Mini-Review Article

Shikimate Kinase Inhibitors: An Update on Promising Strategy against Mycobacterium tuberculosis

Author(s): Vikrant Singh Rajput*, Ashish Runthala and Inshad Ali Khan*

Volume 24, Issue 5, 2023

Published on: 31 March, 2023

Page: [388 - 405] Pages: 18

DOI: 10.2174/1389450124666230208102645

Price: $65

Abstract

Humanity has been battling with tuberculosis (TB) for a long period, and despite the availability of drugs well-known to act against the deadly microbe, the menace is still very far from reaching its end. Moreover, problems related to TB chemotherapy, such as lengthy treatment periods leading to poor patient compliance, increasing drug resistance, and association with another deadlier disease HIV-AIDS, make the situation alarming, thereby pressing the need for the discovery of new potent drugs urgently. Therefore, a drug target that is essential for survival and exclusive to M. tuberculosis presents a promising platform to explore novel molecules against the microorganism for better pathogen clearance with minimal toxicity. The shikimate pathway that leads to the synthesis of essential aromatic amino acids is one such attractive target. Shikimate kinase, the fifth enzyme of this pathway, converts shikimate to shikimate-3-phosphate by using ATP as a cosubstrate. Targeting shikimate kinase could be an effective strategy in light of its essentiality and absence of any homologue in mammals. This review discusses different strategies adopted for discovering novel compounds or scaffolds targeting M. tuberculosis shikimate kinase (MtSK) in vitro. The application of substrate analogues, their structure, and ligand-based approach for screening a library of anti-mycobacterial compounds, marine-derived molecules, and commercially available libraries have yielded promising MtSK inhibitors exhibiting micro-molar activities. To develop these leads into future drugs with minimum off-target effects on the host microenvironment, the molecules need to be structurally optimized for improved activities against enzymes and whole-cell organisms.

Keywords: M. tuberculosis, shikimate, pathway, shikimate kinase, inhibitors, MtSK inhibitors.

Graphical Abstract
[1]
Bloom BR. Tuberculosis: Pathogenesis, protection, and control ASM Press 1994.
[http://dx.doi.org/10.1128/9781555818357]
[2]
Gengenbacher M, Kaufmann SHE. Mycobacterium tuberculosis: Success through dormancy. FEMS Microbiol Rev 2012; 36(3): 514-32.
[http://dx.doi.org/10.1111/j.1574-6976.2012.00331.x] [PMID: 22320122]
[3]
WHO. Global tuberculosis control: WHO report 2022. Geneva, Switzerland: WHO 2022.
[4]
Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 393(6685): 537-44.
[http://dx.doi.org/10.1038/31159] [PMID: 9634230]
[5]
Corbett EL, Watt CJ, Walker N, et al. The growing burden of tuberculosis: Global trends and interactions with the HIV epidemic. Arch Intern Med 2003; 163(9): 1009-21.
[http://dx.doi.org/10.1001/archinte.163.9.1009] [PMID: 12742798]
[6]
Koul A, Arnoult E, Lounis N, Guillemont J, Andries K. The challenge of new drug discovery for tuberculosis. Nature 2011; 469(7331): 483-90.
[http://dx.doi.org/10.1038/nature09657] [PMID: 21270886]
[7]
Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivistö KT. Pharmacokinetic interactions with rifampicin: Clinical relevance. Clin Pharmacokinet 2003; 42(9): 819-50.
[http://dx.doi.org/10.2165/00003088-200342090-00003] [PMID: 12882588]
[8]
L’homme RFA, Nijland HMJ, Gras L, et al. Clinical experience with the combined use of lopinavir/ritonavir and rifampicin. AIDS 2009; 23(7): 863-5.
[http://dx.doi.org/10.1097/QAD.0b013e328329148e] [PMID: 19352137]
[9]
Kaneko T, Cooper C, Mdluli K. Challenges and opportunities in developing novel drugs for TB. Future Med Chem 2011; 3(11): 1373-400.
[http://dx.doi.org/10.4155/fmc.11.115] [PMID: 21879843]
[10]
Gualano G, Capone S, Matteelli A, Palmieri F. New antituberculosis drugs: From clinical trial to programmatic use. Infect Dis Rep 2016; 8(2): 6569.
[http://dx.doi.org/10.4081/idr.2016.6569] [PMID: 27403268]
[11]
Pretomanid and BPaL. Full Prescribing Information. 2019. Available from: https://www.tballiance.org/access/pretomanid-and-bpal-regimen
[12]
Alliance TB. Pretomanid and BPaL regimen for treatment of highly resistant tuberculosis. Antimicrobial Drugs Advisory Committee. Silver Spring, MD 2019.
[13]
Parish T, Stoker NG. The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology 2002; 148(10): 3069-77.
[http://dx.doi.org/10.1099/00221287-148-10-3069] [PMID: 12368440]
[14]
Rosado LA, Vasconcelos IB, Palma MS, et al. The mode of action of recombinant Mycobacterium tuberculosis shikimate kinase: kinetics and thermodynamics analyses. PLoS One 2013; 8(5): e61918.
[http://dx.doi.org/10.1371/journal.pone.0061918] [PMID: 23671579]
[15]
Ducati R, Basso L, Santos D. Mycobacterial shikimate pathway enzymes as targets for drug design. Curr Drug Targets 2007; 8(3): 423-35.
[http://dx.doi.org/10.2174/138945007780059004] [PMID: 17348835]
[16]
Davis BD, Mingioli ES. Aromatic biosynthesis. VII. Accumulation of two derivatives of shikimic acid by bacterial mutants. J Bacteriol 1953; 66(2): 129-36.
[http://dx.doi.org/10.1128/jb.66.2.129-136.1953] [PMID: 13084547]
[17]
Sprinson DB. The biosynthesis of aromatic compounds from D-glucose. Adv Carbohydr Chem 1961; 15: 235-70.
[http://dx.doi.org/10.1016/S0096-5332(08)60189-7] [PMID: 13915949]
[18]
Neidhardt FC, John LI, Boris M, Brooks KL, Moselio S, Edwin HU. Escherichia coli and Salmonella typhimurium: Cellular and molecular biology.The Quarterly Review of Biology. American Society for Microbiology 1987; 63(4)
[http://dx.doi.org/10.1086/416059]
[19]
Haslam E. Shikimic acid: Metabolism and metabolites. Wiley 1993.
[http://dx.doi.org/10.1002/ange.19951070532]
[20]
Roberts F, Roberts CW, Johnson JJ, et al. Evidence for the shikimate pathway in apicomplexan parasites. Nature 1998; 393(6687): 801-5.
[http://dx.doi.org/10.1038/31723] [PMID: 9655396]
[21]
Davies GM, Barrett-Bee KJ, Jude DA, et al. (6S)-6-fluoroshikimic acid, an antibacterial agent acting on the aromatic biosynthetic pathway. Antimicrob Agents Chemother 1994; 38(2): 403-6.
[http://dx.doi.org/10.1128/AAC.38.2.403] [PMID: 8192477]
[22]
Pereira JH, de Oliveira JS, Canduri F, et al. Structure of shikimate kinase from Mycobacterium tuberculosis reveals the binding of shikimic acid Acta Crystallogr D Biol Crystallogr 2004; 60(Pt 12 Pt 2): 2310-9.
[http://dx.doi.org/10.1107/S090744490402517X] [PMID: 15583379]
[23]
Whipp MJ, Pittard AJ. A reassessment of the relationship between aroK- and aroL-encoded shikimate kinase enzymes of Escherichia coli. J Bacteriol 1995; 177(6): 1627-9.
[http://dx.doi.org/10.1128/jb.177.6.1627-1629.1995] [PMID: 7883721]
[24]
Millar G, Lewendon A, Hunter MG, Coggins JR. The cloning and expression of the aroL gene from Escherichia coli K12. Purification and complete amino acid sequence of shikimate kinase II, the aroL -gene product. Biochem J 1986; 237(2): 427-37.
[http://dx.doi.org/10.1042/bj2370427] [PMID: 3026317]
[25]
DeFeyter RC, Davidson BE, Pittard J. Nucleotide sequence of the transcription unit containing the aroL and aroM genes from Escherichia coli K-12. J Bacteriol 1986; 165(1): 233-9.
[http://dx.doi.org/10.1128/jb.165.1.233-239.1986] [PMID: 3001025]
[26]
Ely B, Pittard J. Aromatic amino acid biosynthesis: Regulation of shikimate kinase in Escherichia coli K-12. J Bacteriol 1979; 138(3): 933-43.
[http://dx.doi.org/10.1128/jb.138.3.933-943.1979] [PMID: 222728]
[27]
Pereira J, Vasconcelos I, Oliveira J, et al. Shikimate kinase: A potential target for development of novel antitubercular agents. Curr Drug Targets 2007; 8(3): 459-68.
[http://dx.doi.org/10.2174/138945007780059013] [PMID: 17348838]
[28]
Oliveira JS, Pinto CA, Basso LA, Santos DS. Cloning and overexpression in soluble form of functional shikimate kinase and 5-enolpyruvylshikimate 3-phosphate synthase enzymes from Mycobacterium tuberculosis. Protein Expr Purif 2001; 22(3): 430-5.
[http://dx.doi.org/10.1006/prep.2001.1457] [PMID: 11483005]
[29]
Vonrhein C, Schlauderer GJ, Schulz GE. Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. Structure 1995; 3(5): 483-90.
[http://dx.doi.org/10.1016/S0969-2126(01)00181-2]
[30]
Hartmann MD, Bourenkov GP, Oberschall A, Strizhov N, Bartunik HD. Mechanism of phosphoryl transfer catalyzed by shikimate kinase from Mycobacterium tuberculosis. J Mol Biol 2006; 364(3): 411-23.
[http://dx.doi.org/10.1016/j.jmb.2006.09.001] [PMID: 17020768]
[31]
Dhaliwal B, Nichols CE, Ren J, et al. Crystallographic studies of shikimate binding and induced conformational changes in Mycobacterium tuberculosis shikimate kinase. FEBS Lett 2004; 574(1-3): 49-54.
[http://dx.doi.org/10.1016/j.febslet.2004.08.005] [PMID: 15358538]
[32]
Gan J, Gu Y, Li Y, Yan H, Ji X. Crystal structure of mycobacterium tuberculosis shikimate kinase in complex with shikimic acid and an atp analogue. Biochemistry 2006; 45(28): 8539-45.
[http://dx.doi.org/10.1021/bi0606290] [PMID: 16834327]
[33]
Dias MVB, Faím LM, Vasconcelos IB, et al. Effects of the magnesium and chloride ions and shikimate on the structure of shikimate kinase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63(1): 1-6.
[http://dx.doi.org/10.1107/S1744309106046823] [PMID: 17183161]
[34]
Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1982; 1(8): 945-51.
[http://dx.doi.org/10.1002/j.1460-2075.1982.tb01276.x] [PMID: 6329717]
[35]
Ramakrishnan C, Dani VS, Ramasarma T. A conformational analysis of Walker motif A [GXXXXGKT (S)] in nucleotide-binding and other proteins. Protein Eng Des Sel 2002; 15(10): 783-98.
[http://dx.doi.org/10.1093/protein/15.10.783] [PMID: 12468712]
[36]
Saraste M, Sibbald PR, Wittinghofer A. The P-loop - a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 1990; 15(11): 430-4.
[http://dx.doi.org/10.1016/0968-0004(90)90281-F] [PMID: 2126155]
[37]
Smith CA, Rayment I. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys J 1996; 70(4): 1590-602.
[http://dx.doi.org/10.1016/S0006-3495(96)79745-X] [PMID: 8785318]
[38]
Gu Y, Reshetnikova L, Li Y, et al. Crystal structure of shikimate kinase from Mycobacterium tuberculosis reveals the dynamic role of the LID domain in catalysis. J Mol Biol 2002; 319(3): 779-89.
[http://dx.doi.org/10.1016/S0022-2836(02)00339-X] [PMID: 12054870]
[39]
Mehra R, Rajput VS, Gupta M, et al. Benzothiazole derivative as a novel Mycobacterium tuberculosis shikimate kinase inhibitor: Identification and elucidation of its allosteric mode of inhibition. J Chem Inf Model 2016; 56(5): 930-40.
[http://dx.doi.org/10.1021/acs.jcim.6b00056] [PMID: 27149193]
[40]
Gordon S, Simithy J, Goodwin DC, Calderón AI. Selective mycobacterium tuberculosis shikimate kinase inhibitors as potential antibacterials Perspect Med Chem 2015; 7: PMC-S13212.
[http://dx.doi.org/10.4137/PMC.S13212]
[41]
Coracini JD, Azevedo WF. Shikimate kinase, a protein target for drug design. Curr Med Chem 2014; 21(5): 592-604.
[http://dx.doi.org/10.2174/09298673113206660299] [PMID: 24164195]
[42]
Gonzalez-Bello C. Inhibition of shikimate kinase and type II dehydroquinase for antibiotic discovery: structure-based design and simulation studies. Curr Top Med Chem 2015; 16(9): 960-77.
[http://dx.doi.org/10.2174/1568026615666150825142527] [PMID: 26303426]
[43]
McConkey GA. Targeting the shikimate pathway in the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 1999; 43(1): 175-7.
[http://dx.doi.org/10.1128/AAC.43.1.175] [PMID: 9869588]
[44]
Blanco B, Prado V, Lence E, et al. Mycobacterium tuberculosis shikimate kinase inhibitors: Design and simulation studies of the catalytic turnover. J Am Chem Soc 2013; 135(33): 12366-76.
[http://dx.doi.org/10.1021/ja405853p] [PMID: 23889343]
[45]
An M, Toochinda T, Bartlett PA. Five-membered ring analogues of shikimic acid. J Org Chem 2001; 66(4): 1326-33.
[http://dx.doi.org/10.1021/jo001121k] [PMID: 11312963]
[46]
Prado V, Lence E, Maneiro M, et al. Targeting the motion of shikimate kinase: Development of competitive inhibitors that stabilize an inactive open conformation of the enzyme. J Med Chem 2016; 59(11): 5471-87.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00483] [PMID: 27191386]
[47]
Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 2011; 39: W270-7.
[http://dx.doi.org/10.1093/nar/gkr366] [PMID: 21624888]
[48]
Pernas M, Blanco B, Lence E, Thompson P, Hawkins AR, González-Bello C. Synthesis of rigidified shikimic acid derivatives by ring-closing metathesis to imprint inhibitor efficacy against shikimate kinase enzyme. Org Chem Front 2019; 6(14): 2514-28.
[http://dx.doi.org/10.1039/C9QO00562E]
[49]
Bandodkar BS, Schmitt S. Pyrazolone derivatives for the treatment of tuberculosis Patent: WO 2007/020426 A1 2007.
[50]
Bandodkar BN, Ghorpade S, Kale M, et al. Lead generation via virtual screening: Discovery of Pyrazolones as potent antimycobacterial leads through structure based virtual screening of shikimate kinase Abstracts of Forty-ninth Interscience Conference on Antimicrobial Agents and Chemotherapy San Francisco 2009.
[51]
Brogden RN. Pyrazolone derivatives. Drugs 1986; 32(S4): 60-70.
[http://dx.doi.org/10.2165/00003495-198600324-00006] [PMID: 3552586]
[52]
Parmar N, Teraiya S, Patel R, Barad H, Jajda H, Thakkar V. Synthesis, antimicrobial and antioxidant activities of some 5-pyrazolone based Schiff bases. J Saudi Chem Soc 2015; 19(1): 36-41.
[http://dx.doi.org/10.1016/j.jscs.2011.12.014]
[53]
Sharshira EM, Hamada NMM. Synthesis and antimicrobial evaluation of some pyrazole derivatives. Molecules 2012; 17(5): 4962-71.
[http://dx.doi.org/10.3390/molecules17054962] [PMID: 22547318]
[54]
Bianco G, Forli S, Goodsell DS, Olson AJ. Covalent docking using autodock: Two-point attractor and flexible side chain methods. Protein Sci 2016; 25(1): 295-301.
[http://dx.doi.org/10.1002/pro.2733] [PMID: 26103917]
[55]
Mulabagal V, Calderón AI. Development of an ultrafiltration-liquid chromatography/mass spectrometry (UF-LC/MS) based ligand-binding assay and an LC/MS based functional assay for Mycobacterium tuberculosis shikimate kinase. Anal Chem 2010; 82(9): 3616-21.
[http://dx.doi.org/10.1021/ac902849g] [PMID: 20394394]
[56]
Caravatti G, Meyer T, Fredenhagen A, Trinks U, Mett H, Fabbro D. Inhibitory activity and selectivity of staurosporine derivatives towards protein kinase C. Bioorg Med Chem Lett 1994; 4(3): 399-404.
[http://dx.doi.org/10.1016/0960-894X(94)80004-9]
[57]
Simithy J, Reeve N, Hobrath JV, Reynolds RC, Calderón AI. Identification of shikimate kinase inhibitors among anti-Mycobacterium tuberculosis compounds by LC-MS. Tuberculosis 2014; 94(2): 152-8.
[http://dx.doi.org/10.1016/j.tube.2013.12.004] [PMID: 24429106]
[58]
Bala S, Sharma N, Kajal A, Kamboj S, Saini V. Mannich bases: An important pharmacophore in present scenario. Int J Med Chem 2014; 2014: 1-15.
[http://dx.doi.org/10.1155/2014/191072] [PMID: 25478226]
[59]
Geronikaki A, Eleftheriou P, Vicini P, Alam I, Dixit A, Saxena AK. 2-Thiazolylimino/heteroarylimino-5-arylidene-4-thiazolidino-nes as new agents with SHP-2 inhibitory action. J Med Chem 2008; 51(17): 5221-8.
[http://dx.doi.org/10.1021/jm8004306] [PMID: 18702480]
[60]
De SK, Chen LH, Stebbins JL, et al. Discovery of 2-(5-nitrothiazol-2-ylthio)benzo[d]thiazoles as novel c-Jun N-terminal kinase inhibitors. Bioorg Med Chem 2009; 17(7): 2712-7.
[http://dx.doi.org/10.1016/j.bmc.2009.02.046] [PMID: 19282190]
[61]
Simithy J, Fuanta NR, Alturki M, et al. Slow-binding inhibition of Mycobacterium tuberculosis shikimate kinase by manzamine alkaloids. Biochemistry 2018; 57(32): 4923-33.
[http://dx.doi.org/10.1021/acs.biochem.8b00231] [PMID: 30063132]
[62]
Radwan M, Hanora A, Khalifa S, Abou-El-Ela SH. Manzamines. Cell Cycle 2012; 11(9): 1765-72.
[http://dx.doi.org/10.4161/cc.20135] [PMID: 22510565]
[63]
Hsu KC, Cheng WC, Chen YF, et al. Core site-moiety maps reveal inhibitors and binding mechanisms of orthologous proteins by screening compound libraries. PLoS One 2012; 7(2): e32142.
[http://dx.doi.org/10.1371/journal.pone.0032142] [PMID: 22393385]
[64]
Hsu KC, Cheng WC, Chen YF, Wang WC, Yang JM. Pathway-based screening strategy for multitarget inhibitors of diverse proteins in metabolic pathways. PLOS Comput Biol 2013; 9(7): e1003127.
[http://dx.doi.org/10.1371/journal.pcbi.1003127] [PMID: 23861662]
[65]
Blum G, Gazit A, Levitzki A. Development of new insulin-like growth factor-1 receptor kinase inhibitors using catechol mimics. J Biol Chem 2003; 278(42): 40442-54.
[http://dx.doi.org/10.1074/jbc.M305490200] [PMID: 12869569]
[66]
Rajput VS, Mehra R, Kumar S, Nargotra A, Singh PP, Khan IA. Screening of antitubercular compound library identifies novel shikimate kinase inhibitors of Mycobacterium tuberculosis. Appl Microbiol Biotechnol 2016; 100(12): 5415-26.
[http://dx.doi.org/10.1007/s00253-015-7268-8] [PMID: 26887318]
[67]
Devi Bala B, Muthusaravanan S, Choon TS, Ashraf Ali M, Perumal S. Sequential synthesis of amino-1,4-naphthoquinone-appended triazoles and triazole-chromene hybrids and their antimycobacterial evaluation. Eur J Med Chem 2014; 85: 737-46.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.009] [PMID: 25129868]
[68]
Riffel A, Medina LF, Stefani V, Santos RC, Bizani D, Brandelli A. In vitro antimicrobial activity of a new series of 1,4-naphthoquinones. Braz J Med Biol Res 2002; 35(7): 811-8.
[http://dx.doi.org/10.1590/S0100-879X2002000700008] [PMID: 12131921]
[69]
Shiradkar MR, Murahari KK, Gangadasu HR, et al. Synthesis of new S-derivatives of clubbed triazolyl thiazole as anti-Mycobacterium tuberculosis agents. Bioorg Med Chem 2007; 15(12): 3997-4008.
[http://dx.doi.org/10.1016/j.bmc.2007.04.003] [PMID: 17442576]
[70]
Mohammad H, Reddy PVN, Monteleone D, et al. Antibacterial characterization of novel synthetic thiazole compounds against methicillin-resistant Staphylococcus pseudintermedius. PLoS One 2015; 10(6): e0130385.
[http://dx.doi.org/10.1371/journal.pone.0130385] [PMID: 26086336]
[71]
Lin YM, Zhou Y, Flavin MT, Zhou LM, Nie W, Chen FC. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg Med Chem 2002; 10(8): 2795-802.
[http://dx.doi.org/10.1016/S0968-0896(02)00094-9] [PMID: 12057669]
[72]
Tran TD, Nguyen TTN, Do TH, Huynh TNP, Tran CD, Thai KM. Synthesis and antibacterial activity of some heterocyclic chalcone analogues alone and in combination with antibiotics. Molecules 2012; 17(6): 6684-96.
[http://dx.doi.org/10.3390/molecules17066684] [PMID: 22728362]
[73]
Chem-bioinformatics software for the next generation of scientists. Instant JChem. Available from: http://www.chemaxon.com
[74]
Tang X, Wang Z, Zhong X, et al. Synthesis and biological activities of benzothiazole derivatives bearing a 1,3,4-thiadiazole moiety. Phosphorus Sulfur Silicon Relat Elem 2019; 194(3): 241-8.
[http://dx.doi.org/10.1080/10426507.2018.1539992]
[75]
Parish T. Starvation survival response of Mycobacterium tuberculosis. J Bacteriol 2003; 185(22): 6702-6.
[http://dx.doi.org/10.1128/JB.185.22.6702-6706.2003] [PMID: 14594845]
[76]
Perricone U, Gulotta MR, Lombino J, et al. An overview of recent molecular dynamics applications as medicinal chemistry tools for the undruggable site challenge. MedChemComm 2018; 9(6): 920-36.
[http://dx.doi.org/10.1039/C8MD00166A] [PMID: 30108981]
[77]
Deb PK, Mailavaram R, Chandrasekaran B, et al. Synthesis, adenosine receptor binding and molecular modelling studies of novel thieno[2,3- d]pyrimidine derivatives. Chem Biol Drug Des 2018; 91(4): 962-9.
[http://dx.doi.org/10.1111/cbdd.13155] [PMID: 29194979]
[78]
Al-Qattan MN, Deb PK, Tekade RK. Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug Discov Today 2018; 23(2): 235-50.
[http://dx.doi.org/10.1016/j.drudis.2017.10.002] [PMID: 29031623]
[79]
Lagarias P, Vrontaki E, Lambrinidis G, et al. Discovery of novel adenosine receptor antagonists through a combined structure-and ligand-based approach followed by molecular dynamics investigation of ligand binding mode. J Chem Inf Model 2018; 58(4): 794-815.
[http://dx.doi.org/10.1021/acs.jcim.7b00455] [PMID: 29485875]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy