Generic placeholder image

Current Artificial Intelligence

Editor-in-Chief

ISSN (Print): 2950-3752
ISSN (Online): 2950-3760

Research Article

Intelligent Prediction of Photovoltaic Power Generation Considering Uncertainty Measurement

Author(s): Guo-Feng Fan*, Qing-Yi Ge, Si-Jie Ren, Shao-Xiang Hu and Wei-Chiang Hong*

Volume 2, 2024

Published on: 14 March, 2023

Page: [1 - 11] Pages: 11

DOI: 10.2174/2666782702666230210113724

Open Access Journals Promotions 2
Abstract

Background: As a renewable energy, solar energy has the advantages of being nonpolluting, clean, and renewable. With the variability of solar radiation, the complexity of meteorological factors, and other uncertain changes, how to measure its comprehensive uncertainty is very important.

Objective: The inherent regularity of the uncertainty behavior of photovoltaic power generation is revealed by the change process of photovoltaic power generation.

Methods: Using the empirical wavelet transform (EWT), the uncertainty measurement was studied from the perspective of social physics, and an optimized intelligent prediction model (PSOBOALSTM) was proposed based on the uncertainty.

Results: The intelligent prediction model (PSOBOA-LSTM) has a better prediction effect and higher accuracy than other models, and reveals the internal mechanism of the photovoltaic power generation system from the perspective of physics and sociology.

Conclusion: Using the PSOBOA-LSTM model can better facilitate the power dispatching department to reasonably arrange conventional power generation, coordinate operations and make maintenance arrangements based on the predicted photovoltaic power generation, and solve problems arising from the connection between grid dispatching and photovoltaic power generation forecasting.

Keywords: PSOBOA-LSTM model, photovoltaic power, power generation forecast, stability analysis, KSPA inspection, uncertainty measurement.

Next »
[1]
Suo, C.; Li, Y.P.; Nie, S.; Lv, J.; Mei, H.; Ma, Y. Analyzing the effects of economic development on the transition to cleaner production of China’s energy system under uncertainty. J. Clean. Prod., 2021, 279, 123725.
[http://dx.doi.org/10.1016/j.jclepro.2020.123725]
[2]
Tian, X.; Bai, F.; Jia, J.; Liu, Y.; Shi, F. Realizing low-carbon development in a developing and industrializing region: Impacts of industrial structure change on CO2 emissions in southwest China. J. Environ. Manage., 2019, 233, 728-738.
[http://dx.doi.org/10.1016/j.jenvman.2018.11.078] [PMID: 30659993]
[3]
De Giorgi, M.G.; Congedo, P.M.; Malvoni, M. Photovoltaic power forecasting using statistical methods: impact of weather data. IET Sci. Measur. Technol., 2014, 8(3), 90-97.
[http://dx.doi.org/10.1049/iet-smt.2013.0135]
[4]
Liu, H.; Gao, Q.; Ma, P. Photovoltaic generation power prediction research based on high quality context ontology and gated recurrent neural network. Sustain. Energy Technol. Assess., 2021, 45, 101191.
[http://dx.doi.org/10.1016/j.seta.2021.101191]
[5]
Qiao, Z.; Elhattab, A.; Shu, X.; He, C. A second-order stochastic resonance method enhanced by fractional-order derivative for mechanical fault detection. Nonlinear Dyn., 2021, 106(1), 707-723.
[http://dx.doi.org/10.1007/s11071-021-06857-7]
[6]
Zhou, F.; Yang, S.; Fujita, H.; Chen, D.; Wen, C. Deep learning fault diagnosis method based on global optimization GAN for unbalanced data. Knowl. Base. Syst., 2020, 187, 104837.
[http://dx.doi.org/10.1016/j.knosys.2019.07.008]
[7]
Qiao, Z.; Shu, X. Coupled neurons with multi-objective optimization benefit incipient fault identification of machinery. Chaos Solitons Fractals, 2021, 145, 110813.
[http://dx.doi.org/10.1016/j.chaos.2021.110813]
[8]
Magnago, F.H.; Abur, A. Fault location using wavelets. IEEE Trans. Power Deliv., 1998, 13(4), 1475-1480.
[http://dx.doi.org/10.1109/61.714808]
[9]
Lei, Y.; Lin, J.; He, Z.; Zuo, M.J. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process., 2013, 35(1-2), 108-126.
[http://dx.doi.org/10.1016/j.ymssp.2012.09.015]
[10]
Hooshmand, R.A.; Amooshahi, H.; Parastegari, M. A hybrid intelligent algorithm based short-term load forecasting approach. Int. J. Electr. Power Energy Syst., 2013, 45(1), 313-324.
[http://dx.doi.org/10.1016/j.ijepes.2012.09.002]
[11]
Niu, D.; Shi, H.; Wu, D.D. Short-term load forecasting using bayesian neural networks learned by Hybrid Monte Carlo algorithm. Appl. Soft Comput., 2012, 12(6), 1822-1827.
[http://dx.doi.org/10.1016/j.asoc.2011.07.001]
[12]
Zhang, S.; Wang, Y.; Liu, M.; Bao, Z. Data-based line trip fault prediction in power systems using LSTM networks and SVM. IEEE Access, 2018, 6, 7675-7686.
[http://dx.doi.org/10.1109/ACCESS.2017.2785763]
[13]
Chen, Z.; Chen, J.; Fu, K.; Xue, L. Power coordination control strategy of microgrid based on photovoltaic generation. MATEC Web Conf., 2022, 355, p. 03065.
[http://dx.doi.org/10.1051/matecconf/202235503065]
[14]
Wen, X.; Abbes, D.; Francois, B. Modeling of photovoltaic power uncertainties for impact analysis on generation scheduling and cost of an urban micro grid. Math. Comput. Simul., 2021, 183, 116-128.
[http://dx.doi.org/10.1016/j.matcom.2020.02.023]
[15]
Elizabeth Michael, N.; Mishra, M.; Hasan, S.; Al-Durra, A. Short-term solar power predicting model based on multi-step CNN stacked LSTM technique. Energies, 2022, 15(6), 2150.
[http://dx.doi.org/10.3390/en15062150]
[16]
Richards, R.J.; Paul, A. An attention-driven long short-term memory network for high throughput virtual screening of organic photovoltaic candidate molecules. Sol. Energy, 2021, 224, 43-50.
[http://dx.doi.org/10.1016/j.solener.2021.05.064]
[17]
Liu, R.; Wei, J.; Sun, G.; Muyeen, S.M.; Lin, S.; Li, F. A short-term probabilistic photovoltaic power prediction method based on feature selection and improved LSTM neural network. Electr. Power Syst. Res., 2022, 210, 108069.
[http://dx.doi.org/10.1016/j.epsr.2022.108069]
[18]
Hernández, L.; Baladrón, C.; Aguiar, J.M.; Carro, B.; Sánchez-Esguevillas, A.; Lloret, J. Artificial neural networks for short-term load forecasting in microgrids environment. Energy, 2014, 75, 252-264.
[http://dx.doi.org/10.1016/j.energy.2014.07.065]
[19]
Tymvios, F.S.; Jacovides, C.P.; Michaelides, S.C.; Scouteli, C. Comparative study of Ångström’s and artificial neural networks’ methodologies in estimating global solar radiation. Sol. Energy, 2005, 78(6), 752-762.
[http://dx.doi.org/10.1016/j.solener.2004.09.007]
[20]
Che, J.; Wang, J.; Wang, G. An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting. Energy, 2012, 37(1), 657-664.
[http://dx.doi.org/10.1016/j.energy.2011.10.034]
[21]
Li, J.; Deng, D.; Zhao, J.; Cai, D.; Hu, W.; Zhang, M.; Huang, Q. A novel hybrid short-term load forecasting method of smart grid using MLR and LSTM neural network. IEEE Trans. Industr. Inform., 2021, 17(4), 2443-2452.
[http://dx.doi.org/10.1109/TII.2020.3000184]
[22]
Li, Y.; Jiao, S.; Gao, X. A novel signal feature extraction technology based on empirical wavelet transform and reverse dispersion entropy. Defence Technol., 2021, 17(5), 1625-1635.
[http://dx.doi.org/10.1016/j.dt.2020.09.001]
[23]
Zhang, J.; Zhang, Q.; Li, G.; Wu, J.; Wang, C.; Li, Z. Hybrid model for renewable energy and load forecasting based on data mining and EWT. J. Electr. Eng. Technol., 2022, 17(3), 1517-1532.
[http://dx.doi.org/10.1007/s42835-021-00986-0]
[24]
Ascencio-Vásquez, J.; Bevc, J.; Reba, K.; Brecl, K.; Jankovec, M.; Topič, M. Advanced PV performance modelling based on different levels of irradiance data accuracy. Energies, 2020, 13(9), 2166.
[http://dx.doi.org/10.3390/en13092166]
[25]
Yang, M.; Zhao, M.; Liu, D.; Ma, M.; Su, X. Improved random forest method for ultra-short-term prediction of the output power of a photovoltaic cluster. Front. Energy Res., 2021, 9, 749367.
[http://dx.doi.org/10.3389/fenrg.2021.749367]
[26]
Wang, H.; Meng, X.; Chen, J. Effect of air quality and dust deposition on power generation performance of photovoltaic module on building roof. Build. Serv. Eng. Res. Tech., 2020, 41(1), 73-85.
[http://dx.doi.org/10.1177/0143624419868806]
[27]
Serrano Ardila, V.M.; Maciel, J.N.; Ledesma, J.J.G.; Ando, Junior, O.H. Fuzzy time series methods applied to (in)direct short-term photovoltaic power forecasting. Energies, 2022, 15(3), 845.
[http://dx.doi.org/10.3390/en15030845]
[28]
Rotib, H.W.; Nappu, M.B.; Tahir, Z.; Arief, A.; Shiddiq, M.Y.A. Electric load forecasting for internet of things smart home using hybrid PCA and ARIMA algorithm. Int. J. Electric. Electron. Eng. Telecom., 2021, 10(6), 425-430.
[http://dx.doi.org/10.18178/ijeetc.10.6.425-430]
[29]
Wu, C.M.; Yao, W.W.; Dong, W.J. Research of load forecasting based on general regression neural network. Adv. Mat. Res., 2013, 732-733, 926-929.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.732-733.926]
[30]
Jiao, X.; Song, Y.; Kong, Y.; Tang, X. Volatility forecasting for crude oil based on text information and deep learning PSO‐LSTM model. J. Forecast., 2022, 41(5), 933-944.
[http://dx.doi.org/10.1002/for.2839]

© 2024 Bentham Science Publishers | Privacy Policy