187152710791292657] [PMID: 20406178]
[31]
Yamada KM, Sixt M. Mechanisms of 3D cell migration. Nat Rev Mol Cell Biol 2019; 20(12): 738-52.
[http://dx.doi.org/10.1038/s41580-019-0172-9] [PMID: 31582855]
[32]
Bala A, Mukherjee PK, Braga FC, Matsabisa MG. Comparative inhibition of MCF-7 breast cancer cell growth, invasion and angio-genesis by Cannabis sativa L. sourced from sixteen different geographic locations. S Afr J Bot 2018; 119: 154-62.
[http://dx.doi.org/10.1016/j.sajb.2018.07.022]
[33]
Bala A, Panditharadyula SS. Role of nuclear factor erythroid 2-related factor 2 (NRF-2) mediated antioxidant response on the synergis-tic antitumor effect of L-arginine and 5-fluro uracil (5FU) in breast adenocarcinoma. Curr Pharm Des 2019; 25(14): 1643-52.
[http://dx.doi.org/10.2174/1381612825666190705205155] [PMID: 31298161]
[34]
Winters S, Martin C, Murphy D, Shokar NK. Breast cancer epidemiology, prevention, and screening. Prog Mol Biol Transl Sci 2017; 151: 1-32.
[http://dx.doi.org/10.1016/bs.pmbts.2017.07.002] [PMID: 29096890]
[35]
Dolai N, Karmakar I, Kumar RB, Bala A, Mazumder UK, Haldar PK. Antitumor potential of Castanopsis indica (Roxb. ex Lindl.) A. DC. leaf extract against Ehrlich’s ascites carcinoma cell. Indian J Exp Biol 2012; 50(5): 359-65.
[PMID: 22803326]
[36]
Bala A, Matsabisa MG. Possible importance of Cannabis sativa L. in regulation of insulin and IL-6R/MAO-A in cancer cell progression and migration of breast cancer patients with diabetes. S Afr J Sci 2018; 114(7/8)
[http://dx.doi.org/10.17159/sajs.2018/a0279]
[37]
Singh V, Reddy R, Sinha A, Marturi V, Panditharadyula SS, Bala A. A review on phytopharmaceuticals having concomitant exper-imental anti-diabetic and anti-cancer effects as potential sources for targeted therapies against insulin-mediated breast cancer cell invasion and migration. Curr Cancer Ther Rev 2021; 17(1): 49-74.
[http://dx.doi.org/10.2174/1573394716999200831113335]
[38]
Tsang JYS, Tse GM. Molecular classification of breast cancer. Adv Anat Pathol 2020; 27(1): 27-35.
[http://dx.doi.org/10.1097/PAP.0000000000000232] [PMID: 31045583]
[39]
Zhang J, Lu A, Beech D, Jiang B, Lu Y. Suppression of breast cancer metastasis through the inhibition of VEGF-mediated tumor angiogenesis. Cancer Ther 2007; 5: 273-86.
[PMID: 18548129]
[40]
Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86(3): 353-64.
[http://dx.doi.org/10.1016/S0092-8674(00)80108-7] [PMID: 8756718]
[41]
Heffelfinger SC, Miller MA, Yassin R, Gear R. Angiogenic growth factors in preinvasive breast disease. Clin Cancer Res 1999; 5(10): 2867-76.
[PMID: 10537355]
[42]
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 2018; 32(19-20): 1267-84.
[http://dx.doi.org/10.1101/gad.314617.118] [PMID: 30275043]
[43]
Hahne J, Okuducu A, Sahin A, Fafeur V, Kiriakidis S, Wernert N. The transcription factor ETS-1: its role in tumour development and strategies for its inhibition. Mini Rev Med Chem 2008; 8(11): 1095-105.
[http://dx.doi.org/10.2174/138955708785909934] [PMID: 18855726]
[44]
Wilting J, Hawighorst T, Hecht M, Christ B, Papoutsi M. Development of lymphatic vessels: tumour lymphangiogenesis and lym-phatic invasion. Curr Med Chem 2005; 12(26): 3043-53.
[http://dx.doi.org/10.2174/092986705774933407] [PMID: 16375699]
[45]
Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860-7.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[46]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[47]
de Visser K, Jonkers J. Towards understanding the role of cancer-associated inflammation in chemoresistance. Curr Pharm Des 2009; 15(16): 1844-53.
[http://dx.doi.org/10.2174/138161209788453239] [PMID: 19519427]
[48]
Haldar PK, Bhattacharya S, Bala A, Kar B, Mazumder UK, Dewanjee S. Chemopreventive role of Indigofera aspalathoides against 20-methylcholanthrene-induced carcinogenesis in mouse. Toxicol Environ Chem 2010; 92(9): 1749-63.
[http://dx.doi.org/10.1080/02772241003783703]
[49]
Jiang M, Qi L, Li L, Wu Y, Song D, Li Y. Caspase‐8: A key protein of cross‐talk signal way in “ PANOPTOSIS ” in cancer. Int J Cancer 2021; 149(7): 1408-20.
[http://dx.doi.org/10.1002/ijc.33698] [PMID: 34028029]
[50]
Loveless R, Bloomquist R, Teng Y. Pyroptosis at the forefront of anticancer immunity. J Exp Clin Cancer Res 2021; 40(1): 264.
[http://dx.doi.org/10.1186/s13046-021-02065-8] [PMID: 34429144]
[51]
Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 2010; 236(1): 219-42.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00923.x] [PMID: 20636820]
[52]
Kythreotou A, Siddique A, Mauri FA, Bower M, Pinato DJ. PD-L1. J Clin Pathol 2018; 71(3): 189-94.
[http://dx.doi.org/10.1136/jclinpath-2017-204853] [PMID: 29097600]
[53]
Muenst S, Soysal SD, Tzankov A, Hoeller S. The PD-1/PD-L1 pathway: biological background and clinical relevance of an emerging treatment target in immunotherapy. Expert Opin Ther Targets 2015; 19(2): 201-11.
[http://dx.doi.org/10.1517/14728222.2014.980235] [PMID: 25491730]
[54]
Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front Immunol 2016; 7: 550.
[http://dx.doi.org/10.3389/fimmu.2016.00550] [PMID: 28018338]
[55]
Xue S, Hu M, Iyer V, Yu J. Blocking the PD-1/PD-L1 pathway in glioma: a potential new treatment strategy. J Hematol Oncol 2017; 10(1): 81.
[http://dx.doi.org/10.1186/s13045-017-0455-6] [PMID: 28388955]
[56]
Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 2007; 19(7): 813-24.
[http://dx.doi.org/10.1093/intimm/dxm057] [PMID: 17606980]
[57]
Zhu H, Du C, Yuan M, et al. PD-1/PD-L1 counterattack alliance: multiple strategies for treating triple-negative breast cancer. Drug Discov Today 2020; 25(9): 1762-71.
[http://dx.doi.org/10.1016/j.drudis.2020.07.006] [PMID: 32663441]
[58]
Jiang Y, Chen M, Nie H, Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccin Immunother 2019; 15(5): 1111-22.
[http://dx.doi.org/10.1080/21645515.2019.1571892] [PMID: 30888929]
[59]
Singh SS, Dahal A, Shrestha L, Jois SD. Genotype driven therapy for non-small cell lung cancer: resistance, pan inhibitors and im-munotherapy. Curr Med Chem 2020; 27(32): 5274-316.
[http://dx.doi.org/10.2174/0929867326666190222183219]
[60]
Atefi M, Avramis E, Lassen A, et al. Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res 2014; 20(13): 3446-57.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2797] [PMID: 24812408]
[61]
Bai J, Gao Z, Li X, Dong L, Han W, Nie J. Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PD-L1 blockade. Oncotarget 2017; 8(66): 110693-707.
[http://dx.doi.org/10.18632/oncotarget.22690]
[62]
Samir P, Malireddi RKS, Kanneganti TD. The panoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol 2020; 10: 238.
[http://dx.doi.org/10.3389/fcimb.2020.00238] [PMID: 32582562]
[63]
Malireddi RKS, Tweedell RE, Kanneganti TD. PANoptosis components, regulation, and implications. Aging 2020; 12(12): 11163-4.
[http://dx.doi.org/10.18632/aging.103528] [PMID: 32575071]
[64]
Christgen S, Zheng M, Kesavardhana S, et al. Identification of the PANoptosome: A molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol 2020; 10: 237.
[http://dx.doi.org/10.3389/fcimb.2020.00237] [PMID: 32547960]
[65]
Banoth B, Tuladhar S, Karki R, et al. ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis). J Biol Chem 2020; 295(52): 18276-83.
[http://dx.doi.org/10.1074/jbc.RA120.015924] [PMID: 33109609]
[66]
Malireddi RKS, Kesavardhana S, Karki R, Kancharana B, Burton AR, Kanneganti TD. RIPK1 distinctly regulates yersinia -induced inflammatory cell death, PANoptosis. Immunohorizons 2020; 4(12): 789-96.
[http://dx.doi.org/10.4049/immunohorizons.2000097] [PMID: 33310881]
[67]
Zheng M, Kanneganti TD. Newly identified function of caspase-6 in ZBP1-mediated innate immune responses, NLRP3 inflammasome activation, PANoptosis, and host defense. J Cell Immunol 2020; 2(6): 341-7.
[http://dx.doi.org/10.33696/immunology.2.064] [PMID: 33426542]
[68]
Çetin Z. Targeting the PANoptosome with miRNA loaded mesenchymal stem cell derived extracellular vesicles; a new path to fight against the COVID-19? Stem Cell Rev Rep 2021; 17(3): 1074-7.
[http://dx.doi.org/10.1007/s12015-021-10166-2] [PMID: 33851324]
[69]
Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015; 526(7575): 660-5.
[http://dx.doi.org/10.1038/nature15514] [PMID: 26375003]
[70]
Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015; 526(7575): 666-71.
[http://dx.doi.org/10.1038/nature15541] [PMID: 26375259]
[71]
Weinlich R, Oberst A, Beere HM, Green DR. Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol 2017; 18(2): 127-36.
[http://dx.doi.org/10.1038/nrm.2016.149] [PMID: 27999438]
[72]
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2015; 22(4): 526-39.
[http://dx.doi.org/10.1038/cdd.2014.216] [PMID: 25526085]
[73]
Bordon Y. A new path uncovers a wrongful conviction. Nat Rev Immunol 2011; 11(12): 801.
[http://dx.doi.org/10.1038/nri3120] [PMID: 22116083]
[74]
Hagar JA, Aachoui Y, Miao EA. WildCARDs: Inflammatory caspases directly detect LPS. Cell Res 2015; 25(2): 149-50.
[http://dx.doi.org/10.1038/cr.2014.128] [PMID: 25267404]
[75]
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 2021; 18(5): 1106-21.
[http://dx.doi.org/10.1038/s41423-020-00630-3] [PMID: 33785842]
[76]
Zheng C, Liu T, Liu H, Wang J. Role of BCL-2 family proteins in apoptosis and its regulation by nutrients. Curr Protein Pept Sci 2020; 21(8): 799-806.
[http://dx.doi.org/10.2174/1389203721666191227122252] [PMID: 31880257]
[77]
Kocabey S, Ekim Kocabey A, Schneiter R, Rüegg C. Membrane-interacting DNA nanotubes induce cancer cell death. Nanomaterials 2021; 11(8): 2003.
[http://dx.doi.org/10.3390/nano11082003] [PMID: 34443832]
[78]
Shakya B, Yadav PN. Thiosemicarbazones as potent anticancer agents and their modes of action. Mini Rev Med Chem 2020; 20(8): 638-61.
[http://dx.doi.org/10.2174/1389557519666191029130310]
[79]
Croce CM, Reed JC. Finally, An apoptosis-targeting therapeutic for cancer. Cancer Res 2016; 76(20): 5914-20.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1248] [PMID: 27694602]
[80]
Grosser JA, Maes ME, Nickells RW. Characteristics of intracellular propagation of mitochondrial BAX recruitment during apoptosis. Apoptosis 2021; 26(1-2): 132-45.
[http://dx.doi.org/10.1007/s10495-020-01654-w] [PMID: 33426618]
[81]
Dadsena S, King LE, García-Sáez AJ. Apoptosis regulation at the mitochondria membrane level. Biochim Biophys Acta Biomembr 2021; 1863(12): 183716.
[http://dx.doi.org/10.1016/j.bbamem.2021.183716] [PMID: 34343535]
[82]
Sung TC, Li CY, Lai YC, et al. Solution structure of apoptotic bax oligomer: oligomerization likely precedes membrane insertion. Structure 2015; 23(10): 1878-88.
[http://dx.doi.org/10.1016/j.str.2015.07.013] [PMID: 26299946]
[83]
Muscari I, Adorisio S, Liberati A M, et al. Bcl-XL overexpression decreases GILZ levels and inhibits glucocorticoid-induced activation of caspase-8 and caspase-3 in mouse thymocytes. J Transl Autoimmun 2020; 3(9): 0-4.
[http://dx.doi.org/10.1016/j.jtauto.2020.100035]
[84]
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 2019; 20(3): 175-93.
[http://dx.doi.org/10.1038/s41580-018-0089-8] [PMID: 30655609]
[85]
Niu X, Zhao J, Ma J, et al. Binding of released bim to Mcl-1 is a mechanism of intrinsic resistance to ABT-199 which can be overcome by combination with daunorubicin or cytarabine in AML cells. Clin Cancer Res 2016; 22(17): 4440-51.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-3057] [PMID: 27103402]
[86]
Ravichandran KS. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 2010; 207(9): 1807-17.
[http://dx.doi.org/10.1084/jem.20101157] [PMID: 20805564]
[87]
Brown G, Vilalta A, Fricker M. Phagoptosis - Cell death by phagocytosis - plays central roles in physiology, host defense and patholo-gy. Curr Mol Med 2015; 15(9): 842-51.
[http://dx.doi.org/10.2174/156652401509151105130628] [PMID: 26511705]
[88]
Witasp E, Kagan V, Fadeel B. PROGRAMMED Cell clearance: Molecular mechanisms and role in autoimmune disease, chronic in-flammation, and anti-cancer immune responses. Curr Immunol Rev 2008; 4(2): 53-69.
[http://dx.doi.org/10.2174/157339508784325064]
[89]
Zargarian S, Shlomovitz I, Erlich Z, et al. Phos-phatidylserine externalization, “necroptotic bodies” release, and phagocytosis during necroptosis. PLoS Biol 2017; 15(6): e2002711.
[http://dx.doi.org/10.1371/journal.pbio.2002711] [PMID: 28650960]
[90]
Caruso S, Poon IKH. Apoptotic cell-derived extracellular vesicles: More than just debris. Front Immunol 2018; 9: 1486.
[http://dx.doi.org/10.3389/fimmu.2018.01486]
[91]
Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature commit-tee on cell death 2012. Cell Death Differ 2012; 19(1): 107-20.
[http://dx.doi.org/10.1038/cdd.2011.96] [PMID: 21760595]
[92]
Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation 2018; 15(1): 199.
[http://dx.doi.org/10.1186/s12974-018-1235-0] [PMID: 29980212]
[93]
Moriwaki K, Chan FKM. RIP3: a molecular switch for necrosis and inflammation. Genes Dev 2013; 27(15): 1640-9.
[http://dx.doi.org/10.1101/gad.223321.113] [PMID: 23913919]
[94]
Dondelinger Y, Aguileta MA, Goossens V, et al. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ 2013; 20(10): 1381-92.
[http://dx.doi.org/10.1038/cdd.2013.94] [PMID: 23892367]
[95]
Hildebrand JM, Lucet IS, Murphy JM. Flicking the molecular switch underlying MLKL-mediated necroptosis. Mol Cell Oncol 2015; 2(3): e985550.
[http://dx.doi.org/10.4161/23723556.2014.985550] [PMID: 27308464]
[96]
Liu S, Wang X, Li Y, et al. Necroptosis mediates TNF-induced toxicity of hippocampal neurons largely by-passing ros accumulation and calcium influx. 2014; 2014: 290182.
[97]
Kearney CJ, Cullen SP, Tynan GA, et al. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production. Cell Death Differ 2015; 22(8): 1313-27.
[http://dx.doi.org/10.1038/cdd.2014.222] [PMID: 25613374]
[98]
Webster JD, Vucic D. The Balance of TNF mediated pathways regulates inflammatory cell death signaling in healthy and diseased tis-sues. Front Cell Dev Biol 2020; 8(May): 365.
[http://dx.doi.org/10.3389/fcell.2020.00365] [PMID: 32671059]
[99]
Shahsavari Z, Karami-Tehrani F, Salami S. Targeting cell necroptosis and apoptosis induced by shikonin via receptor interacting pro-tein kinases in estrogen receptor positive breast cancer cell line, MCF-7. Anticancer Agents Med Chem 2018; 18(2): 245-54.
[http://dx.doi.org/10.2174/1871520617666170919164055] [PMID: 28933271]
[100]
Han J, Zhong CQ, Zhang DW. Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol 2011; 12(12): 1143-9.
[http://dx.doi.org/10.1038/ni.2159] [PMID: 22089220]
[101]
Ye LL, Wei XS, Zhang M, Niu YR, Zhou Q. The significance of tumor necrosis factor receptor type II in CD8+ regulatory T Cells and CD8+ effector T cells. Front Immunol 2018; 9(3): 583.
[http://dx.doi.org/10.3389/fimmu.2018.00583] [PMID: 29623079]
[102]
Fujikura D, Ito M, Chiba S, et al. CLIPR-59 regulates TNF-α-induced apoptosis by controlling ubiquitination of RIP1. Cell Death Dis 2012; 3(2): e264.
[http://dx.doi.org/10.1038/cddis.2012.3] [PMID: 22297296]
[103]
Fayaz SM, Kumar VS, Rajanikant GK. Necroptosis: who knew there were so many interesting ways to die? CNS Neurol Disord Drug Targets 2014; 13(1): 42-51.
[http://dx.doi.org/10.2174/18715273113126660189] [PMID: 24152329]
[104]
Kaku Y, Tsuchiya A, Kanno T, Nishizaki T. HUHS1015 induces necroptosis and caspase-independent apoptosis of MKN28 human gastric cancer cells in association with AMID accumulation in the nucleus. Anticancer Agents Med Chem 2015; 15(2): 242-7.
[http://dx.doi.org/10.2174/1871520614666140922122700] [PMID: 25244912]
[105]
Zak KM, Kitel R, Przetocka S, et al. Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure 2015; 23(12): 2341-8.
[http://dx.doi.org/10.1016/j.str.2015.09.010] [PMID: 26602187]
[106]
Ahmadzadeh M, Johnson LA, Heemskerk B, et al. Tumor antigen–specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009; 114(8): 1537-44.
[http://dx.doi.org/10.1182/blood-2008-12-195792] [PMID: 19423728]
[107]
Junker K, Eckstein M, Fiorentino M, Montironi R. PD1/PD-L1 Axis in Uro-oncology. Curr Drug Targets 2020; 21(13): 1293-300.
[http://dx.doi.org/10.2174/1389450121666200326123700]
[108]
Bertucci F, Gonçalves A. Immunotherapy in breast cancer: The emerging role of PD-1 and PD-L1. Curr Oncol Rep 2017; 19(10): 64.
[http://dx.doi.org/10.1007/s11912-017-0627-0] [PMID: 28799073]
[109]
Zhang L, Gajewski TF, Kline J. PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood 2009; 114(8): 1545-52.
[http://dx.doi.org/10.1182/blood-2009-03-206672] [PMID: 19417208]
[110]
Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways. Am J Clin Oncol 2016; 39(1): 98-106.
[http://dx.doi.org/10.1097/COC.0000000000000239] [PMID: 26558876]
[111]
Darvin P, Sasidharan Nair V, Elkord E. PD-L1 expression in human breast cancer stem cells is epigenetically regulated through post-translational histone modifications. J Oncol 2019; 2019: 1-9.
[http://dx.doi.org/10.1155/2019/3958908] [PMID: 30915120]
[112]
Liu L, Shen Y, Zhu X, et al. ERα is a negative regulator of PD-L1 gene transcription in breast cancer. Biochem Biophys Res Commun 2018; 505(1): 157-61.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.005] [PMID: 30241942]
[113]
Liu S, Chen S, Yuan W, et al. PD-1/PD-L1 interaction up-regulates MDR1/P-gp expression in breast can-cer cells via PI3K/AKT and MAPK/ERK pathways. Oncotarget 2017; 8(59): 99901-12.
[http://dx.doi.org/10.18632/oncotarget.21914] [PMID: 29245948]
[114]
Planes-Laine G, Rochigneux P, Bertucci F, et al. PD-1/PD-L1 targeting in breast cancer: The first clinical evidences are emerging. A literature review. Cancers 2019; 11(7): 1033.
[http://dx.doi.org/10.3390/cancers11071033] [PMID: 31336685]
[115]
Chen L, Han X. Anti–PD-1/PD-L1 therapy of human cancer: Past, present, and future. J Clin Invest 2015; 125(9): 3384-91.
[http://dx.doi.org/10.1172/JCI80011] [PMID: 26325035]
[116]
Nanda R, Chow LQM, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib keynote-012 study. J Clin Oncol 2016; 34(21): 2460-7.
[http://dx.doi.org/10.1200/JCO.2015.64.8931] [PMID: 27138582]
[117]
Schmid P, Cortes J, Pusztai L, et al. Pembroli-zumab for early triple-negative breast cancer. N Engl J Med 2020; 382(9): 810-21.
[http://dx.doi.org/10.1056/NEJMoa1910549] [PMID: 32101663]
[118]
Voorwerk L, Slagter M, Horlings HM, et al. Immune induction strategies in meta-static triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat Med 2019; 25(6): 920-8.
[http://dx.doi.org/10.1038/s41591-019-0432-4] [PMID: 31086347]
[119]
Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 2017; 377(25): 2500-1.
[http://dx.doi.org/10.1056/NEJMc1713444] [PMID: 29262275]
[120]
Cortes J, Rugo HS, Cescon DW. Im, S.A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Perez-Garcia, J.; Iwata, H.; Masuda, N.; Torregroza O., M.; Gokmen, E.; Loi, S.; Guo, Z.; Zhou, X.; Karantza, V.; Pan, W.; Schmid, P. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N Engl J Med 2022; 387(3): 217-26.
[http://dx.doi.org/10.1056/NEJMoa2202809] [PMID: 35857659]
[121]
Zheng Y, Fang YC, Li JPD. L1 expression levels on tumor cells affect their immunosuppressive activity. Oncol Lett 2019; 18(5): 5399-407.
[http://dx.doi.org/10.3892/ol.2019.10903] [PMID: 31612048]
[122]
Zhang L, Zhao Y, Tu Q, Xue X, Zhu X, Zhao KN. The roles of programmed cell death ligand-1/programmed cell death-1 (PD-L1/PD-1) in HPV-induced cervical cancer and potential for their use in blockade therapy. Curr Med Chem 2021; 28(5): 893-909.
[http://dx.doi.org/10.2174/1875533XMTAziOTYt1] [PMID: 32003657]
[123]
De Angelis ML, Francescangeli F, La Torre F, Zeuner A. Stem cell plasticity and dormancy in the development of cancer therapy resistance. Front Oncol 2019; 9: 626.
[http://dx.doi.org/10.3389/fonc.2019.00626] [PMID: 31355143]
[124]
Parsonidis P, Ntanovasilis DA, Papasotiriou I. MUC1 antigen-specific CD8 T lymphocytes targeting MCF7 and MDA-MB-231 human breast adenocarcinoma cell lines. J Cancer Ther 2019; 10(7): 495-509.
[http://dx.doi.org/10.4236/jct.2019.107041]
[125]
Hatem R, Botty RE, Chateau-Joubert S, et al. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget 2016; 7(30): 48206-19.
[http://dx.doi.org/10.18632/oncotarget.10195] [PMID: 27374081]
[126]
De P, Miskimins K, Dey N, Leyland-Jones B. Promise of rapalogues versus mTOR kinase inhibitors in subset specific breast cancer: Old targets new hope. Cancer Treat Rev 2013; 39(5): 403-12.
[http://dx.doi.org/10.1016/j.ctrv.2012.12.002] [PMID: 23352077]
[127]
Ni J, Ramkissoon SH, Xie S, et al. Combination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases. Nat Med 2016; 22(7): 723-6.
[http://dx.doi.org/10.1038/nm.4120] [PMID: 27270588]
[128]
Rojo F, Najera L, Lirola J, et al. 4E-binding protein 1, a cell signaling hall-mark in breast cancer that correlates with pathologic grade and prognosis. Clin Cancer Res 2007; 13(1): 81-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1560] [PMID: 17200342]
[129]
Schütz F, Stefanovic S, Mayer L, von Au A, Domschke C, Sohn C. PD-1/PD-L1 pathway in breast cancer. Oncol Res Treat 2017; 40(5): 294-7.
[http://dx.doi.org/10.1159/000464353] [PMID: 28346916]
[130]
Burguin A, Diorio C, Durocher F. Breast cancer treatments: Updates and new challenges. J Pers Med 2021; 11(8): 808.
[http://dx.doi.org/10.3390/jpm11080808] [PMID: 34442452]
[131]
Chien TJ. A review of the endocrine resistance in hormone-positive breast cancer. Am J Cancer Res 2021; 11(8): 3813-31.
[PMID: 34522451]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy