Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Hub Genes and Immune Cell Infiltration in Hypoxia-Induced Pulmonary Hypertension: Bioinformatics Analysis and In Vivo Validation

Author(s): Chengwei Li, Jingwen Xia, Ruzetuoheti Yiminniyaze, Liang Dong and Shengqing Li*

Volume 26, Issue 11, 2023

Published on: 10 February, 2023

Page: [2085 - 2097] Pages: 13

DOI: 10.2174/1386207326666230130093325

Price: $65

Abstract

Background: Hypoxia-induced pulmonary hypertension (HPH) represents a severe pulmonary disorder with high morbidity and mortality, which necessitates identifying the critical molecular mechanisms underlying HPH pathogenesis.

Methods: The mRNA expression microarray GSE15197 (containing 8 pulmonary tissues from HPH and 13 normal controls) was downloaded from Gene Expression Omnibus (GEO). Gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were executed by RStudio software. The Protein-Protein Interaction (PPI) network was visualized and established using Cytoscape, and the cytoHubba app from Cytoscape was used to pick out the hub modules. The infiltration of immune cells in HPH was analyzed using the CIBERSORTx. To confirm the potential hub genes, real-time quantitative reverse transcription PCR (qRT-PCR) was conducted using lung tissues of rat HPH models and controls.

Results: A total of 852 upregulated and 547 downregulated genes were identified. The top terms in biological processes were apoptosis, proliferation, and regulation of the MAPK cascade, including ERK1/2. Cytoplasm, cytosol, and membrane were enriched in cellular component groups. Molecular functions mainly focus on protein binding, protein serine/threonine kinase activity and identical protein binding. KEGG analysis identified pathways in cancer, regulation of actin cytoskeleton and rap1 signaling pathway. There was significantly different immune cell infiltration between HPH and normal control samples. High proportions of the memory subsets of B cells and CD4 cells, Macrophages M2 subtype, and resting Dendritic cells were found in HPH samples, while high proportions of naive CD4 cells and resting mast cells were found in normal control samples. The qRT-PCR results showed that among the ten identified hub modules, FBXL3, FBXL13 and XCL1 mRNA levels were upregulated, while NEDD4L, NPFFR2 and EDN3 were downregulated in HPH rats compared with control rats.

Conclusion: Our study revealed the key genes and the involvement of immune cell infiltration in HPH, thus providing new insight into the pathogenesis of HPH and potential treatment targets for patients with HPH.

Keywords: Hypoxia-induced pulmonary hypertension, bioinformatics, differentially expressed genes, hub genes, immune cell infiltration, signaling pathway.

« Previous
Graphical Abstract
[1]
Ruopp, N.F.; Cockrill, B.A. Diagnosis and treatment of pulmonary arterial hypertension. JAMA, 2022, 327(14), 1379-1391.
[http://dx.doi.org/10.1001/jama.2022.4402] [PMID: 35412560]
[2]
Galiè, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; Ghofrani, A.; Gomez Sanchez, M.A.; Hansmann, G.; Klepetko, W.; Lancellotti, P.; Matucci, M.; McDonagh, T.; Pierard, L.A.; Trindade, P.T.; Zompatori, M.; Hoeper, M. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J., 2016, 37(1), 67-119.
[http://dx.doi.org/10.1093/eurheartj/ehv317] [PMID: 26320113]
[3]
Olschewski, H.; Behr, J.; Bremer, H.; Claussen, M.; Douschan, P.; Halank, M.; Held, M.; Hoeper, M.M.; Holt, S.; Klose, H.; Krüger, S.; Lange, T.J.; Reichenberger, F.; Skowasch, D.; Ulrich, S.; Wilkens, H.; Seeger, W. Pulmonary hypertension due to lung diseases: Updated recommendations from the Cologne Consensus Conference 2018. Int. J. Cardiol., 2018, 272, 63-68.
[http://dx.doi.org/10.1016/j.ijcard.2018.08.043] [PMID: 30131231]
[4]
Klinger, J.R. Group III pulmonary hypertension. Cardiol. Clin., 2016, 34(3), 413-433.
[http://dx.doi.org/10.1016/j.ccl.2016.04.003] [PMID: 27443138]
[5]
Heresi, G.A.; Platt, D.M. Healthcare burden of pulmonary hypertension owing to lung disease and/or hypoxia. BMC Pulm. Med., 2017, 17(1), 58.
[6]
Chebib, N.; Mornex, J.F.; Traclet, J.; Philit, F.; Khouatra, C.; Zeghmar, S.; Turquier, S.; Cottin, V. Pulmonary hypertension in chronic lung diseases: Comparison to other pulmonary hypertension groups. Pulm. Circ., 2018, 8(2), 1-10.
[http://dx.doi.org/10.1177/2045894018775056] [PMID: 29671674]
[7]
Dotan, Y.; Stewart, J.; Gangemi, A.; Wang, H.; Aneja, A.; Chakraborty, B.; Dass, C.; Zhao, H.; Marchetti, N.; D’Alonzo, G.; Cordova, F.C.; Criner, G.; Mamary, A.J. Pulmonary vasculopathy in explanted lungs from patients with interstitial lung disease undergoing lung transplantation. BMJ Open Respir. Res., 2020, 7(1), e000532.
[http://dx.doi.org/10.1136/bmjresp-2019-000532] [PMID: 32661103]
[8]
Thenappan, T.; Ormiston, M.L.; Ryan, J.J.; Archer, S.L. Pulmonary arterial hypertension: Pathogenesis and clinical management. BMJ, 2018, 360, j5492.
[http://dx.doi.org/10.1136/bmj.j5492] [PMID: 29540357]
[9]
Waxman, A.B.; Elia, D.; Adir, Y.; Humbert, M. Recent advances in the management of pulmonary hypertension with interstitial lung disease. Eur. Respir. Rev., 2022, 31(165), 210220.
[10]
Stenmark, K.R.; Fagan, K.A.; Frid, M.G. Hypoxia-induced pulmonary vascular remodeling: Cellular and molecular mechanisms. Circ. Res., 2006, 99(7), 675-691.
[http://dx.doi.org/10.1161/01.RES.0000243584.45145.3f] [PMID: 17008597]
[11]
Huertas, A.; Guignabert, C. Pulmonary vascular endothelium: The orchestra conductor in respiratory diseases: Highlights from basic research to therapy. Eur. Respir. J., 2018, 51(4), 1700745.
[12]
Savai, R.; Pullamsetti, S.S.; Kolbe, J.; Bieniek, E.; Voswinckel, R.; Fink, L.; Scheed, A.; Ritter, C.; Dahal, B.K.; Vater, A.; Klussmann, S.; Ghofrani, H.A.; Weissmann, N.; Klepetko, W.; Banat, G.A.; Seeger, W.; Grimminger, F.; Schermuly, R.T. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med., 2012, 186(9), 897-908.
[http://dx.doi.org/10.1164/rccm.201202-0335OC] [PMID: 22955318]
[13]
Berghausen, E.M.; Feik, L.; Zierden, M.; Vantler, M.; Rosenkranz, S. Key inflammatory pathways underlying vascular remodeling in pulmonary hypertension. Herz, 2019, 44(2), 130-137.
[http://dx.doi.org/10.1007/s00059-019-4795-6] [PMID: 30847510]
[14]
Rajkumar, R.; Konishi, K.; Richards, T.J.; Ishizawar, D.C.; Wiechert, A.C.; Kaminski, N.; Ahmad, F. Genomewide RNA expression profiling in lung identifies distinct signatures in idiopathic pulmonary arterial hypertension and secondary pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol., 2010, 298(4), H1235-H1248.
[http://dx.doi.org/10.1152/ajpheart.00254.2009] [PMID: 20081107]
[15]
Huang, R.; Zheng, X. Bioinformatic exploration of the immune related molecular mechanism underlying pulmonary arterial hypertension. Bioengineered, 2021, 12(1), 3137-3147.
[16]
Liu, J.; Sun, Y.; Zhu, B.; Lin, Y.; Lin, K.; Sun, Y.; Yao, Z.; Yuan, L. Identification of a potentially novel LncRNA-miRNA-mRNA competing endogenous RNA network in pulmonary arterial hypertension via integrated bioinformatic analysis. Life Sci., 2021, 277, 119455.
[http://dx.doi.org/10.1016/j.lfs.2021.119455] [PMID: 33831428]
[17]
Qiu, X.; Lin, J.; Liang, B.; Chen, Y.; Liu, G.; Zheng, J. Identification of hub genes and MicroRNAs associated with idiopathic pulmonary arterial hypertension by integrated bioinformatics analyses. Front. Genet., 2021, 12, 667406.
[http://dx.doi.org/10.3389/fgene.2021.636934] [PMID: 33995494]
[18]
Lin, W.; Tang, Y.; Zhang, M.; Liang, B.; Wang, M.; Zha, L.; Yu, Z. Integrated bioinformatic analysis reveals TXNRD1 as a novel biomarker and potential therapeutic target in idiopathic pulmonary arterial hypertension. Front. Med., 2022, 9, 894584.
[http://dx.doi.org/10.3389/fmed.2022.894584] [PMID: 35646965]
[19]
Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 2009, 37(1), 1-13.
[http://dx.doi.org/10.1093/nar/gkn923] [PMID: 19033363]
[20]
Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[21]
The Gene Ontology in 2010: Extensions and refinements. Nucleic Acids Res., 2010, 38(Database issue), D331-D335.
[PMID: 19920128]
[22]
Kanehisa, M.; Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[23]
Newman, A.M.; Liu, C.L.; Green, M.R. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[24]
Kohl, M.; Wiese, S.; Warscheid, B. Cytoscape: Software for visualization and analysis of biological networks. Methods Mol. Biol., 2011, 696, 291-303.
[http://dx.doi.org/10.1007/978-1-60761-987-1_18] [PMID: 21063955]
[25]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(S4), S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[26]
Li, Y.; Yang, L.; Dong, L.; Yang, Z.; Zhang, J.; Zhang, S.; Niu, M.; Xia, J.; Gong, Y.; Zhu, N.; Zhang, X.; Zhang, Y.; Wei, X.; Zhang, Y.; Zhang, P.; Li, S. Crosstalk between the Akt/mTORC1 and NF-κB signaling pathways promotes hypoxia-induced pulmonary hypertension by increasing DPP4 expression in PASMCs. Acta Pharmacol. Sin., 2019, 40(10), 1322-1333.
[http://dx.doi.org/10.1038/s41401-019-0272-2] [PMID: 31316183]
[27]
Dong, L.; Liu, X.; Wu, B.; Li, C.; Wei, X.; Wumaier, G.; Zhang, X.; Wang, J.; Xia, J.; Zhang, Y.; Yiminniyaze, R.; Zhu, N.; Li, J.; Zhou, D.; Zhang, Y.; Li, S.; Lv, J.; Li, S. Mxi1-0 promotes hypoxic pulmonary hypertension via ERK/c-Myc-dependent proliferation of arterial smooth muscle cells. Front. Genet., 2022, 13, 810157.
[http://dx.doi.org/10.3389/fgene.2022.810157] [PMID: 35401684]
[28]
Hemnes, A.R. Using omics to understand and treat pulmonary vascular disease. Front. Med., 2018, 5, 157.
[http://dx.doi.org/10.3389/fmed.2018.00157] [PMID: 29881726]
[29]
Humbert, M.; Guignabert, C. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur. Respir. J., 2019, 53(1), 1801887.
[30]
Kashimata, M.; Sayeed, S.; Ka, A.; Onetti-Muda, A.; Sakagami, H.; Faraggiana, T.; Gresik, E.W. The ERK-1/2 signaling pathway is involved in the stimulation of branching morphogenesis of fetal mouse submandibular glands by EGF. Dev. Biol., 2000, 220(2), 183-196.
[http://dx.doi.org/10.1006/dbio.2000.9639] [PMID: 10753509]
[31]
Karihaloo, A.; O’Rourke, D.A.; Nickel, C.; Spokes, K.; Cantley, L.G. Differential MAPK pathways utilized for HGF- and EGF-dependent renal epithelial morphogenesis. J. Biol. Chem., 2001, 276(12), 9166-9173.
[http://dx.doi.org/10.1074/jbc.M009963200] [PMID: 11118451]
[32]
Kling, D.E.; Lorenzo, H.K.; Trbovich, A.M.; Kinane, T.B.; Donahoe, P.K.; Schnitzer, J.J. MEK-1/2 inhibition reduces branching morphogenesis and causes mesenchymal cell apoptosis in fetal rat lungs. Am. J. Physiol. Lung Cell. Mol. Physiol., 2002, 282(3), L370-L378.
[http://dx.doi.org/10.1152/ajplung.00200.2001] [PMID: 11839529]
[33]
Menon, R.; Shrestha, A.; Barrios, R.; Shivanna, B. Hyperoxia disrupts extracellular signal-regulated kinases 1/2-induced angiogenesis in the developing lungs. Int. J. Mol. Sci., 2018, 19(5), 1525.
[http://dx.doi.org/10.3390/ijms19051525] [PMID: 29783779]
[34]
Menon, R.T.; Shrestha, A.K.; Barrios, R.; Reynolds, C.; Shivanna, B. Tie-2 cre-mediated deficiency of extracellular signal-regulated kinase 2 potentiates experimental bronchopulmonary dysplasia-associated pulmonary hypertension in neonatal mice. Int. J. Mol. Sci., 2020, 21(7), 2408.
[http://dx.doi.org/10.3390/ijms21072408] [PMID: 32244398]
[35]
Ahmad, S.; Ahmad, A.; Ghosh, M.; Leslie, C.C.; White, C.W. Extracellular ATP-mediated signaling for survival in hyperoxia-induced oxidative stress. J. Biol. Chem., 2004, 279(16), 16317-16325.
[http://dx.doi.org/10.1074/jbc.M313890200] [PMID: 14761947]
[36]
Santos, A.G.; da Rocha, G.O.; de Andrade, J.B. Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles. Sci. Rep., 2019, 9(1), 1.
[http://dx.doi.org/10.1038/s41598-018-37186-2] [PMID: 30626917]
[37]
Zhang, X.; Shan, P.; Sasidhar, M.; Chupp, G.L.; Flavell, R.A.; Choi, A.M.K.; Lee, P.J. Reactive oxygen species and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase mediate hyperoxia-induced cell death in lung epithelium. Am. J. Respir. Cell Mol. Biol., 2003, 28(3), 305-315.
[http://dx.doi.org/10.1165/rcmb.2002-0156OC] [PMID: 12594056]
[38]
Carnesecchi, S.; Deffert, C.; Pagano, A.; Garrido-Urbani, S.; Métrailler-Ruchonnet, I.; Schäppi, M.; Donati, Y.; Matthay, M.A.; Krause, K.H.; Barazzone Argiroffo, C. NADPH oxidase-1 plays a crucial role in hyperoxia-induced acute lung injury in mice. Am. J. Respir. Crit. Care Med., 2009, 180(10), 972-981.
[http://dx.doi.org/10.1164/rccm.200902-0296OC] [PMID: 19661248]
[39]
Vanderpool, R.R.; Tang, H. Is p38 MAPK a dark force in right ventricular hypertrophy and failure in pulmonary arterial hypertension? Am. J. Respir. Cell Mol. Biol., 2017, 57(5), 506-508.
[40]
Church, A.C.; Martin, D.H.; Wadsworth, R.; Bryson, G.; Fisher, A.J.; Welsh, D.J.; Peacock, A.J. The reversal of pulmonary vascular remodeling through inhibition of p38 MAPK-alpha: A potential novel anti-inflammatory strategy in pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 309(4), L333-L347.
[http://dx.doi.org/10.1152/ajplung.00038.2015] [PMID: 26024891]
[41]
Yan, S.; Wang, Y.; Liu, P. Baicalin attenuates hypoxia-induced pulmonary arterial hypertension to improve hypoxic cor pulmonale by reducing the activity of the p38 MAPK signaling pathway and MMP-9. Evid. Based Complement. Alternat. Med., 2016, 2016, 2546402.
[42]
Zhang, H.; Huang, W.; Liu, H.; Zheng, Y.; Liao, L. Mechanical stretching of pulmonary vein stimulates matrix metalloproteinase-9 and transforming growth factor-β1 through stretch-activated channel/MAPK pathways in pulmonary hypertension due to left heart disease model rats. PLoS One, 2020, 15(9), e0235824.
[http://dx.doi.org/10.1371/journal.pone.0235824] [PMID: 32881898]
[43]
Fediuk, J.; Dakshinamurti, S. A role for actin polymerization in persistent pulmonary hypertension of the newborn. Can. J. Physiol. Pharmacol., 2015, 93(3), 185-194.
[http://dx.doi.org/10.1139/cjpp-2014-0413] [PMID: 25695400]
[44]
Weise-Cross, L.; Sands, M.A.; Sheak, J.R. Actin polymerization contributes to enhanced pulmonary vasoconstrictor reactivity after chronic hypoxia. Am. J. Physiol. Heart Circ. Physiol., 2018, 314(5), H1021.
[45]
Lin, C.L.; Zhang, Z.X.; Tan, Z. Mechanisms of focal adhesion kinase in the proliferation of human pulmonary artery smooth cells under hypoxia. Zhonghua Yi Xue Za Zhi, 2011, 91(32), 2274-2277.
[PMID: 22094095]
[46]
Lin, C.; Li, X.; Luo, Q.; Yang, H.; Li, L.; Zhou, Q.; Li, Y.; Tang, H.; Wu, L. RELM-β promotes human pulmonary artery smooth muscle cell proliferation via FAK-stimulated surviving. Exp. Cell Res., 2017, 351(1), 43-50.
[http://dx.doi.org/10.1016/j.yexcr.2016.12.021] [PMID: 28041789]
[47]
Post, A.; Pannekoek, W.J.; Ross, S.H.; Verlaan, I.; Brouwer, P.M.; Bos, J.L. Rasip1 mediates Rap1 regulation of Rho in endothelial barrier function through ArhGAP29. Proc. Natl. Acad. Sci. USA, 2013, 110(28), 11427-11432.
[http://dx.doi.org/10.1073/pnas.1306595110] [PMID: 23798437]
[48]
Caron, E. Cellular functions of the Rap1 GTP-binding protein: A pattern emerges. J. Cell Sci., 2003, 116(3), 435-440.
[http://dx.doi.org/10.1242/jcs.00238] [PMID: 12508104]
[49]
Funk-Hilsdorf, T.C.; Behrens, F.; Grune, J.; Simmons, S. Dysregulated immunity in pulmonary hypertension: From companion to composer. Front. Physiol., 2022, 13, 819145.
[http://dx.doi.org/10.3389/fphys.2022.819145] [PMID: 35250621]
[50]
Heukels, P.; Corneth, O.B.J.; van Uden, D.; van Hulst, J.A.C.; van den Toorn, L.M.; van den Bosch, A.E.; Wijsenbeek, M.S.; Boomars, K.A.; Kool, M.; Hendriks, R.W. Loss of immune homeostasis in patients with idiopathic pulmonary arterial hypertension. Thorax, 2021, 76(12), 1209-1218.
[http://dx.doi.org/10.1136/thoraxjnl-2020-215460] [PMID: 33963088]
[51]
Tamosiuniene, R.; Tian, W.; Dhillon, G.; Wang, L.; Sung, Y.K.; Gera, L.; Patterson, A.J.; Agrawal, R.; Rabinovitch, M.; Ambler, K.; Long, C.S.; Voelkel, N.F.; Nicolls, M.R. Regulatory T cells limit vascular endothelial injury and prevent pulmonary hypertension. Circ. Res., 2011, 109(8), 867-879.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.236927] [PMID: 21868697]
[52]
Chen, S.; Yan, D.; Qiu, A. The role of macrophages in pulmonary hypertension: Pathogenesis and targeting. Int. Immunopharmacol., 2020, 88, 106934.
[http://dx.doi.org/10.1016/j.intimp.2020.106934] [PMID: 32889242]
[53]
Luo, P.; Qiu, B. The role of immune cells in pulmonary hypertension: Focusing on macrophages. Hum. Immunol., 2022, 83(2), 153-163.
[http://dx.doi.org/10.1016/j.humimm.2021.11.006] [PMID: 34844784]
[54]
Vergadi, E.; Chang, M.S.; Lee, C.; Liang, O.D.; Liu, X.; Fernandez-Gonzalez, A.; Mitsialis, S.A.; Kourembanas, S. Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation, 2011, 123(18), 1986-1995.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.978627] [PMID: 21518986]
[55]
Perros, F.; Dorfmüller, P.; Souza, R.; Durand-Gasselin, I.; Mussot, S.; Mazmanian, M.; Hervé, P.; Emilie, D.; Simonneau, G.; Humbert, M. Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension. Eur. Respir. J., 2007, 29(3), 462-468.
[http://dx.doi.org/10.1183/09031936.00094706] [PMID: 17107989]
[56]
Montani, D.; Perros, F.; Gambaryan, N.; Girerd, B.; Dorfmuller, P.; Price, L.C.; Huertas, A.; Hammad, H.; Lambrecht, B.; Simonneau, G.; Launay, J.M.; Cohen-Kaminsky, S.; Humbert, M. C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med., 2011, 184(1), 116-123.
[http://dx.doi.org/10.1164/rccm.201006-0905OC] [PMID: 21471108]
[57]
Ge, W.; Guo, X.; Song, X.; Pang, J.; Zou, X.; Liu, Y.; Niu, Y.; Li, Z.; Zhao, H.; Gao, R.; Wang, J. The role of immunoglobulin E and mast cells in hypertension. Cardiovasc. Res., 2022, 118(14), 2985-2999.
[http://dx.doi.org/10.1093/cvr/cvac010] [PMID: 35048969]
[58]
Guo, X.; Zhu, Y.; Hong, X.; Zhang, M.; Qiu, X.; Wang, Z.; Qi, Z.; Hong, X. miR-181d and c-myc-mediated inhibition of CRY2 and FBXL3 reprograms metabolism in colorectal cancer. Cell Death Dis., 2017, 8(7), e2958.
[http://dx.doi.org/10.1038/cddis.2017.300] [PMID: 28749470]
[59]
Wang, D.; Han, X.; Li, C.; Bai, W. FBXL3 is regulated by miRNA-4735-3p and suppresses cell proliferation and migration in non-small cell lung cancer. Pathol. Res. Pract., 2019, 215(2), 358-365.
[http://dx.doi.org/10.1016/j.prp.2018.12.008] [PMID: 30594330]
[60]
Fung, E.; Richter, C.; Yang, H.B.; Schäffer, I.; Fischer, R. FBXL13 directs the proteolysis of CEP192 to regulate centrosome homeostasis and cell migration. EMBO Rep., 2018, 19(3), e44799.
[61]
Zagorski, J.; Sanapareddy, N.; Gellar, M.A.; Kline, J.A.; Watts, J.A. Transcriptional profile of right ventricular tissue during acute pulmonary embolism in rats. Physiol. Genomics, 2008, 34(1), 101-111.
[http://dx.doi.org/10.1152/physiolgenomics.00261.2007] [PMID: 18430806]
[62]
Goel, P.; Manning, J.A.; Kumar, S. NEDD4-2 (NEDD4L): The ubiquitin ligase for multiple membrane proteins. Gene, 2015, 557(1), 1-10.
[http://dx.doi.org/10.1016/j.gene.2014.11.051] [PMID: 25433090]
[63]
Nanami, M.; Pham, T.D.; Kim, Y.H.; Yang, B.; Sutliff, R.L.; Staub, O.; Klein, J.D.; Lopez-Cayuqueo, K.I.; Chambrey, R.; Park, A.Y.; Wang, X.; Pech, V.; Verlander, J.W.; Wall, S.M. The role of intercalated cell Nedd4–2 in BP regulation, ion transport, and transporter expression. J. Am. Soc. Nephrol., 2018, 29(6), 1706-1719.
[http://dx.doi.org/10.1681/ASN.2017080826] [PMID: 29773687]
[64]
Kong, D.; Wan, Q.; Li, J.; Zuo, S.; Liu, G.; Liu, Q.; Wang, C.; Bai, P.; Duan, S.Z.; Zhou, B.; Gounari, F.; Lyu, A.; Lazarus, M.; Breyer, R.M.; Yu, Y. DP1 activation reverses age-related hypertension via NEDD4L-mediated T-Bet degradation in T cells. Circulation, 2020, 141(8), 655-666.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.042532] [PMID: 31893939]
[65]
He, Y.; Zuo, C.; Jia, D.; Bai, P.; Kong, D.; Chen, D.; Liu, G.; Li, J.; Wang, Y.; Chen, G.; Yan, S.; Xiao, B.; Zhang, J.; Piao, L.; Li, Y.; Deng, Y.; Li, B.; Roux, P.P.; Andreasson, K.I.; Breyer, R.M.; Su, Y.; Wang, J. Loss of DP1 aggravates vascular remodeling in pulmonary arterial hypertension via mTORC1 signaling. Am. J. Respir. Crit. Care Med., 2020, 201(10), 1263-1276.
[66]
Chen, J-C.; Lin, Y-T. Neuropeptide FF modulates neuroendocrine and energy homeostasis through hypothalamic signaling. Chin. J. Physiol., 2019, 62(2), 47-52.
[http://dx.doi.org/10.4103/CJP.CJP_23_19] [PMID: 31243174]
[67]
Davenport, A.P.; Hyndman, K.A.; Dhaun, N.; Southan, C.; Kohan, D.E.; Pollock, J.S.; Pollock, D.M.; Webb, D.J.; Maguire, J.J. Endothelin. Pharmacol. Rev., 2016, 68(2), 357-418.
[http://dx.doi.org/10.1124/pr.115.011833] [PMID: 26956245]
[68]
Shihoya, W.; Nishizawa, T.; Okuta, A.; Tani, K.; Dohmae, N.; Fujiyoshi, Y.; Nureki, O.; Doi, T. Activation mechanism of endothelin ETB receptor by endothelin-1. Nature, 2016, 537(7620), 363-368.
[http://dx.doi.org/10.1038/nature19319] [PMID: 27595334]
[69]
Galié, N.; Manes, A.; Branzi, A. The endothelin system in pulmonary arterial hypertension. Cardiovasc. Res., 2004, 61(2), 227-237.
[http://dx.doi.org/10.1016/j.cardiores.2003.11.026] [PMID: 14736539]
[70]
Montani, D.; Souza, R.; Binkert, C.; Fischli, W.; Simonneau, G.; Clozel, M.; Humbert, M. Endothelin-1/endothelin-3 ratio: A potential prognostic factor of pulmonary arterial hypertension. Chest, 2007, 131(1), 101-108.
[http://dx.doi.org/10.1378/chest.06-0682] [PMID: 17218562]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy