Mini-Review Article

MicroRNAs Improve Cancer Treatment Outcomes Through Personalized Medicine

Author(s): Saeid Hatam*

Volume 12, Issue 2, 2023

Published on: 06 March, 2023

Page: [92 - 98] Pages: 7

DOI: 10.2174/2211536612666230202113415

Price: $65

Open Access Journals Promotions 2
Abstract

MicroRNAs (miRNAs) are short non-coding RNAs that repress or degrade mRNA targets to downregulate genes. In cancer occurrence, the expression of miRNAs is altered. Depending on the involvement of a certain miRNA in the pathogenetic growth of a tumor, It may be up or downregulated. The “oncogenic” action of miRNAs corresponds with upregulation, which leads to tumor proliferation and spread meanwhile the miRNAs that have been downregulated bring tumorsuppressive outcomes. Oncogenes and tumor suppressor genes are among the genes whose expression is under their control, demonstrating that classifying them solely as oncogenes or tumor suppressor genes alone is not only hindering but also incorrect. Apart from basic tumors, miRNAs may be found in nearly all human fluids and can be used for cancer diagnosis as well as clinical outcome prognostics and better response to treatment strategies. The overall variance of these tiny noncoding RNAs influences patient-specific pharmacokinetics and pharmacodynamics of anti-cancer medicines, driving a growing demand for personalized medicine. By now, microRNAs from tumor biopsies or blood are being widely investigated as substantial biomarkers for cancer in time diagnosis, prognosis, and, progression. With the rise of COVID-19, this paper also attempts to study recent research on miRNAs involved with deaths in lung cancer COVID patients. With the discovery of single nucleotide polymorphisms, personalized treatment via microRNAs has lately become a reality. The present review article describes the highlights of recent knowledge of miRNAs in various cancers, with a focus on miRNA translational applications as innovative potential diagnostic and prognostic indicators that expand person-to-person therapy options.

Keywords: MicroRNAs, biomarkers, drug response, COVID-19, cancer treatment, oncogenes.

« Previous
Graphical Abstract
[1]
Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol 2014; 9(1): 287-314.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104715] [PMID: 24079833]
[2]
Nana-Sinkam SP, Fabbri M, Croce CM. MicroRNAs in cancer: personalizing diagnosis and therapy. Ann N Y Acad Sci 2010; 1210(1): 25-33.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05822.x] [PMID: 20973796]
[3]
Sethi S, Ali S, Sethi S, Sarkar FH. MicroRNAs in personalized cancer therapy. Clin Genet 2014; 86(1): 68-73.
[http://dx.doi.org/10.1111/cge.12362] [PMID: 24635652]
[4]
Fabbri M. MicroRNAs and cancer: Towards a personalized medicine. Curr Mol Med 2013; 13(5): 751-6.
[http://dx.doi.org/10.2174/1566524011313050006] [PMID: 23642056]
[5]
Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancer management. Lancet Oncol 2012; 13(6): e249-58.
[http://dx.doi.org/10.1016/S1470-2045(12)70073-6] [PMID: 22652233]
[6]
Detassis S, Grasso M, Del Vescovo V, Denti MA. microRNAs make the call in cancer personalized medicine. Front Cell Dev Biol 2017; 5: 86.
[http://dx.doi.org/10.3389/fcell.2017.00086] [PMID: 29018797]
[7]
Cao Y, Zhao D, Li P, et al. MicroRNA-181a-5p impedes IL-17-induced nonsmall cell lung cancer proliferation and migration through targeting VCAM-1. Cell Physiol Biochem 2017; 42(1): 346-56.
[http://dx.doi.org/10.1159/000477389] [PMID: 28535543]
[8]
Mazumder S, Datta S, Ray JG, Chaudhuri K, Chatterjee R. Liquid biopsy: miRNA as a potential biomarker in oral cancer. Cancer Epidemiol 2019; 58: 137-45.
[http://dx.doi.org/10.1016/j.canep.2018.12.008] [PMID: 30579238]
[9]
Zubor P, Kubatka P, Kajo K, et al. Why the gold standard approach by mammography demands extension by multiomics? Application of liquid biopsy miRNA profiles to breast cancer disease management. Int J Mol Sci 2019; 20(12): 2878.
[http://dx.doi.org/10.3390/ijms20122878] [PMID: 31200461]
[10]
Piao XM, Cha EJ, Yun SJ, Kim WJ. Role of exosomal miRNA in bladder cancer: a promising liquid biopsy biomarker. Int J Mol Sci 2021; 22(4): 1713.
[http://dx.doi.org/10.3390/ijms22041713] [PMID: 33567779]
[11]
Puik JR, Meijer LL, Le Large TYS, et al. miRNA profiling for diagnosis, prognosis and stratification of cancer treatment in cholangiocarcinoma. Pharmacogenomics 2017; 18(14): 1343-58.
[http://dx.doi.org/10.2217/pgs-2017-0010] [PMID: 28832247]
[12]
Ali A, Bouma GJ, Anthony RV, Winger QA. The role of LIN28-let-7-ARID3B pathway in placental development. Int J Mol Sci 2020; 21(10): 3637.
[http://dx.doi.org/10.3390/ijms21103637] [PMID: 32455665]
[13]
Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 pathway in cancer. Front Genet 2017; 8: 31.
[http://dx.doi.org/10.3389/fgene.2017.00031] [PMID: 28400788]
[14]
Sabeena S, Ravishankar N. Role of microRNAs in predicting the prognosis of cervical cancer cases: A systematic review and meta-analysis. Asian Pac J Cancer Prev 2021; 22(4): 999-1006.
[http://dx.doi.org/10.31557/APJCP.2021.22.4.999] [PMID: 33906290]
[15]
Wu Q, Li P, Wu M, Liu Q. Deregulation of circular RNAs in cancer from the perspectives of aberrant biogenesis, transport and removal. Front Genet 2019; 10: 16.
[http://dx.doi.org/10.3389/fgene.2019.00016] [PMID: 30774645]
[16]
Mishra PJ. MicroRNAs as promising biomarkers in cancer diagnostics. Biomark Res 2014; 2(1): 19.
[http://dx.doi.org/10.1186/2050-7771-2-19] [PMID: 25356314]
[17]
Uzuner E, Ulu GT, Gürler SB, Baran Y. The role of MIRNA in cancer: pathogenesis, diagnosis, and treatment. miRNomics 2022; 375-422.
[18]
He Z, Cen D, Luo X, et al. Downregulation of miR-383 promotes glioma cell invasion by targeting insulin-like growth factor 1 receptor. Med Oncol 2013; 30(2): 557.
[http://dx.doi.org/10.1007/s12032-013-0557-0] [PMID: 23564324]
[19]
Visone R, Croce CM. MIRNAs and Cancer. Am J Pathol 2009; 174(4): 1131-8.
[http://dx.doi.org/10.2353/ajpath.2009.080794] [PMID: 19264914]
[20]
Wallace DR, Taalab YM, Heinze S, et al. Toxic-metal-induced alteration in miRNA expression profile as a proposed mechanism for disease development. Cells 2020; 9(4): 901.
[http://dx.doi.org/10.3390/cells9040901] [PMID: 32272672]
[21]
Nakano M, Nakajima M. Current knowledge of microRNA-mediated regulation of drug metabolism in humans. Expert Opin Drug Metab Toxicol 2018; 14(5): 493-504.
[http://dx.doi.org/10.1080/17425255.2018.1472237] [PMID: 29718737]
[22]
Latini A, Borgiani P, Novelli G, Ciccacci C. miRNAs in drug response variability: potential utility as biomarkers for personalized medicine. Pharmacogenomics 2019; 20(14): 1049-59.
[http://dx.doi.org/10.2217/pgs-2019-0089] [PMID: 31559917]
[23]
Marima R, Francies FZ, Hull R, et al. MicroRNA and Alternative mRNA Splicing Events in cancer drug response/resistance: Potent therapeutic targets. Biomedicines 2021; 9(12): 1818.
[http://dx.doi.org/10.3390/biomedicines9121818] [PMID: 34944633]
[24]
Levy S, Muench J. The epigenetic impact of adverse childhood experiences through the lens of personalized medicine. Fut Med 2022; 425-9.
[25]
Arif KMT, Elliott EK, Haupt LM, Griffiths LR. Regulatory mechanisms of epigenetic miRNA relationships in human cancer and potential as therapeutic targets. Cancers (Basel) 2020; 12(10): 2922.
[http://dx.doi.org/10.3390/cancers12102922] [PMID: 33050637]
[26]
Heydarzadeh S, Ranjbar M, Karimi F, Seif F, Alivand MR. Overview of host miRNA properties and their association with epigenetics, long non-coding RNAs, and Xeno-infectious factors. Cell Biosci 2021; 11(1): 43.
[http://dx.doi.org/10.1186/s13578-021-00552-1] [PMID: 33632341]
[27]
Mosleh-Shirazi S, Abbasi M, Moaddeli M, et al. Nanotechnology advances in the detection and treatment of cancer: An overview. Nanotheranostics 2022; 6(4): 400-23.
[http://dx.doi.org/10.7150/ntno.74613] [PMID: 36051855]
[28]
Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6(11): 857-66.
[http://dx.doi.org/10.1038/nrc1997] [PMID: 17060945]
[29]
Shao C, Yang F, Qin Z, Jing X, Shu Y, Shen H. The value of miR-155 as a biomarker for the diagnosis and prognosis of lung cancer: A systematic review with meta-analysis. BMC Cancer 2019; 19(1): 1103.
[http://dx.doi.org/10.1186/s12885-019-6297-6] [PMID: 31727002]
[30]
Yang M, Shen H, Qiu C, et al. High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur J Cancer 2013; 49(3): 604-15.
[http://dx.doi.org/10.1016/j.ejca.2012.09.031] [PMID: 23099007]
[31]
Segal M, Slack FJ. Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin Drug Discov 2020; 15(9): 487-91.
[http://dx.doi.org/10.1080/17460441.2020.1765770]
[32]
Naidu S, Magee P, Garofalo M. MIRNA-based therapeutic intervention of cancer. J Hematol Oncol 2015; 8(1): 68.
[http://dx.doi.org/10.1186/s13045-015-0162-0] [PMID: 26062952]
[33]
Pottoo FH, Javed MN, Rahman JU, Abu-Izneid T, Khan FA. Targeted delivery of miRNA based therapeuticals in the clinical management of Glioblastoma Multiforme. Semin Cancer Biol 2021; 69: 391-8.
[34]
Cittelly DM, Das PM, Spoelstra NS, et al. Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol Cancer 2010; 9(1): 317.
[http://dx.doi.org/10.1186/1476-4598-9-317] [PMID: 21172025]
[35]
Wang Y, Zhang X, Li H, Yu J, Ren X. The role of miRNA-29 family in cancer. Eur J Cell Biol 2013; 92(3): 123-8.
[http://dx.doi.org/10.1016/j.ejcb.2012.11.004] [PMID: 23357522]
[36]
Chhabra R, Dubey R, Saini N. Cooperative and individualistic functions of the microRNAs in the miR-23a~27a~24-2 cluster and its implication in human diseases. Mol Cancer 2010; 9(1): 232.
[http://dx.doi.org/10.1186/1476-4598-9-232] [PMID: 20815877]
[37]
Ahmad S, Manzoor S, Siddiqui S, Mariappan N, Zafar I, Ahmad A. Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. Semin Cancer Biol 2022; 83: 384-98.
[38]
Fani M, Zandi M, Ebrahimi S, Soltani S, Abbasi S. The role of miRNAs in COVID-19 disease. Future Virol 2021; 16(4): 301-6.
[http://dx.doi.org/10.2217/fvl-2020-0389]
[39]
Amini-Farsani Z, Yadollahi-Farsani M, Arab S, Forouzanfar F, Yadollahi M, Asgharzade S. Prediction and analysis of microRNAs involved in COVID-19 inflammatory processes associated with the NF-kB and JAK/STAT signaling pathways. Int Immunopharmacol 2021; 100: 108071.
[http://dx.doi.org/10.1016/j.intimp.2021.108071] [PMID: 34482267]
[40]
Zhang S, Amahong K, Sun X, et al. The miRNA: a small but powerful RNA for COVID-19. Brief Bioinform 2021; 22(2): 1137-49.
[http://dx.doi.org/10.1093/bib/bbab062] [PMID: 33675361]
[41]
Ardizzone A, Calabrese G, Campolo M, et al. Role of miRNA-19a in cancer diagnosis and poor prognosis. Int J Mol Sci 2021; 22(9): 4697.
[http://dx.doi.org/10.3390/ijms22094697] [PMID: 33946718]
[42]
Yu KM, Olga EB, Pavel PL. miRNAs and androgen deprivation therapy for prostate cancer. Biochim Biophys Acta Rev Cancer 2021; 1876(2): 188625.
[43]
C, Stathopoulos GT, Chen J. Role of exosomal microRNAs in lung cancer biology and clinical applications. Cell Prolif 2020; 53(6): e12828.
[http://dx.doi.org/10.1111/cpr.12828] [PMID: 32391938]
[44]
Cao Z, Qiu J, Yang G, et al. MiR-135a biogenesis and regulation in malignancy: a new hope for cancer research and therapy. Cancer Biol Med 2020; 17(3): 569-82.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0033] [PMID: 32944391]
[45]
Ullmann P, Nurmik M, Begaj R, Haan S, Letellier E. Hypoxia-and microRNA-induced metabolic reprogramming of tumor-initiating cells. Cells 2019; 8(6): 528.
[http://dx.doi.org/10.3390/cells8060528] [PMID: 31159361]
[46]
Engelmann I, Alidjinou EK, Bertin A, Sane F, Hober D. miRNAs in enterovirus infection. Crit Rev Microbiol 2018; 44(6): 701-14.
[http://dx.doi.org/10.1080/1040841X.2018.1499608] [PMID: 30106324]
[47]
Trobaugh DW, Klimstra WB. MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol Med 2017; 23(1): 80-93.
[http://dx.doi.org/10.1016/j.molmed.2016.11.003] [PMID: 27989642]
[48]
Plissonnier ML, Herzog K, Levrero M, Zeisel M. Non-coding RNAs and hepatitis C virus-induced hepatocellular carcinoma. Viruses 2018; 10(11): 591.
[http://dx.doi.org/10.3390/v10110591] [PMID: 30380697]
[49]
Wang M, Gu B, Chen X, Wang Y, Li P, Wang K. The function and therapeutic potential of Epstein-Barr virus-encoded microRNAs in cancer. Mol Ther Nucleic Acids 2019; 17: 657-68.
[http://dx.doi.org/10.1016/j.omtn.2019.07.002] [PMID: 31400608]
[50]
Moles R, Nicot C. The emerging role of miRNAs in HTLV-1 infection and ATLL pathogenesis. Viruses 2015; 7(7): 4047-74.
[http://dx.doi.org/10.3390/v7072805] [PMID: 26205403]
[51]
Pardini B, De Maria D, Francavilla A, Di Gaetano C, Ronco G, Naccarati A. MicroRNAs as markers of progression in cervical cancer: A systematic review. BMC Cancer 2018; 18(1): 696.
[http://dx.doi.org/10.1186/s12885-018-4590-4] [PMID: 29945565]
[52]
Chen Z, Han Y, Song C, et al. Systematic review and meta-analysis of the prognostic significance of microRNAs in cervical cancer. Oncotarget 2018; 9(24): 17141-8.
[http://dx.doi.org/10.18632/oncotarget.23839] [PMID: 29682211]
[53]
Dai M, Li S, Qin X. Colorectal neoplasia differentially expressed: a long noncoding RNA with an imperative role in cancer. OncoTargets Ther 2018; 11: 3755-63.
[http://dx.doi.org/10.2147/OTT.S162754] [PMID: 29988699]
[54]
Wang X, Tang S, Le SY, et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 2008; 3(7): e2557.
[http://dx.doi.org/10.1371/journal.pone.0002557] [PMID: 18596939]
[55]
Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Adv Drug Deliv Rev 2015; 81: 128-41.
[http://dx.doi.org/10.1016/j.addr.2014.05.009] [PMID: 24859533]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy