[10]
Ostrom, Q. T.; Gittleman, H.; Stetson, L.; Virk, S. M.; Barnholtz-Sloan, J. S. Epidemiology of Gliomas. In Cancer Treatment and Research; Springer International Publishing: Cham, 2015, pp. 1-14.
[11]
Stocker, M.J.N.R.N. Ca2+-activated K+ channels: molecular determinants and function of the SK family. Nat. Rev. Neurosci., 2004, 5(10), 758-770.
[12]
Turner, K.L.; Honasoge, A.; Robert, S.M.; McFerrin, M.M.; Sontheimer, H.J.G. A proinvasive role for the Ca2+‐activated K+ channel KCa3. 1 in malignant glioma. Glia, 2014, 62(6), 971-981.
[17]
Ruggieri, P.; Mangino, G.; Fioretti, B.; Catacuzzeno, L.; Puca, R.; Ponti, D.; Miscusi, M.; Franciolini, F.; Ragona, G.; Calogero, A. The inhibition of KCa3. 1 channels activity reduces cell motility in glioblastoma derived cancer stem cells. PLoS One, 2012, 7(10), e47825.
[23]
Liu, M.; Inoue, K.; Leng, T.; Guo, S.; Xiong, Z.G. TRPM7 channels regulate glioma stem cell through STAT3 and Notch signaling pathways. Cell. Signal., 2014, 26(12), 2773-2781.
[29]
Ahumada-Castro, U.; Bustos, G.; Silva-Pavez, E.; Puebla-Huerta, A.; Lovy, A.; Cárdenas, C.J.F.i.C.; Biology, D. In the right place at the right time: regulation of cell metabolism by IP3R-mediated inter-organelle Ca2+ fluxes. Front. Cell Dev. Biol., 2021, 9, 629522.
[31]
Verkhratsky, A.; Toescu, E.J.J.o.c. Endoplasmic reticulum Ca2+ homeostasis and neuronal death. J. Cell. Mol. Med., 2003, 7(4), 351-361.
[32]
Liiv, M.; Cagalinec, M.; Hodurova, Z.; Vaarmann, A.; Mandel, M.; Zeb, A.; Kuum, M.; Hickey, M.A.; Safiulina, D.; Choubey, V.J.S. Wolfram syndrome 1: From ER stress to impaired mitochondrial dynamics and neuronal development. Springerplus, 2015, 4(1), 1-32.
[33]
Richard, S.; Neveu, D.; Carnac, G.; Bodin, P.; Travo, P. Nargeot, Differential expression of voltage-gated Ca2+-currents in cultivated aortic myocytes. Biochimica et Biophysica Acta (BBA), 1992, 1160(1), 95-104.
[38]
Zhang, Y.; Zhang, J.; Jiang, D.; Zhang, D.; Qian, Z.; Liu, C.; Tao, J.J.B.j.o.p. Inhibition of T‐type Ca2+ channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br. J. Pharmacol., 2012, 166(4), 1247-1260.
[41]
Mercer, J.C.; DeHaven, W.I.; Smyth, J.T.; Wedel, B.; Boyles, R.R.; Bird, G.S.; Putney, J.W.J.J.o.B.C. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor Stim1. J. Biol. Chem., 2006, 281(34), 24979-24990.
[45]
Liou, J.; Kim, M.L.; Do Heo, W.; Jones, J.T.; Myers, J.W.; Ferrell, J.E., Jr; Meyer, T.J.C.b. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol. Physiol. Rev., 2005, 15(13), 1235-1241.
[46]
AB, P.J.P.R.; Putney, J.W. Store-operated calcium channels. 2005, 85(2), 757-810.
[53]
Ishiuchi, S.; Tsuzuki, K.; Yoshida, Y.; Yamada, N.; Hagimura, N.; Okado, H.; Miwa, A.; Kurihara, H.; Nakazato, Y.; Tamura, M.J.N.m. Blockage of Ca2+-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat. Med., 2002, 8(9), 971-978.
[57]
Villalobo, A.; Ishida, H.; Vogel, H.J.; Berchtold, M.W.J.B.E.B.A-M.C.R. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(3), 507-521.
[100]
Smith, S.J.; Tyler, B.M.; Gould, T.; Veal, G.J.; Gorelick, N.; Rowlinson, J.; Serra, R.; Ritchie, A.; Berry, P.; Otto, A.J.C.C.R. Overall survival in malignant glioma is significantly prolonged by neurosurgical delivery of etoposide and temozolomide from a thermo-responsive biodegradable paste long-term survival from intracavity biodegradable paste. 2019, 25(16), 5094-5106.
[103]
Shaw, V. Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy.Semi. Cancer Biol; Elsevier, 2021, 68, p. 75-83.
[104]
Zhang, Y.; Cruickshanks, N.; Yuan, F.; Wang, B.; Pahuski, M.; Wulfkuhle, J.; Gallagher, I.; Koeppel, A.F.; Hatef, S.; Papanicolas, C.; Lee, J.; Bar, E.E.; Schiff, D.; Turnerr, S.D.; Petricoin, E.F.; Gray, L.S.; Abounader, R. Targetable T-type Calcium Channels Drive Glioblastoma-Role and Targeting of Calcium Channels in Glioblastoma. Cancer Res., 2017, 77(13), 3479-3490.
[120]
Cohen-Inbar, O.; Zaaroor, M.J.J.o.C.N. Glioblastoma multiforme targeted therapy: The Chlorotoxin story. J. Clin. Neurosci., 2016, 33, 52-58.
[121]
Cheng, Y.; Zhao, J.; Qiao, W.; Chen, K.J.A.j.o.n.m. Recent advances in diagnosis and treatment of gliomas using chlorotoxin-based bioconjugates. Am. J. Nucl. Med. Mol. Imaging, 2014, 4(5), 385.
[134]
Taglialatela, M.; Secondo, A.; Fresi, A.; Rosati, B.; Pannaccione, A.; Castaldo, P.; Giorgio, G.; Wanke, E.; Annunziato, L.J.B.p. Inhibition of depolarization-induced [3H] noradrenaline release from SH-SY5Y human neuroblastoma cells by some second-generation H1 receptor antagonists through blockade of store-operated Ca2+ channels (SOCs). Biochem. Pharmacol., 2001, 62(9), 1229-1238.
[135]
Ahmad, I.J.E.j.o.m.c. Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. 2018, 143, 515-531.
[137]
Ferrer, T.; Figueroa, I.A.A.; Shapiro, M.S.; Tristani-Firouzi, M.; Sánchez-Chapula, J.A.J.B.J. Tamoxifen inhibition of Kv7. 2/Kv7. 3 Channels. 2014, 106(2), 142a.
[138]
Stoneking, C.J.; Shivakumar, O.; Thomas, D.N.; Colledge, W.H.; Mason, M.J.J.A.J.o.P-C.P. Voltage dependence of the Ca2+-activated K+ channel KCa3. 1 in human erythroleukemia cells. Am. J. Physiol. Cell Physiol., 2013, 304(9), C858-C872.
[143]
Shin, H.J.; Lee, S.; Jung, H.J.J.J.o.c.b. A curcumin derivative hydrazinobenzoylcurcumin suppresses stem‐like features of glioblastoma cells by targeting Ca2+/calmodulin‐dependent protein kinase II. J. Cell. Biochem., 2019, 120(4), 6741-6752.
[148]
Chigurupati, S.; Venkataraman, R.; Barrera, D.; Naganathan, A.; Madan, M.; Paul, L.; Pattisapu, J.V.; Kyriazis, G.A.; Sugaya, K.; Bushnev, S.J.C.r. Receptor channel TRPC6 is a key mediator of notch-driven glioblastoma growth and invasivenessexpression and function of trpc6 in glioblastomas. Cancer Res., 2010, 70(1), 418-427.
[149]
Li, S.; Wang, J.; Wei, Y.; Liu, Y.; Ding, X.; Dong, B.; Xu, Y.; Wang, Y. Crucial role of TRPC6 in maintaining the stability of HIF-1α in glioma cells under hypoxia. J. Cell Sci., 2015, 128(17), 3317-3329.
[160]
Gehring, M.P.; Kipper, F.; Nicoletti, N.F.; Sperotto, N.D.; Zanin, R.; Tamajusuku, A.S.; Flores, D.G.; Meurer, L.; Roesler, R. Aroldo Filho, Len Z.G.; Campos, M.M.; Morrone, F.B. P2X7 receptor as predictor gene for glioma radiosensitivity and median survival. 2015, 68, 92-100.
[161]
Fang, J.; Chen, X.; Zhang, L.; Chen, J.; Liang, Y.; Li, X.; Xiang, J.; Wang, L.; Guo, G.; Zhang, B.; Zhang, W.C. P2X7R suppression promotes glioma growth through epidermal growth factor receptor signal pathway. Int. J. Biochem. Cell Biol., 2013, 45(6), 1109-1120.
[171]
Lester-Coll, N.; Kluytenaar, J.; Pavlik, K.; Yu, J.; Contessa, J.; Moliterno, J.; Piepmeier, J.; Becker, K.; Baehring, J.; Huttner, A.J.; Vortmeyer, A.O.; Ramani, R.; Lampert, R.J.; Yao, X.; Bindra, R.S. Mibefradil dihydrochloride with hypofractionated radiation for recurrent glioblastoma: Preliminary results of a phase 1 dose expansion trial. Int. J. Radiat. Oncol. Biol. Phys., 2016, 96(2), S93.
[177]
Yuan, P.; Leonetti, M.D.; Pico, A.R.; Hsiung, Y.; MacKinnon, R.J.S. Structure of the human BK channel Ca2+-activation apparatus at 3.0 Å resolution. Science, 2010, 329(5988), 182-186.
[179]
Singh, H.; Stefani, E.; Toro, L.J.T.J.p. Intracellular BKCa (iBKCa) channels. J. Physicol., 2012, 590(23), 5937-5947.
[189]
Olesen, S-P.; Munch, E.; Moldt, P.; Drejer, J.J.E.j.o.p. Selective activation of Ca2+-dependent K+ channels by novel benzimidazolone. Arch. Biochem. Biophys., 1994, 406(1), 53-59.
[191]
Warth, R.; Hamm, K.; Bleich, M.; Kunzelmann, K.; von Hahn, T.; Schreiber, R.; Ullrich, E.; Mengel, M.; Trautmann, N.; Kindle, P.J.P.A. Molecular and functional characterization of the small Ca2+-regulated K+ channel (rSK4) of colonic crypts. 1999, 438(4), 437-444.
[197]
Joseph, J.V.; Roosmalen, I.A.V.; Busschers, E.; Tomar, T.; Conroy, S.; Eggens-Meijer, E.; Peñaranda Fajardo, N.; Pore, M.M.; Balasubramanyian, V.; Wagemakers, M.; Copray, S.; den Dunhen, W.F.A.; Kruyt, F.A.E. Serum-induced differentiation of glioblastoma neurospheres leads to enhanced migration/invasion capacity that is associated with increased MMP9. PLoS One, 2015, 10(12), e0145393.
[200]
Manning, T.J., Jr; Parker, J.C.; Sontheimer, H.J.C.m. Role of lysophosphatidic acid and rho in glioma cell motility. 2000, 45(3), 185-199.
[207]
Cuddapah, V.A. Regulation of ClC-3 in human malignant glioma; The University of Alabama at Birmingham, 2012.