Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Research Article

Sodium Selenite Modulates Global Activation of Proinflammatory M1-like Macrophages, Necroinflammation and M1-like/M2-like Dichotomy at the Onset of Human Type 1 Diabetes

Author(s): Mouna Nouar, Maroua Miliani, Imène Belhassena, Ahlam Fatmi and Mourad Aribi*

Volume 23, Issue 8, 2023

Published on: 13 March, 2023

Page: [1104 - 1117] Pages: 14

DOI: 10.2174/1871530323666230201135916

Price: $65

Abstract

Aim: The study aims to show that sodium selenite (Ss) would have an immunomodulatory effect on the functional activity of proinflammatory macrophages (Mφs) during their extended extracellular activation at the onset of human type 1 diabetes (T1D).

Background: Exacerbated activation of proinflammatory “M1” macrophages (Mφs) can promote chronic local pancreatic islet inflammation and T1D development.

Objective: We investigated the ex vivo effects of Ss on the immune modulation of global/extended activation of human proinflammatory M1-like Mφs.

Methods: Experiments were carried out on primary monocytes-derived Mφs (MDMs).

Results: The levels of IL-1β, TNF-α, H2O2 and intracellular free calcium ions (ifCa2+), and the ratios of IL-1β-to-IL-10 and TNF-α-to-IL-10 were markedly increased in T1D Mφs than in healthy control Mφs. Conversely, both IL-10 production and arginase 1 (ARG1) activity were downregulated in T1D Mφs. Additionally, Ss treatment induced a marked downregulation of respiratory burst, ifCa2+ levels, M1-like Mφ-associated inducible nitric oxide (NO) synthase (iNOS) activity, cell necrosis and related necroinflammation biomarkers, including IL-1β and TNF-α, CD14 expression, and the ratios of iNOS-to-ARG1, IL-1β-to-IL-10, and TNF-α-to-IL-10. Moreover, Ss upregulated anti-inflammatory “M2-like” Mφ activity as demonstrated by ARG1 activity and IL-10 production, as well as phagocytosis capacity.

Conclusion: Ss exerts a potent immunomodulatory role on functional activities of human proinflammatory T1D M1-like Mφs subjected to extended activation, as well as on the M1-like/M2-like dichotomy. Additionally, the current study provides a novel therapeutic approach using Ss to promote the anti-inflammatory function of Mφs at the onset of T1D.

Keywords: Extended extracellular activation spectrum, macrophage functional activities, immunomodulation, primary human M1-like monocyte-derived macrophages, sodium selenite treatment, type 1 diabetes.

Graphical Abstract
[1]
Espinoza-Jiménez, A.; Peón, A.N.; Terrazas, L.I. Alternatively activated macrophages in types 1 and 2 diabetes. Mediators Inflamm., 2012, 2012, 815953.
[http://dx.doi.org/10.1155/2012/815953]
[2]
Schwizer, R.W.; Leiter, E.H.; Evans, R. Macrophage-mediated cytotoxicity against cultured pancreatic islet cells. Transplantation, 1984, 37(6), 539-543.
[http://dx.doi.org/10.1097/00007890-198406000-00002] [PMID: 6375012]
[3]
Meares, G.P.; Fontanilla, D.; Broniowska, K.A.; Andreone, T.; Lancaster, J.R., Jr; Corbett, J.A. Differential responses of pancreatic β-cells to ROS and RNS. Am. J. Physiol. Endocrinol. Metab., 2013, 304(6), E614-E622.
[http://dx.doi.org/10.1152/ajpendo.00424.2012] [PMID: 23321474]
[4]
Van Gassen, N.; Staels, W.; Van Overmeire, E.; De Groef, S.; Sojoodi, M.; Heremans, Y.; Leuckx, G.; Van de Casteele, M.; Van Ginderachter, J.A.; Heimberg, H.; De Leu, N. Concise review: macrophages: versatile gatekeepers during pancreatic β-cell development, injury, and regeneration. Stem Cells Transl. Med., 2015, 4(6), 555-563.
[http://dx.doi.org/10.5966/sctm.2014-0272] [PMID: 25848123]
[5]
Southern, C.; Schulster, D.; Green, I.C. Inhibition of insulin secretion by interleukin-1β and tumour necrosis factor-α via an L-arginine-dependent nitric oxide generating mechanism. FEBS Lett., 1990, 276(1-2), 42-44.
[http://dx.doi.org/10.1016/0014-5793(90)80502-A] [PMID: 2265709]
[6]
Stoffels, K.; Overbergh, L.; Giulietti, A.; Kasran, A.; Bouillon, R.; Gysemans, C.; Mathieu, C. NOD macrophages produce high levels of inflammatory cytokines upon encounter of apoptotic or necrotic cells. J. Autoimmun., 2004, 23(1), 9-15.
[http://dx.doi.org/10.1016/j.jaut.2004.03.012] [PMID: 15236748]
[7]
Hoffmann, P.R.; Berry, M.J. The influence of selenium on immune responses. Mol. Nutr. Food Res., 2008, 52(11), 1273-1280.
[http://dx.doi.org/10.1002/mnfr.200700330] [PMID: 18384097]
[8]
Xia, H.; Zhang, L.; Dai, J.; Liu, X.; Zhang, X.; Zeng, Z.; Jia, Y. Effect of selenium and peroxynitrite on immune function of immature dendritic cells in humans. Med. Sci. Monit., 2021, 27, e929004.
[http://dx.doi.org/10.12659/MSM.929004] [PMID: 33684094]
[9]
Vunta, H.; Belda, B.J.; Arner, R.J.; Channa Reddy, C.; Vanden Heuvel, J.P.; Sandeep Prabhu, K. Selenium attenuates pro-inflammatory gene expression in macrophages. Mol. Nutr. Food Res., 2008, 52(11), 1316-1323.
[http://dx.doi.org/10.1002/mnfr.200700346] [PMID: 18481333]
[10]
Shibata, T.; Kondo, M.; Osawa, T.; Shibata, N.; Kobayashi, M.; Uchida, K. 15-Deoxy-Δ12,14-prostaglandin J2. J. Biol. Chem., 2002, 277(12), 10459-10466.
[http://dx.doi.org/10.1074/jbc.M110314200] [PMID: 11786541]
[11]
Korwar, A.M.; Shay, A.E.; Basrur, V.; Conlon, K.; Prabhu, K.S. Selenoproteome identification in inflamed murine primary bone marrow-derived macrophages by Nano-Lc orbitrap fusion tribrid mass spectrometry. J. Am. Soc. Mass Spectrom., 2019, 30(7), 1276-1283.
[http://dx.doi.org/10.1007/s13361-019-02192-9] [PMID: 30972724]
[12]
Nelson, S.M.; Shay, A.E.; James, J.L.; Carlson, B.A.; Urban, J.F., Jr; Prabhu, K.S. Selenoprotein expression in macrophages is critical for optimal clearance of parasitic helminth Nippostrongylus brasiliensis. J. Biol. Chem., 2016, 291(6), 2787-2798.
[http://dx.doi.org/10.1074/jbc.M115.684738] [PMID: 26644468]
[13]
Narayan, V.; Ravindra, K.C.; Liao, C.; Kaushal, N.; Carlson, B.A.; Prabhu, K.S. Epigenetic regulation of inflammatory gene expression in macrophages by selenium. J. Nutr. Biochem., 2015, 26(2), 138-145.
[http://dx.doi.org/10.1016/j.jnutbio.2014.09.009] [PMID: 25458528]
[14]
Wahl, L.M.; Wahl, S.M.; Smythies, L.E.; Smith, P.D. Isolation of Human Monocyte Populations. Curr. Protoc. Immunol., 2005, 70(1)
[http://dx.doi.org/10.1002/0471142735.im0706as70] [PMID: 18432977]
[15]
Selvaraj, P.; Prabhu Anand, S.; Harishankar, M.; Alagarasu, K. Plasma 1,25 dihydroxy vitamin D3 level and expression of vitamin D receptor and cathelicidin in pulmonary tuberculosis. J. Clin. Immunol., 2009, 29(4), 470-478.
[http://dx.doi.org/10.1007/s10875-009-9277-9] [PMID: 19219539]
[16]
Fedoroff, S.; Richardson, A, Eds.; Protocols for neural cell culture, 3rd ed; Humana Press: Totowa, N.J, 2001.
[http://dx.doi.org/10.1385/1592592074]
[17]
Salles, M.S.V.; Zanetti, M.A.; Junior, L.C.R.; Salles, F.A.; Azzolini, A.E.C.S.; Soares, E.M.; Faccioli, L.H.; Valim, Y.M.L. Performance and immune response of suckling calves fed organic selenium. Anim. Feed Sci. Technol., 2014, 188, 28-35.
[http://dx.doi.org/10.1016/j.anifeedsci.2013.11.008]
[18]
Dahmani, Z.; Addou-Klouche, L.; Gizard, F.; Dahou, S.; Messaoud, A.; Chahinez Djebri, N.; Benaissti, M.I.; Mostefaoui, M.; Terbeche, H.; Nouari, W.; Miliani, M.; Lefranc, G.; Fernandez, A.; Lamb, N.J.; Aribi, M. Metformin partially reverses the inhibitory effect of co-culture with ER-/PR-/HER2+ breast cancer cells on biomarkers of monocyte antitumor activity. PLoS One, 2020, 15(10), e0240982.
[http://dx.doi.org/10.1371/journal.pone.0240982] [PMID: 33108409]
[19]
Krausgruber, T.; Blazek, K.; Smallie, T.; Alzabin, S.; Lockstone, H.; Sahgal, N.; Hussell, T.; Feldmann, M.; Udalova, I.A. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol., 2011, 12(3), 231-238.
[http://dx.doi.org/10.1038/ni.1990] [PMID: 21240265]
[20]
Buchacher, T.; Ohradanova-Repic, A.; Stockinger, H.; Fischer, M.B.; Weber, V. M2 polarization of human macrophages favors survival of the intracellular pathogen. Chlamydia pneumoniae. PLoS One, 2015, 10(11), e0143593.
[http://dx.doi.org/10.1371/journal.pone.0143593] [PMID: 26606059]
[21]
Shiomi, A.; Usui, T.; Mimori, T. GM-CSF as a therapeutic target in autoimmune diseases. Inflamm. Regen., 2016, 36(1), 8.
[http://dx.doi.org/10.1186/s41232-016-0014-5] [PMID: 29259681]
[22]
Unitt, J.; Hornigold, D. Plant lectins are novel Toll-like receptor agonists. Biochem. Pharmacol., 2011, 81(11), 1324-1328.
[http://dx.doi.org/10.1016/j.bcp.2011.03.010] [PMID: 21420389]
[23]
Aribi, M.; Meziane, W.; Habi, S.; Boulatika, Y.; Marchandin, H.; Aymeric, J.L. Macrophage bactericidal activities against Staphylococcus aureus are enhanced in vivo by selenium supplementation in a dose-dependent manner. PLoS One, 2015, 10(9), e0135515.
[http://dx.doi.org/10.1371/journal.pone.0135515] [PMID: 26340099]
[24]
Meziane, W.; Mekkaoui, Z.; Hai, I.; Kacimi, K.; Djilali, K.; Touil-Boukoffa, C.; Lefranc, G.; Fernandez, A.; Lamb, N.; Mennechet, F.; Aribi, M. Combination of metformin with sodium selenite induces a functional phenotypic switch of human GM-CSF monocyte-derived macrophages. Int. Immunopharmacol., 2019, 73, 212-224.
[http://dx.doi.org/10.1016/j.intimp.2019.05.004] [PMID: 31108386]
[25]
Campbell, S.C.; Aldibbiat, A.; Marriott, C.E.; Landy, C.; Ali, T.; Ferris, W.F.; Butler, C.S.; Shaw, J.A.; Macfarlane, W.M. Selenium stimulates pancreatic beta-cell gene expression and enhances islet function. FEBS Lett., 2008, 582(15), 2333-2337.
[http://dx.doi.org/10.1016/j.febslet.2008.05.038] [PMID: 18538137]
[26]
Miliani, M.; Nouar, M.; Paris, O.; Lefranc, G.; Mennechet, F.; Aribi, M. Thymoquinone potently enhances the activities of classically activated macrophages pulsed with necrotic jurkat cell lysates and the production of antitumor th1-/m1-related cytokines. J. Interferon Cytokine Res., 2018, 38(12), 539-551.
[http://dx.doi.org/10.1089/jir.2018.0010] [PMID: 30422744]
[27]
Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem., 1985, 150(1), 76-85.
[http://dx.doi.org/10.1016/0003-2697(85)90442-7] [PMID: 3843705]
[28]
Aribi, M. Macrophage bactericidal assays. Methods Mol. Biol., 2018, 1784, 135-149.
[http://dx.doi.org/10.1007/978-1-4939-7837-3_14] [PMID: 29761396]
[29]
Luo, B.; Wang, J.; Liu, Z.; Shen, Z.; Shi, R.; Liu, Y.Q.; Liu, Y.; Jiang, M.; Wu, Y.; Zhang, Z. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution. Nat. Commun., 2016, 7(1), 12177.
[http://dx.doi.org/10.1038/ncomms12177] [PMID: 27397585]
[30]
Guevara, I.; Iwanejko, J.; Dembińska-Kieć, A.; Pankiewicz, J.; Wanat, A.; Anna, P.; Gołąbek, I.; Bartuś, S.; Malczewska-Malec, M.; Szczudlik, A. Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin. Chim. Acta, 1998, 274(2), 177-188.
[http://dx.doi.org/10.1016/S0009-8981(98)00060-6] [PMID: 9694586]
[31]
Blond, D.; Raoul, H.; Le Grand, R.; Dormont, D. Nitric oxide synthesis enhances human immunodeficiency virus replication in primary human macrophages. J. Virol., 2000, 74(19), 8904-8912.
[http://dx.doi.org/10.1128/JVI.74.19.8904-8912.2000] [PMID: 10982333]
[32]
Pick, E.; Keisari, Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Methods, 1980, 38(1-2), 161-170.
[http://dx.doi.org/10.1016/0022-1759(80)90340-3] [PMID: 6778929]
[33]
Benghalem, I.; Meziane, W.; Hadjidj, Z.; Ysmail-Dahlouk, L.; Belamri, A.; Mouhadjer, K.; Aribi, M. High-density lipoprotein immunomodulates the functional activities of macrophage and cytokines produced during ex vivo macrophage-CD4 + T cell crosstalk at the recent-onset human type 1 diabetes. Cytokine, 2017, 96, 59-70.
[http://dx.doi.org/10.1016/j.cyto.2017.03.001] [PMID: 28324804]
[34]
Nouari, W.; Ysmail-Dahlouk, L.; Aribi, M. Vitamin D3 enhances bactericidal activity of macrophage against. Pseudomonas aeruginosa. Int. Immunopharmacol., 2016, 30, 94-101.
[http://dx.doi.org/10.1016/j.intimp.2015.11.033] [PMID: 26655879]
[35]
Corraliza, I.M.; Campo, M.L.; Soler, G.; Modolell, M. Determination of arginase activity in macrophages: a micromethod. J. Immunol. Methods, 1994, 174(1-2), 231-235.
[http://dx.doi.org/10.1016/0022-1759(94)90027-2] [PMID: 8083527]
[36]
Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol., 2011, 11(11), 723-737.
[http://dx.doi.org/10.1038/nri3073] [PMID: 21997792]
[37]
Chan, F.K.M.; Moriwaki, K.; De Rosa, M.J. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol. Biol., 2013, 979, 65-70.
[http://dx.doi.org/10.1007/978-1-62703-290-2_7] [PMID: 23397389]
[38]
Dahou, S.; Smahi, M.C.E.; Nouari, W.; Dahmani, Z.; Benmansour, S.; Ysmail-Dahlouk, L.; Miliani, M.; Yebdri, F.; Fakir, N.; Laoufi, M.Y.; Chaib-Draa, M.; Tourabi, A.; Aribi, M. L-Threoascorbic acid treatment promotes S. aureus-infected primary human endothelial cells survival and function, as well as intracellular bacterial killing, and immunomodulates the release of IL-1β and soluble ICAM-1. Int. Immunopharmacol., 2021, 95, 107476.
[http://dx.doi.org/10.1016/j.intimp.2021.107476] [PMID: 33676147]
[39]
Belhassena, I.; Nouari, W.; Messaoud, A.; Nouar, M.; Brahimi, M.; Lamara, S.A.C.; Aribi, M. Aspirin enhances regulatory functional activities of monocytes and downregulates CD16 and CD40 expression in myocardial infarction autoinflammatory disease. Int. Immunopharmacol., 2020, 83, 106349.
[http://dx.doi.org/10.1016/j.intimp.2020.106349] [PMID: 32172203]
[40]
Jackson, M.; Krasnodembskaya, A. Analysis of mitochondrial transfer in direct co-cultures of human monocyte-derived macrophages (MDM) and mesenchymal stem cells (MSC). Bio Protoc., 2017, 7(9), e2255.
[http://dx.doi.org/10.21769/BioProtoc.2255] [PMID: 28534038]
[41]
Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 2012, 9(7), 671-675.
[http://dx.doi.org/10.1038/nmeth.2089] [PMID: 22930834]
[42]
Hao, Q.; Idell, S.; Tang, H. M1 macrophages are more susceptible to necroptosis. J. Cell. Immunol., 2021, 3(2), 97-102.
[http://dx.doi.org/10.33696/immunology.3.084] [PMID: 33959729]
[43]
Tonnus, W.; Gembardt, F.; Latk, M.; Parmentier, S.; Hugo, C.; Bornstein, S.R.; Linkermann, A. The clinical relevance of necroinflammation—highlighting the importance of acute kidney injury and the adrenal glands. Cell Death Differ., 2019, 26(1), 68-82.
[http://dx.doi.org/10.1038/s41418-018-0193-5] [PMID: 30224638]
[44]
Aribi, M.; Moulessehoul, S.; Kendouci-Tani, M.; Benabadji, A-B.; Hichami, A.; Khan, N.A. Relationship between interleukin-1beta and lipids in type 1 diabetic patients. Med. Sci. Monit., 2007, 13(8), CR372-CR378.
[PMID: 17660728]
[45]
Yoon, J.W.; Jun, H.S. Autoimmune destruction of pancreatic beta cells. Am. J. Ther., 2005, 12(6), 580-591.
[http://dx.doi.org/10.1097/01.mjt.0000178767.67857.63] [PMID: 16280652]
[46]
Lu, J.; Liu, J.; Li, L.; Lan, Y.; Liang, Y. Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets. Clin. Transl. Immunology, 2020, 9(3), e1122.
[http://dx.doi.org/10.1002/cti2.1122] [PMID: 32185024]
[47]
Lee, L.F.; Xu, B.; Michie, S.A.; Beilhack, G.F.; Warganich, T.; Turley, S.; McDevitt, H.O. The role of TNF-α in the pathogenesis of type 1 diabetes in the nonobese diabetic mouse: Analysis of dendritic cell maturation. Proc. Natl. Acad. Sci. USA, 2005, 102(44), 15995-16000.
[http://dx.doi.org/10.1073/pnas.0508122102] [PMID: 16247001]
[48]
O’Farrell, A.M.; Liu, Y.; Moore, K.W.; Mui, A.L. IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J., 1998, 17(4), 1006-1018.
[http://dx.doi.org/10.1093/emboj/17.4.1006] [PMID: 9463379]
[49]
Rajagopalan, G.; Kudva, Y.C.; Sen, M.M.; Marietta, E.V.; Murali, N.; Nath, K.; Moore, J.; David, C.S. IL-10-deficiency unmasks unique immune system defects and reveals differential regulation of organ-specific autoimmunity in non-obese diabetic mice. Cytokine, 2006, 34(1-2), 85-95.
[http://dx.doi.org/10.1016/j.cyto.2006.04.006] [PMID: 16740391]
[50]
Okoko, T. Kolaviron and selenium reduce hydrogen peroxide-induced alterations of the inflammatory response. J. Genet. Eng. Biotechnol., 2018, 16(2), 485-490.
[http://dx.doi.org/10.1016/j.jgeb.2018.02.004] [PMID: 30733764]
[51]
Rios-Arce, N.D.; Dagenais, A.; Feenstra, D.; Coughlin, B.; Kang, H.J.; Mohr, S.; McCabe, L.R.; Parameswaran, N. Loss of interleukin‐10 exacerbates early type‐1 diabetes‐induced bone loss. J. Cell. Physiol., 2020, 235(3), 2350-2365.
[http://dx.doi.org/10.1002/jcp.29141] [PMID: 31538345]
[52]
Ysmail-Dahlouk, L.; Nouari, W.; Aribi, M. 1,25-dihydroxyvitamin D 3 down-modulates the production of proinflammatory cytokines and nitric oxide and enhances the phosphorylation of monocyte-expressed STAT6 at the recent-onset type 1 diabetes. Immunol. Lett., 2016, 179, 122-130.
[http://dx.doi.org/10.1016/j.imlet.2016.10.002] [PMID: 27717877]
[53]
Sokolovska, J.; Dekante, A.; Baumane, L.; Pahirko, L.; Valeinis, J.; Dislere, K.; Rovite, V.; Pirags, V.; Sjakste, N. Nitric oxide metabolism is impaired by type 1 diabetes and diabetic nephropathy. Biom Rep, 2020, 12(5), 251-258.
[http://dx.doi.org/10.3892/br.2020.1288]
[54]
Fatima, N.; Faisal, S.M.; Zubair, S.; Ajmal, M.; Siddiqui, S.S.; Moin, S.; Owais, M. Role of pro-inflammatory cytokines and biochemical markers in the pathogenesis of type 1 diabetes: correlation with age and glycemic condition in diabetic human subjects. PLoS One, 2016, 11(8), e0161548.
[http://dx.doi.org/10.1371/journal.pone.0161548] [PMID: 27575603]
[55]
Bedoya, F.J.; Salguero-Aranda, C.; Cahuana, G.M.; Tapia-Limonchi, R.; Soria, B.; Tejedo, J.R. Regulation of pancreatic β-cell survival by nitric oxide. Islets, 2012, 4(2), 108-118.
[http://dx.doi.org/10.4161/isl.19822] [PMID: 22614339]
[56]
Broniowska, K.A.; Oleson, B.J.; McGraw, J.; Naatz, A.; Mathews, C.E.; Corbett, J.A. How the location of superoxide generation influences the β-cell response to nitric oxide. J. Biol. Chem., 2015, 290(12), 7952-7960.
[http://dx.doi.org/10.1074/jbc.M114.627869] [PMID: 25648890]
[57]
Chomchan, R.; Puttarak, P.; Brantner, A.; Siripongvutikorn, S. Selenium-rich ricegrass juice improves antioxidant properties and nitric oxide inhibition in macrophage cells. Antioxidants, 2018, 7(4), 57.
[http://dx.doi.org/10.3390/antiox7040057] [PMID: 29652839]
[58]
Geerlings, S.E.; Hoepelman, A.I.M. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol. Med. Microbiol., 1999, 26(3-4), 259-265.
[http://dx.doi.org/10.1111/j.1574-695X.1999.tb01397.x] [PMID: 10575137]
[59]
Huang, Z.; Rose, A.H.; Hoffmann, P.R. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal., 2012, 16(7), 705-743.
[http://dx.doi.org/10.1089/ars.2011.4145] [PMID: 21955027]
[60]
Han, H.W.; Yang, E.J.; Lee, S-M. Sodium selenite alleviates breast cancer-related lymphedema independent of antioxidant defense system. Nutrients, 2019, 11(5), 1021.
[http://dx.doi.org/10.3390/nu11051021]
[61]
Dhanjal, N.I.; Sharma, S.; Prabhu, K.S.; Tejo Prakash, N. Selenium supplementation through Se-rich dietary matrices can upregulate the anti-inflammatory responses in lipopolysaccharide-stimulated murine macrophages. Food Agric. Immunol., 2017, 28(6), 1374-1392.
[http://dx.doi.org/10.1080/09540105.2017.1343805] [PMID: 29563666]
[62]
Zeng, J.; Zhou, J.; Huang, K. Effect of selenium on pancreatic proinflammatory cytokines in streptozotocin-induced diabetic mice. J. Nutr. Biochem., 2009, 20(7), 530-536.
[http://dx.doi.org/10.1016/j.jnutbio.2008.05.012] [PMID: 18789669]
[63]
Stancioiu, F.; Papadakis, G.; Kteniadakis, S.; Izotov, B.; Coleman, M.; Spandidos, D.; Tsatsakis, A. A dissection of SARS-CoV2 with clinical implications. Int. J. Mol. Med., 2020, 46(2), 489-508.
[http://dx.doi.org/10.3892/ijmm.2020.4636] [PMID: 32626922]
[64]
Filippi, C.M.; von Herrath, M.G. Viral trigger for type 1 diabetes: pros and cons. Diabetes, 2008, 57(11), 2863-2871.
[http://dx.doi.org/10.2337/db07-1023] [PMID: 18971433]
[65]
Nelson, S.M.; Lei, X.; Prabhu, K.S. Selenium levels affect the IL-4-induced expression of alternative activation markers in murine macrophages. J. Nutr., 2011, 141(9), 1754-1761.
[http://dx.doi.org/10.3945/jn.111.141176] [PMID: 21775527]
[66]
Nunes, P.; Demaurex, N. The role of calcium signaling in phagocytosis. J. Leukoc. Biol., 2010, 88(1), 57-68.
[http://dx.doi.org/10.1189/jlb.0110028] [PMID: 20400677]
[67]
Kelly, E.K.; Wang, L.; Ivashkiv, L.B. Calcium-activated pathways and oxidative burst mediate zymosan-induced signaling and IL-10 production in human macrophages. J. Immunol., 2010, 184(10), 5545-5552.
[http://dx.doi.org/10.4049/jimmunol.0901293] [PMID: 20400701]
[68]
Jaggi, U.; Yang, M.; Matundan, H.H.; Hirose, S.; Shah, P.K.; Sharifi, B.G.; Ghiasi, H. Increased phagocytosis in the presence of enhanced M2-like macrophage responses correlates with increased primary and latent HSV-1 infection. PLoS Pathog., 2020, 16(10), e1008971.
[http://dx.doi.org/10.1371/journal.ppat.1008971] [PMID: 33031415]
[69]
da Silva, T.A.; Zorzetto-Fernandes, A.L.V.; Cecílio, N.T.; Sardinha-Silva, A.; Fernandes, F.F.; Roque-Barreira, M.C. CD14 is critical for TLR2-mediated M1 macrophage activation triggered by N-glycan recognition. Sci. Rep., 2017, 7(1), 7083.
[http://dx.doi.org/10.1038/s41598-017-07397-0] [PMID: 28765651]
[70]
Klöting, N.; Klöting, I.; Jack, R.S. CD14 triggers autoimmune Type 1 diabetes in the NOD mouse. Diabetologia, 2004, 47(1), 151-152.
[http://dx.doi.org/10.1007/s00125-003-1251-0] [PMID: 14614560]
[71]
Jimenez-Duran, G.; Luque-Martin, R.; Patel, M.; Koppe, E.; Bernard, S.; Sharp, C.; Buchan, N.; Rea, C.; de Winther, M.P.J.; Turan, N.; Angell, D.; Wells, C.A.; Cousins, R.; Mander, P.K.; Masters, S.L. Pharmacological validation of targets regulating CD14 during macrophage differentiation. EBioMedicine, 2020, 61, 103039.
[http://dx.doi.org/10.1016/j.ebiom.2020.103039] [PMID: 33038762]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy