Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Role of Gut Microbiome in Atherosclerosis: Molecular and Therapeutic Aspects

Author(s): Juan Salazar*, Valery Morillo, María K Suárez, Ana Castro, Paola Ramírez, Milagros Rojas, Roberto Añez, Luis D'Marco, Maricarmen Chacín-González and Valmore Bermúdez

Volume 19, Issue 4, 2023

Published on: 15 March, 2023

Article ID: e020223213408 Pages: 19

DOI: 10.2174/1573403X19666230202164524

Price: $65

Abstract

Atherosclerosis is one of the most relevant and prevalent cardiovascular diseases of our time. It is one of the pathological entities that increases the morbidity and mortality index in the adult population. Pathophysiological connections have been observed between atherosclerosis and the gut microbiome (GM), represented by a group of microorganisms that are present in the gut. These microorganisms are vital for metabolic homeostasis in humans. Recently, direct and indirect mechanisms through which GM can affect the development of atherosclerosis have been studied. This has led to research into the possible modulation of GM and metabolites as a new target in the prevention and treatment of atherosclerosis. The goal of this review is to analyze the physiopathological mechanisms linking GM and atherosclerosis that have been described so far. We also aim to summarize the recent studies that propose GM as a potential target in atherosclerosis management.

Keywords: Atherosclerosis, gut, microbiome, dysbiosis, inflammation, treatment.

[1]
Cassar A, Holmes DR Jr, Rihal CS, Gersh BJ. Chronic coronary artery disease: Diagnosis and management. Mayo Clin Proc 2009; 84(12): 1130-46.
[http://dx.doi.org/10.4065/mcp.2009.0391] [PMID: 19955250]
[2]
Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation 2016; 133(4): e38-60.
[3]
Battson ML, Lee DM, Weir TL, Gentile CL. The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem 2018; 56: 1-15.
[http://dx.doi.org/10.1016/j.jnutbio.2017.12.010] [PMID: 29427903]
[4]
Chistiakov DA, Bobryshev YV, Kozarov E, Sobenin IA, Orekhov AN. Role of gut microbiota in the modulation of atherosclerosis-associated immune response. Front Microbiol 2015; 6: 671.
[http://dx.doi.org/10.3389/fmicb.2015.00671] [PMID: 26175728]
[5]
Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med 2016; 375(24): 2369-79.
[http://dx.doi.org/10.1056/NEJMra1600266] [PMID: 27974040]
[6]
Cheng YJ, Lin XX, Ji CC, et al. Role of early repolarization pattern in increasing risk of death. J Am Heart Assoc 2016; 5(9): e003375.
[http://dx.doi.org/10.1161/JAHA.116.003375] [PMID: 27671315]
[7]
Brandsma E, Kloosterhuis NJ, Koster M, et al. A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circ Res 2019; 124(1): 94-100.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313234] [PMID: 30582442]
[8]
Witjes JJ, van Raalte DH, Nieuwdorp M. About the gut microbiome as a pharmacological target in atherosclerosis. Eur J Pharmacol 2015; 763(Pt A): 75-8.
[http://dx.doi.org/10.1016/j.ejphar.2015.06.023] [PMID: 26096558]
[9]
Kitai T, Tang WHW. Gut microbiota in cardiovascular disease and heart failure. Clin Sci (Lond) 2018; 132(1): 85-91.
[http://dx.doi.org/10.1042/CS20171090] [PMID: 29326279]
[10]
Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012; 3(4): 289-306.
[http://dx.doi.org/10.4161/gmic.19897] [PMID: 22572875]
[11]
Schiattarella GG, Sannino A, Esposito G, Perrino C. Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases. Trends Cardiovasc Med 2019; 29(3): 141-7.
[http://dx.doi.org/10.1016/j.tcm.2018.08.003] [PMID: 30126689]
[12]
Calandrini CA, Ribeiro AC, Gonnelli AC, et al. Microbial composition of atherosclerotic plaques. Oral Dis 2014; 20(3): e128-34.
[http://dx.doi.org/10.1111/odi.12205] [PMID: 24188425]
[13]
Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA 2011; 108(Suppl 1)(Suppl. 1): 4592-8.
[http://dx.doi.org/10.1073/pnas.1011383107] [PMID: 20937873]
[14]
Suh SH, Choe K, Hong SP, et al. Gut microbiota regulates lacteal integrity by inducing VEGF‐C in intestinal villus macrophages. EMBO Rep 2019; 20(4): e46927.
[http://dx.doi.org/10.15252/embr.201846927] [PMID: 30783017]
[15]
Chang CC, Sia KC, Chang JF, et al. Lipopolysaccharide promoted proliferation and adipogenesis of preadipocytes through JAK/STAT and AMPK-regulated cPLA2 expression. Int J Med Sci 2019; 16(1): 167-79.
[http://dx.doi.org/10.7150/ijms.24068] [PMID: 30662340]
[16]
Lässiger-Herfurth A, Pontarollo G, Grill A, Reinhardt C. The gut microbiota in cardiovascular disease and arterial thrombosis. Microorganisms 2019; 7(12): 691.
[http://dx.doi.org/10.3390/microorganisms7120691] [PMID: 31847071]
[17]
Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med 2007; 13(11): 460-9.
[http://dx.doi.org/10.1016/j.molmed.2007.09.002] [PMID: 18029230]
[18]
Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388(6640): 394-7.
[http://dx.doi.org/10.1038/41131] [PMID: 9237759]
[19]
Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 1999; 189(11): 1777-82.
[http://dx.doi.org/10.1084/jem.189.11.1777] [PMID: 10359581]
[20]
Zanoni I, Ostuni R, Marek LR, et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 2011; 147(4): 868-80.
[http://dx.doi.org/10.1016/j.cell.2011.09.051] [PMID: 22078883]
[21]
Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol 2014; 5: 461.
[http://dx.doi.org/10.3389/fimmu.2014.00461] [PMID: 25309543]
[22]
Li L, Cousart S, Hu J, McCall CE. Characterization of interleukin-1 receptor-associated kinase in normal and endotoxin-tolerant cells. J Biol Chem 2000; 275(30): 23340-5.
[http://dx.doi.org/10.1074/jbc.M001950200] [PMID: 10811644]
[23]
Tanimura N, Saitoh S, Matsumoto F, Akashi-Takamura S, Miyake K. Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem Biophys Res Commun 2008; 368(1): 94-9.
[http://dx.doi.org/10.1016/j.bbrc.2008.01.061] [PMID: 18222170]
[24]
Fitzgerald KA, McWhirter SM, Faia KL, et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003; 4(5): 491-6.
[http://dx.doi.org/10.1038/ni921] [PMID: 12692549]
[25]
Delneste Y, Beauvillain C, Jeannin P. Innate immunity: Structure and function of TLRs. Med Sci MS 2007; 23: 67-73.
[26]
Wang J, Gao Y, Lin F, Han K, Wang X. Omentin-1 attenuates lipopolysaccharide (LPS)-induced U937 macrophages activation by inhibiting the TLR4/MyD88/NF-κB signaling. Arch Biochem Biophys 2020; 679: 108187.
[http://dx.doi.org/10.1016/j.abb.2019.108187] [PMID: 31706880]
[27]
Ubanako P, Xelwa N, Ntwasa M. LPS induces inflammatory chemokines via TLR-4 signalling and enhances the Warburg Effect in THP-1 cells. PLoS One 2019; 14(9): e0222614.
[http://dx.doi.org/10.1371/journal.pone.0222614] [PMID: 31560702]
[28]
Yin Q, Jiang D, Li L, et al. LPS promotes vascular smooth muscle cells proliferation through the TLR4/Rac1/Akt signalling pathway. Cell Physiol Biochem 2017; 44(6): 2189-200.
[http://dx.doi.org/10.1159/000486024] [PMID: 29298445]
[29]
Hu D, Yin C, Luo S, Habenicht AJR, Mohanta SK. Vascular smooth muscle cells contribute to atherosclerosis immunity. Front Immunol 2019; 10: 1101.
[http://dx.doi.org/10.3389/fimmu.2019.01101] [PMID: 31164888]
[30]
Ma KL, Liu J, Wang CX, et al. Activation of mTOR modulates SREBP-2 to induce foam cell formation through increased retinoblastoma protein phosphorylation. Cardiovasc Res 2013; 100(3): 450-60.
[http://dx.doi.org/10.1093/cvr/cvt203] [PMID: 24068000]
[31]
Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2015; 72(3): 557-81.
[http://dx.doi.org/10.1007/s00018-014-1762-5] [PMID: 25332099]
[32]
Cariou B, Si-Tayeb K, Le May C. Role of PCSK9 beyond liver involvement. Curr Opin Lipidol 2015; 26(3): 155-61.
[http://dx.doi.org/10.1097/MOL.0000000000000180] [PMID: 25887680]
[33]
Abifadel M, Varret M, Rabès JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34(2): 154-6.
[http://dx.doi.org/10.1038/ng1161] [PMID: 12730697]
[34]
Horton JD, Cohen JC, Hobbs HH. PCSK9: A convertase that coordinates LDL catabolism. J Lipid Res 2009; 50 (Suppl)(Suppl.): S172-7.
[http://dx.doi.org/10.1194/jlr.R800091-JLR200] [PMID: 19020338]
[35]
Tavori H, Giunzioni I, Predazzi IM, et al. Human PCSK9 promotes hepatic lipogenesis and atherosclerosis development via apoE- and LDLR-mediated mechanisms. Cardiovasc Res 2016; 110(2): 268-78.
[http://dx.doi.org/10.1093/cvr/cvw053] [PMID: 26980204]
[36]
Seidah NG, Chrétien M, Mbikay M. The ever-expanding saga of the proprotein convertases and their roles in body homeostasis. Curr Opin Lipidol 2018; 29(2): 144-50.
[http://dx.doi.org/10.1097/MOL.0000000000000484] [PMID: 29342010]
[37]
Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 2003; 100(3): 928-33.
[http://dx.doi.org/10.1073/pnas.0335507100] [PMID: 12552133]
[38]
Kwon HJ, Lagace TA, McNutt MC, Horton JD, Deisenhofer J. Molecular basis for LDL receptor recognition by PCSK9. Proc Natl Acad Sci USA 2008; 105(6): 1820-5.
[http://dx.doi.org/10.1073/pnas.0712064105] [PMID: 18250299]
[39]
Poirier S, Mayer G, Poupon V, et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: Evidence for an intracellular route. J Biol Chem 2009; 284(42): 28856-64.
[http://dx.doi.org/10.1074/jbc.M109.037085] [PMID: 19635789]
[40]
Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006; 354(12): 1264-72.
[http://dx.doi.org/10.1056/NEJMoa054013] [PMID: 16554528]
[41]
Pieczynska MD, Yang Y, Petrykowski S, Horbanczuk OK, Atanasov AG, Horbanczuk JO. Gut microbiota and its metabolites in atherosclerosis development. Molecules 2020; 25(3): 594.
[http://dx.doi.org/10.3390/molecules25030594] [PMID: 32013236]
[42]
Pandak WM, Schwarz C, Hylemon PB, et al. Effects of CYP7A1 overexpression on cholesterol and bile acid homeostasis. Am J Physiol Gastrointest Liver Physiol 2001; 281(4): G878-89.
[http://dx.doi.org/10.1152/ajpgi.2001.281.4.G878] [PMID: 11557507]
[43]
Lindblad L, Scherstén T. Influence of cholic and chenodeoxycholic acid on canalicular bile flow in man. Gastroenterology 1976; 70(6): 1121-4.
[http://dx.doi.org/10.1016/S0016-5085(76)80323-X] [PMID: 1269873]
[44]
Nie Y, Hu J, Yan X. Cross-talk between bile acids and intestinal microbiota in host metabolism and health. J Zhejiang Univ Sci B 2015; 16(6): 436-46.
[http://dx.doi.org/10.1631/jzus.B1400327] [PMID: 26055905]
[45]
Mullish BH, McDonald JAK, Pechlivanis A, et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection. Gut 2019; 68(10): 1791-800.
[http://dx.doi.org/10.1136/gutjnl-2018-317842] [PMID: 30816855]
[46]
Zhao C, Wang X, Cong Y, et al. Effects of bile acids and the bile acid receptor FXR agonist on the respiratory rhythm in the in vitro brainstem medulla slice of neonatal Sprague-Dawley rats. PLoS One 2014; 9(11): e112212.
[http://dx.doi.org/10.1371/journal.pone.0112212] [PMID: 25405617]
[47]
Zhang S, Liu Q, Wang J, Harnish DC. Suppression of interleukin-6-induced C-reactive protein expression by FXR agonists. Biochem Biophys Res Commun 2009; 379(2): 476-9.
[http://dx.doi.org/10.1016/j.bbrc.2008.12.117] [PMID: 19118524]
[48]
Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J 2006; 25(7): 1419-25.
[http://dx.doi.org/10.1038/sj.emboj.7601049] [PMID: 16541101]
[49]
Lu TT, Makishima M, Repa JJ, et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000; 6(3): 507-15.
[http://dx.doi.org/10.1016/S1097-2765(00)00050-2] [PMID: 11030331]
[50]
Catry E, Bindels LB, Tailleux A, et al. Targeting the gut microbiota with inulin-type fructans: Preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut 2018; 67(2): 271-83.
[http://dx.doi.org/10.1136/gutjnl-2016-313316] [PMID: 28377388]
[51]
Terjung R, Ed. Comprehensive Physiology. (1st ed.), Wiley 2011.
[http://dx.doi.org/10.1002/cphy]
[52]
Song KH, Li T, Owsley E, Strom S, Chiang JYL. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7α-hydroxylase gene expression. Hepatology 2009; 49(1): 297-305.
[http://dx.doi.org/10.1002/hep.22627] [PMID: 19085950]
[53]
Zununi Vahed S, Barzegari A, Zuluaga M, Letourneur D, Pavon-Djavid G. Myocardial infarction and gut microbiota: An incidental connection. Pharmacol Res 2018; 129: 308-17.
[http://dx.doi.org/10.1016/j.phrs.2017.11.008] [PMID: 29133215]
[54]
Yoon H, Ju J, Kim H, et al. Lactobacillus rhamnosus BFE 5264 and lactobacillus plantarum NR74 promote cholesterol excretion through the up-regulation of ABCG5/8 in Caco-2 cells. Probiotics Antimicrob Proteins 2011; 3(3-4): 194-203.
[http://dx.doi.org/10.1007/s12602-011-9086-3] [PMID: 26781680]
[55]
Pols TWH, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 2011; 54(6): 1263-72.
[http://dx.doi.org/10.1016/j.jhep.2010.12.004] [PMID: 21145931]
[56]
Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem 2003; 278(11): 9435-40.
[http://dx.doi.org/10.1074/jbc.M209706200] [PMID: 12524422]
[57]
Pols TWH, Nomura M, Harach T, et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab 2011; 14(6): 747-57.
[http://dx.doi.org/10.1016/j.cmet.2011.11.006] [PMID: 22152303]
[58]
Ferreira V, van Dijk KW, Groen AK, et al. Macrophage-specific inhibition of NF-κB activation reduces foam-cell formation. Atherosclerosis 2007; 192(2): 283-90.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.07.018] [PMID: 16938301]
[59]
Kida T, Tsubosaka Y, Hori M, Ozaki H, Murata T. Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33(7): 1663-9.
[http://dx.doi.org/10.1161/ATVBAHA.113.301565] [PMID: 23619297]
[60]
Ding L, Chang M, Guo Y, et al. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis 2018; 17(1): 286.
[http://dx.doi.org/10.1186/s12944-018-0939-6] [PMID: 30567573]
[61]
Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19(5): 576-85.
[http://dx.doi.org/10.1038/nm.3145] [PMID: 23563705]
[62]
Zeisel SH, Mar MH, Howe JC, Holden JM. Concentrations of choline-containing compounds and betaine in common foods. J Nutr 2003; 133(5): 1302-7.
[http://dx.doi.org/10.1093/jn/133.5.1302] [PMID: 12730414]
[63]
Koeth RA, Levison BS, Culley MK, et al. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of Lcarnitine to TMAO. Cell Metab 2014; 20(5): 799-812.
[http://dx.doi.org/10.1016/j.cmet.2014.10.006] [PMID: 25440057]
[64]
Fennema D, Phillips IR, Shephard EA. Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab Dispos 2016; 44(11): 1839-50.
[http://dx.doi.org/10.1124/dmd.116.070615] [PMID: 27190056]
[65]
Zhu Y, Li Q, Jiang H. Gut microbiota in atherosclerosis: Focus on trimethylamine N‐oxide. Acta Pathol Microbiol Scand Suppl 2020; 128(5): 353-66.
[http://dx.doi.org/10.1111/apm.13038] [PMID: 32108960]
[66]
Romano KA, Vivas EI, Amador-Noguez D, Rey FE. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio 2015; 6(2): e02481-14.
[http://dx.doi.org/10.1128/mBio.02481-14] [PMID: 25784704]
[67]
Tang WHW, Wang Z, Fan Y, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: Refining the gut hypothesis. J Am Coll Cardiol 2014; 64(18): 1908-14.
[http://dx.doi.org/10.1016/j.jacc.2014.02.617] [PMID: 25444145]
[68]
Liang X, Zhang Z, Lv Y, et al. Reduction of intestinal trimethylamine by probiotics ameliorated lipid metabolic disorders associated with atherosclerosis. Nutrition 2020; 79-80: 110941.
[http://dx.doi.org/10.1016/j.nut.2020.110941] [PMID: 32858376]
[69]
Liu Y, Dai M. Trimethylamine N-oxide generated by the gut microbiota is associated with vascular inflammation: New insights into atherosclerosis. Mediators Inflamm 2020; 2020: 1-15.
[http://dx.doi.org/10.1155/2020/4634172] [PMID: 32148438]
[70]
Boutagy NE, Neilson AP, Osterberg KL, et al. Short-term high-fat diet increases postprandial trimethylamine-N-oxide in humans. Nutr Res 2015; 35(10): 858-64.
[http://dx.doi.org/10.1016/j.nutres.2015.07.002] [PMID: 26265295]
[71]
Chen K, Zheng X, Feng M, Li D, Zhang H. Gut microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice. Front Physiol 2017; 8: 139.
[http://dx.doi.org/10.3389/fphys.2017.00139] [PMID: 28377725]
[72]
Chen H, Li J, Li N, Liu H, Tang J. Increased circulating trimethylamine N-oxide plays a contributory role in the development of endothelial dysfunction and hypertension in the RUPP rat model of preeclampsia. Hypertens Pregnancy 2019; 38(2): 96-104.
[http://dx.doi.org/10.1080/10641955.2019.1584630] [PMID: 30821524]
[73]
Chou RH, Chen CY, Chen IC, et al. Trimethylamine N-oxide, circulating endothelial progenitor cells, and endothelial function in patients with stable angina. Sci Rep 2019; 9(1): 4249.
[http://dx.doi.org/10.1038/s41598-019-40638-y] [PMID: 30862856]
[74]
Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J Am Heart Assoc 2016; 5(2): e002767.
[http://dx.doi.org/10.1161/JAHA.115.002767] [PMID: 26903003]
[75]
Ma G, Pan B, Chen Y, et al. Trimethylamine N-oxide in atherogenesis: Impairing endothelial self-repair capacity and enhancing monocyte adhesion. Biosci Rep 2017; 37(2): BSR20160244.
[http://dx.doi.org/10.1042/BSR20160244] [PMID: 28153917]
[76]
Wilson A, McLean C, Kim RB. Trimethylamine-N-oxide. Curr Opin Lipidol 2016; 27(2): 148-54.
[http://dx.doi.org/10.1097/MOL.0000000000000274] [PMID: 26959704]
[77]
Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341): 57-63.
[http://dx.doi.org/10.1038/nature09922] [PMID: 21475195]
[78]
Haghikia A, Li XS, Liman TG, et al. Gut microbiota–dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol 2018; 38(9): 2225-35.
[http://dx.doi.org/10.1161/ATVBAHA.118.311023] [PMID: 29976769]
[79]
Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters, and cholesterol efflux: Implications for the treatment of atherosclerosis. Cell Metab 2008; 7(5): 365-75.
[http://dx.doi.org/10.1016/j.cmet.2008.03.001] [PMID: 18460328]
[80]
Gui T, Shimokado A, Sun Y, Akasaka T, Muragaki Y. Diverse roles of macrophages in atherosclerosis: From inflammatory biology to biomarker discovery. Mediators Inflamm 2012; 2012: 1-14.
[http://dx.doi.org/10.1155/2012/693083] [PMID: 22577254]
[81]
Geng J, Yang C, Wang B, et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother 2018; 97: 941-7.
[http://dx.doi.org/10.1016/j.biopha.2017.11.016] [PMID: 29136772]
[82]
Chistiakov DA, Bobryshev YV, Orekhov AN. Macrophage‐mediated cholesterol handling in atherosclerosis. J Cell Mol Med 2016; 20(1): 17-28.
[http://dx.doi.org/10.1111/jcmm.12689] [PMID: 26493158]
[83]
Altmann SW, Davis HR Jr, Zhu L, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 2004; 303(5661): 1201-4.
[http://dx.doi.org/10.1126/science.1093131] [PMID: 14976318]
[84]
Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000; 290(5497): 1771-5.
[http://dx.doi.org/10.1126/science.290.5497.1771] [PMID: 11099417]
[85]
Davis HR Jr, Zhu L, Hoos LM, et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 2004; 279(32): 33586-92.
[http://dx.doi.org/10.1074/jbc.M405817200] [PMID: 15173162]
[86]
Yu XH, Qian K, Jiang N, Zheng XL, Cayabyab FS, Tang CK. ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin Chim Acta 2014; 428: 82-8.
[http://dx.doi.org/10.1016/j.cca.2013.11.010] [PMID: 24252657]
[87]
Nam HS. Gut microbiota and ischemic stroke: The role of trimethylamine N-oxide. J Stroke 2019; 21(2): 151-9.
[http://dx.doi.org/10.5853/jos.2019.00472] [PMID: 31161760]
[88]
Blaak EE, Canfora EE, Theis S, et al. Short chain fatty acids in human gut and metabolic health. Benef Microbes 2020; 11(5): 411-55.
[http://dx.doi.org/10.3920/BM2020.0057] [PMID: 32865024]
[89]
Ratajczak W. Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol 2019; 66(1): 1-12.
[http://dx.doi.org/10.18388/abp.2018_2648] [PMID: 30831575]
[90]
Ohira H, Tsutsui W, Fujioka Y. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb 2017; 24(7): 660-72.
[http://dx.doi.org/10.5551/jat.RV17006] [PMID: 28552897]
[91]
Li M, van Esch BCAM, Henricks PAJ, Folkerts G, Garssen J. The anti-inflammatory effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-stimulated endothelial cells via activation of GPR41/43 and inhibition of HDACs. Front Pharmacol 2018; 9: 533.
[http://dx.doi.org/10.3389/fphar.2018.00533] [PMID: 29875665]
[92]
Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278(13): 11312-9.
[http://dx.doi.org/10.1074/jbc.M211609200] [PMID: 12496283]
[93]
Kim S, Kim JH, Park BO, Kwak YS. Perspectives on the therapeutic potential of short-chain fatty acid receptors. BMB Rep 2014; 47(3): 173-8.
[http://dx.doi.org/10.5483/BMBRep.2014.47.3.272] [PMID: 24499669]
[94]
Bagchi RA, Weeks KL. Histone deacetylases in cardiovascular and metabolic diseases. J Mol Cell Cardiol 2019; 130: 151-9.
[http://dx.doi.org/10.1016/j.yjmcc.2019.04.003] [PMID: 30978343]
[95]
Cousens LS, Gallwitz D, Alberts BM. Different accessibilities in chromatin to histone acetylase. J Biol Chem 1979; 254(5): 1716-23.
[http://dx.doi.org/10.1016/S0021-9258(17)37831-6] [PMID: 762168]
[96]
Bilotta AJ, Ma C, Yang W, et al. Propionate enhances cell speed and persistence to promote intestinal epithelial turnover and repair. Cell Mol Gastroenterol Hepatol 2021; 11(4): 1023-44.
[http://dx.doi.org/10.1016/j.jcmgh.2020.11.011] [PMID: 33238220]
[97]
Aoyama M, Kotani J, Usami M. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition 2010; 26(6): 653-61.
[http://dx.doi.org/10.1016/j.nut.2009.07.006] [PMID: 20004081]
[98]
Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem 2008; 19(9): 587-93.
[http://dx.doi.org/10.1016/j.jnutbio.2007.08.002] [PMID: 18061431]
[99]
Haenen D, Zhang J, Souza da Silva C, et al. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J Nutr 2013; 143(3): 274-83.
[http://dx.doi.org/10.3945/jn.112.169672] [PMID: 23325922]
[100]
Maciejewska D, Skonieczna-Zydecka K, Lukomska A, et al. The short chain fatty acids and lipopolysaccharides status in Sprague-Dawley rats fed with high-fat and high-cholesterol diet. J Physiol Pharmacol 2018; 69(2): 6.
[PMID: 29920474]
[101]
Tian X, Hellman J, Horswill AR, Crosby HA, Francis KP, Prakash A. Elevated gut microbiome-derived propionate levels are associated with reduced sterile lung inflammation and bacterial immunity in mice. Front Microbiol 2019; 10: 159.
[http://dx.doi.org/10.3389/fmicb.2019.00159] [PMID: 30891007]
[102]
Aguilar EC, Leonel AJ, Teixeira LG, et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr Metab Cardiovasc Dis 2014; 24(6): 606-13.
[http://dx.doi.org/10.1016/j.numecd.2014.01.002] [PMID: 24602606]
[103]
Li M, van Esch BCAM, Henricks PAJ, Garssen J, Folkerts G. Time and concentration dependent effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-induced endothelial activation. Front Pharmacol 2018; 9: 233.
[http://dx.doi.org/10.3389/fphar.2018.00233] [PMID: 29615908]
[104]
Inoue K, Kobayashi M, Yano K, et al. Histone deacetylase inhibitor reduces monocyte adhesion to endothelium through the suppression of vascular cell adhesion molecule-1 expression. Arterioscler Thromb Vasc Biol 2006; 26(12): 2652-9.
[http://dx.doi.org/10.1161/01.ATV.0000247247.89787.e7] [PMID: 17008592]
[105]
Robles-Vera I, Toral M, de la Visitación N, Aguilera-Sánchez N, Redondo JM, Duarte J. Protective Effects of short-chain fatty acids on endothelial dysfunction induced by angiotensin II. Front Physiol 2020; 11: 277.
[http://dx.doi.org/10.3389/fphys.2020.00277] [PMID: 32372967]
[106]
Yuan X, Wang L, Bhat OM, Lohner H, Li PL. Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate. Redox Biol 2018; 16: 21-31.
[http://dx.doi.org/10.1016/j.redox.2018.02.007] [PMID: 29475132]
[107]
Chen Y, Xu C, Huang R, Song J, Li D, Xia M. Butyrate from pectin fermentation inhibits intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E-deficient mice. J Nutr Biochem 2018; 56: 175-82.
[http://dx.doi.org/10.1016/j.jnutbio.2018.02.011] [PMID: 29574331]
[108]
Du Y, Li X, Su C, et al. Butyrate protects against high‐fat diet‐induced atherosclerosis via up‐regulating ABCA1 expression in apolipoprotein E‐deficiency mice. Br J Pharmacol 2020; 177(8): 1754-72.
[http://dx.doi.org/10.1111/bph.14933] [PMID: 31769014]
[109]
Bao Y, Yang Y, Wang L, et al. Identification of trichostatin A as a novel transcriptional up-regulator of scavenger receptor BI both in HepG2 and RAW 264.7 cells. Atherosclerosis 2009; 204(1): 127-35.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.08.041] [PMID: 18930459]
[110]
Tayyeb JZ, Popeijus HE, Mensink RP, Konings MCJM, Mokhtar FBA, Plat J. Short-chain fatty acids (except hexanoic acid) lower NF-kB transactivation, which rescues inflammation-induced decreased apolipoprotein A-I transcription in HepG2 Cells. Int J Mol Sci 2020; 21(14): 5088.
[http://dx.doi.org/10.3390/ijms21145088] [PMID: 32708494]
[111]
Nemet I, Saha PP, Gupta N, et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 2020; 180(5): 862-877.e22.
[http://dx.doi.org/10.1016/j.cell.2020.02.016] [PMID: 32142679]
[112]
Oniszczuk A, Oniszczuk T, Gancarz M. Szymańska J. Role of gut microbiota, probiotics and prebiotics in the cardiovascular diseases. Molecules 2021; 26(4): 1172.
[http://dx.doi.org/10.3390/molecules26041172] [PMID: 33671813]
[113]
Li J, Lin S, Vanhoutte PM, Woo CW, Xu A. Akkermansia Muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in ApoE-/- mice. Circulation 2016; 133(24): 2434-46.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.019645] [PMID: 27143680]
[114]
Martín R, Chamignon C, Mhedbi-Hajri N, et al. The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci Rep 2019; 9(1): 5398.
[http://dx.doi.org/10.1038/s41598-019-41738-5] [PMID: 30931953]
[115]
Chan YK, Brar MS, Kirjavainen PV, et al. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: A pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE−/− mice. BMC Microbiol 2016; 16(1): 264.
[http://dx.doi.org/10.1186/s12866-016-0883-4] [PMID: 27821063]
[116]
Guo Z, Liu XM, Zhang QX, et al. Influence of consumption of probiotics on the plasma lipid profile: A meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis 2011; 21(11): 844-50.
[http://dx.doi.org/10.1016/j.numecd.2011.04.008] [PMID: 21930366]
[117]
Toral M, Gómez-Guzmán M, Jiménez R, et al. The probiotic Lactobacillus coryniformis CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice. Clin Sci (Lond) 2014; 127(1): 33-45.
[http://dx.doi.org/10.1042/CS20130339] [PMID: 24410749]
[118]
Robles-Vera I, Toral M, la Visitación N, et al. Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: Role of short-chain fatty acids. Mol Nutr Food Res 2020; 64(6): 1900616.
[http://dx.doi.org/10.1002/mnfr.201900616] [PMID: 31953983]
[119]
Matsumoto M, Kitada Y, Shimomura Y, Naito Y. Bifidobacterium animalis subsp. lactis LKM512 reduces levels of intestinal trimethylamine produced by intestinal microbiota in healthy volunteers: A double-blind, placebo-controlled study. J Funct Foods 2017; 36: 94-101.
[http://dx.doi.org/10.1016/j.jff.2017.06.032]
[120]
Ling CJ, Min QQ, Yang JR, et al. Lactoferrin alleviates the progression of atherosclerosis in ApoE-/- Mice fed with high-fat/cholesterol diet through cholesterol homeostasis. J Med Food 2019; 22(10): 1000-8.
[http://dx.doi.org/10.1089/jmf.2018.4389] [PMID: 31460816]
[121]
Ghosh SS, Wang J, Yannie PJ, Sandhu YK, Korzun WJ, Ghosh S. Dietary supplementation with galactooligosaccharides attenuates high-fat, high-cholesterol diet–induced glucose intolerance and disruption of colonic mucin layer in C57BL/6 mice and reduces atherosclerosis in Ldlr–/–mice. J Nutr 2020; 150(2): 285-93.
[PMID: 31586202]
[122]
Hoving LR, Katiraei S, Heijink M, et al. Dietary mannan oligosaccharides modulate gut microbiota, increase fecal bile acid excretion, and decrease plasma cholesterol and atherosclerosis development. Mol Nutr Food Res 2018; 62(10): 1700942.
[http://dx.doi.org/10.1002/mnfr.201700942] [PMID: 29665623]
[123]
Bao Y, Wang Z, Zhang Y, et al. Effect of Lactobacillus plantarum P‐8 on lipid metabolism in hyperlipidemic rat model. Eur J Lipid Sci Technol 2012; 114(11): 1230-6.
[http://dx.doi.org/10.1002/ejlt.201100393]
[124]
Haro C, Medina M. Lactobacillus casei CRL 431 improves endothelial and platelet functionality in a pneumococcal infection model. Benef Microbes 2019; 10(5): 533-41.
[http://dx.doi.org/10.3920/BM2018.0099] [PMID: 30964327]
[125]
Tenorio-Jiménez C, Martínez-Ramírez MJ, Tercero-Lozano M, et al. Evaluation of the effect of Lactobacillus reuteri V3401 on biomarkers of inflammation, cardiovascular risk and liver steatosis in obese adults with metabolic syndrome: A randomized clinical trial (PROSIR). BMC Complement Altern Med 2018; 18(1): 306.
[http://dx.doi.org/10.1186/s12906-018-2371-x] [PMID: 30453950]
[126]
Mukherjee R, Yun JW. Lactobionic acid reduces body weight gain in diet-induced obese rats by targeted inhibition of galectin-1. Biochem Biophys Res Commun 2015; 463(4): 1311-6.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.114] [PMID: 26116537]
[127]
Jiang J, Wu C, Zhang C, et al. Effects of probiotic supplementation on cardiovascular risk factors in hypercholesterolemia: A systematic review and meta-analysis of randomized clinical trial. J Funct Foods 2020; 74: 104177.
[http://dx.doi.org/10.1016/j.jff.2020.104177]
[128]
Korcz E, Kerényi Z, Varga L. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: Potential health benefits with special regard to cholesterol-lowering effects. Food Funct 2018; 9(6): 3057-68.
[http://dx.doi.org/10.1039/C8FO00118A] [PMID: 29790546]
[129]
Clifford MN. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med 2004; 70(12): 1103-14.
[http://dx.doi.org/10.1055/s-2004-835835] [PMID: 15643541]
[130]
Koudoufio M, Desjardins Y, Feldman F, Spahis S, Delvin E, Levy E. Insight into polyphenol and gut microbiota crosstalk: Are their metabolites the key to understand protective effects against metabolic disorders? Antioxidants 2020; 9(10): 982.
[http://dx.doi.org/10.3390/antiox9100982] [PMID: 33066106]
[131]
Chen M, Yi L, Zhang Y, et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio 2016; 7(2): e02210-5.
[http://dx.doi.org/10.1128/mBio.02210-15] [PMID: 27048804]
[132]
Ye G, Chen G, Gao H, et al. Resveratrol inhibits lipid accumulation in the intestine of atherosclerotic mice and macrophages. J Cell Mol Med 2019; 23(6): 4313-25.
[http://dx.doi.org/10.1111/jcmm.14323] [PMID: 30957417]
[133]
Li J, Zhong Z, Yuan J, Chen X, Huang Z, Wu Z. Resveratrol improves endothelial dysfunction and attenuates atherogenesis in apolipoprotein E-deficient mice. J Nutr Biochem 2019; 67: 63-71.
[http://dx.doi.org/10.1016/j.jnutbio.2019.01.022] [PMID: 30856465]
[134]
Nie J, Zhang L, Zhao G, Du X. Quercetin reduces atherosclerotic lesions by altering the gut microbiota and reducing atherogenic lipid metabolites. J Appl Microbiol 2019; 127(6): 1824-34.
[http://dx.doi.org/10.1111/jam.14441] [PMID: 31509634]
[135]
Wu DN, Guan L, Jiang YX, et al. Microbiome and metabonomics study of quercetin for the treatment of atherosclerosis. Cardiovasc Diagn Ther 2019; 9(6): 545-60.
[http://dx.doi.org/10.21037/cdt.2019.12.04] [PMID: 32038944]
[136]
Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015; 163(7): 1585-95.
[http://dx.doi.org/10.1016/j.cell.2015.11.055] [PMID: 26687352]
[137]
Roberts AB, Gu X, Buffa JA, et al. Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 2018; 24(9): 1407-17.
[http://dx.doi.org/10.1038/s41591-018-0128-1] [PMID: 30082863]
[138]
Liepinsh E, Konrade I, Skapare E, et al. Mildronate treatment alters γ -butyrobetaine and l -carnitine concentrations in healthy volunteers. J Pharm Pharmacol 2011; 63(9): 1195-201.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01325.x] [PMID: 21827492]
[139]
Ghosh SS, Bie J, Wang J, Ghosh S. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR-/- mice--role of intestinal permeability and macrophage activation. PLoS One 2014; 9(9): e108577.
[http://dx.doi.org/10.1371/journal.pone.0108577] [PMID: 25251395]
[140]
Rune I, Rolin B, Larsen C, et al. Modulating the gut microbiota improves glucose tolerance, lipoprotein profile and atherosclerotic plaque development in ApoE-deficient mice. PLoS One 2016; 11(1): e0146439.
[http://dx.doi.org/10.1371/journal.pone.0146439] [PMID: 26799618]
[141]
Kappel BA, De Angelis L, Heiser M, et al. Cross-omics analysis revealed gut microbiome-related metabolic pathways underlying atherosclerosis development after antibiotics treatment. Mol Metab 2020; 36: 100976.
[http://dx.doi.org/10.1016/j.molmet.2020.100976] [PMID: 32251665]
[142]
Adorni MP, Zimetti F, Lupo MG, Ruscica M, Ferri N. Naturally occurring PCSK9 inhibitors. Nutrients 2020; 12(5): 1440.
[http://dx.doi.org/10.3390/nu12051440] [PMID: 32429343]
[143]
Momtazi AA, Banach M, Pirro M, Katsiki N, Sahebkar A. Regulation of PCSK9 by nutraceuticals. Pharmacol Res 2017; 120: 157-69.
[http://dx.doi.org/10.1016/j.phrs.2017.03.023] [PMID: 28363723]
[144]
Gallo A, Passaro G, Gasbarrini A, Landolfi R, Montalto M. Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate. World J Gastroenterol 2016; 22(32): 7186-202.
[http://dx.doi.org/10.3748/wjg.v22.i32.7186] [PMID: 27621567]
[145]
Kootte RS, Levin E, Salojärvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab 2017; 26(4): 611-619.e6.
[http://dx.doi.org/10.1016/j.cmet.2017.09.008] [PMID: 28978426]
[146]
Xu H, Wang X, Feng W, et al. The gut microbiota and its interactions with cardiovascular disease. Microb Biotechnol 2020; 13(3): 637-56.
[http://dx.doi.org/10.1111/1751-7915.13524] [PMID: 31984651]
[147]
Kump P, Wurm P, Gröchenig HP, et al. The taxonomic composition of the donor intestinal microbiota is a major factor influencing the efficacy of faecal microbiota transplantation in therapy refractory ulcerative colitis. Aliment Pharmacol Ther 2018; 47(1): 67-77.
[http://dx.doi.org/10.1111/apt.14387] [PMID: 29052237]
[148]
Wang S, Xu M, Wang W, et al. Systematic review: Adverse events of fecal microbiota transplantation. PLoS One 2016; 11(8): e0161174.
[http://dx.doi.org/10.1371/journal.pone.0161174] [PMID: 27529553]
[149]
Zodda D, Giammona R, Schifilliti S. Treatment strategy for dyslipidemia in cardiovascular disease prevention: Focus on old and new drugs. Pharmacy (Basel) 2018; 6(1): 10.
[http://dx.doi.org/10.3390/pharmacy6010010] [PMID: 29361723]
[150]
Kaddurah-Daouk R, Baillie RA, Zhu H, et al. Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS One 2011; 6(10): e25482.
[http://dx.doi.org/10.1371/journal.pone.0025482] [PMID: 22022402]
[151]
Sun B, Li L, Zhou X. Comparative analysis of the gut microbiota in distinct statin response patients in East China. J Microbiol 2018; 56(12): 886-92.
[http://dx.doi.org/10.1007/s12275-018-8152-x] [PMID: 30484158]
[152]
Zhang Q, Fan X, Ye R, et al. The effect of simvastatin on gut microbiota and lipid metabolism in hyperlipidemic rats induced by a high-fat diet. Front Pharmacol 2020; 11: 522.
[http://dx.doi.org/10.3389/fphar.2020.00522] [PMID: 32410994]
[153]
Kim J, Lee H, An J, et al. Alterations in Gut Microbiota by Statin Therapy and Possible Intermediate Effects on Hyperglycemia and Hyperlipidemia. Front Microbiol 2019; 10: 1947.
[http://dx.doi.org/10.3389/fmicb.2019.01947] [PMID: 31551944]
[154]
Khan TJ, Ahmed YM, Zamzami MA, et al. Atorvastatin treatment modulates the gut microbiota of the hypercholesterolemic patients. OMICS 2018; 22(2): 154-63.
[http://dx.doi.org/10.1089/omi.2017.0130] [PMID: 29432061]
[155]
Zimmermann F, Roessler J, Schmidt D, et al. Impact of the gut microbiota on atorvastatin mediated effects on blood lipids. J Clin Med 2020; 9(5): 1596.
[http://dx.doi.org/10.3390/jcm9051596] [PMID: 32466086]
[156]
Kummen M, Solberg OG, Storm-Larsen C, et al. Rosuvastatin alters the genetic composition of the human gut microbiome. Sci Rep 2020; 10(1): 5397.
[http://dx.doi.org/10.1038/s41598-020-62261-y] [PMID: 32214138]
[157]
Nolan JA, Skuse P, Govindarajan K, et al. The influence of rosuvastatin on the gastrointestinal microbiota and host gene expression profiles. Am J Physiol Gastrointest Liver Physiol 2017; 312(5): G488-97.
[http://dx.doi.org/10.1152/ajpgi.00149.2016] [PMID: 28209601]
[158]
Liu Y, Song X, Zhou H, et al. Gut microbiome associates with lipid-lowering effect of rosuvastatin in vivo. Front Microbiol 2018; 9: 530.
[http://dx.doi.org/10.3389/fmicb.2018.00530] [PMID: 29623075]
[159]
Zhao C, Hu Y, Chen H, et al. An in vitro evaluation of the effects of different statins on the structure and function of human gut bacterial community. PLoS One 2020; 15(3): e0230200.
[http://dx.doi.org/10.1371/journal.pone.0230200] [PMID: 32214324]
[160]
Wang L, Wang Y, Wang H, et al. The influence of the intestinal microflora to the efficacy of Rosuvastatin. Lipids Health Dis 2018; 17(1): 151.
[http://dx.doi.org/10.1186/s12944-018-0801-x] [PMID: 29960598]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy