Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Research Article

Effect of Calcitriol Treated Mesenchymal Stem Cells as an Immunomodulation Micro-environment on Allergic Asthma in a Mouse Model

Author(s): Majdedin Ghalavand, Hadi Esmaeili Gouvarchin Ghaleh, Mostafa Khafaei, Mahdi Paryan, Bahman Jalali Kondori, Majid Mirzaei Nodoushan, Soheil Vazifedust and Samira Mohammadi-Yeganeh*

Volume 23, Issue 8, 2023

Published on: 30 March, 2023

Page: [1096 - 1103] Pages: 8

DOI: 10.2174/1871530323666230127115847

Price: $65

Abstract

Background: Allergic asthma is a chronic inflammatory illness of the respiratory system characterized by an increase in the number of inflammatory cells in the airways and trouble breathing. Mesenchymal stem cells (MSCs) have the potential to be used in inflammatory diseases as a cellular immunosuppressive treatment. They express calcitriol receptors and communicate with other immunocytes, which increases their anti-inflammatory activity. This study aimed to determine the effects of calcitriol-treated MSC treatment on allergic asthma pathways in a mouse model.

Methods: To generate a mouse model of asthma, the mice were sensitized intraperitoneally with ovalbumin (OVA) and aluminum hydroxide emulsion and then challenged intra-nasally with OVA. On day 14, experimental mice received tail vein injections of calcitriol-treated MSCs in PBS prior to allergen exposure. The cytokines assays including IL-4, 10, 12, 17, TGF-β and IFN-γ, splenocytes proliferation, and histological examination of lungs samples were performed. The mice were sensitized with OVA and the response to dexamethasone treatment was compared.

Results: Calcitriol-treated MSCs significantly increased the levels of IL-12, TGF-β, and IFN-γ compared to non-treated MSCs groups. Moreover, calcitriol-treated and non-treated MSCs significantly decreased IL-4 and IL-17 compared to asthmatic groups. The results of the histopathological examination showed that calcitriol-treated MSCs reduced the accumulation of inflammatory cells and bronchial wall thickening in comparison with the asthma group.

Conclusion: Using the allergic asthma model, we were able to show that calcitriol-treated MSCs had an inhibitory impact on airway inflammation. Our findings suggest that the injection of calcitrioltreated MSCs may be a viable treatment option for allergic asthma.

Keywords: Cell therapy, experimental asthma, calcitriol, mesenchymal, stem cells, ovalbumin.

Graphical Abstract
[1]
Pandey, P.; Mehta, M.; Shukla, S.; Wadhwa, R.; Singhvi, G.; Chellappan, D.K.; Satija, S.; Gupta, G.; Awasthi, R.; Prasher, P.; Hansbro, P.M. Emerging nanotechnology in chronic respiratory diseases. In: Nanoformulations in Human Health; , 2020; pp. 449-468.
[2]
Kang, S.Y.; Park, D.E.; Song, W.J.; Bae, B.R.; Lee, J.W.; Sohn, K.H.; Lee, H.S.; Kang, H.R.; Park, H.W.; Chang, Y.S.; Choi, S.J.; Oh, W.I.; Min, K.U.; Cho, S.H. Immunologic regulatory effects of human umbilical cord blood-derived mesenchymal stem cells in a murine ovalbumin asthma model. Clin. Exp. Allergy, 2017, 47(7), 937-945.
[http://dx.doi.org/10.1111/cea.12920] [PMID: 28294434]
[3]
Gálvez, B.G.; Martinez-Perez, C.; Villa-Collar, C.; Alvarez-Peregrina, C.; Sánchez-Tena, M.Á. Influence of cytokines on inflammatory eye diseases: a citation network study. J. Clin. Med., 2022, 11(3), 661.
[http://dx.doi.org/10.3390/jcm11030661] [PMID: 35160111]
[4]
Ressler, A.; Antunović, M.; Teruel-Biosca, L.; Ferrer, G.G.; Babić, S.; Urlić, I.; Ivanković, M.; Ivanković, H. Osteogenic differentiation of human mesenchymal stem cells on substituted calcium phosphate/chitosan composite scaffold. Carbohydr. Polym., 2022, 277, 118883.
[http://dx.doi.org/10.1016/j.carbpol.2021.118883] [PMID: 34893286]
[5]
Di Paola, A.; Palumbo, G.; Tortora, C.; Argenziano, M.; Catanoso, M.; Di Leva, C.; Ceglie, G.; Perrotta, S.; Locatelli, F.; Rossi, F. Eltrombopag in paediatric immune thrombocytopenia: Iron metabolism modulation in mesenchymal stromal cells. Br. J. Haematol., 2022, 197(1), 110-119.
[http://dx.doi.org/10.1111/bjh.18012] [PMID: 34961933]
[6]
Zhuang, X.; Hu, X.; Zhang, S.; Li, X.; Yuan, X.; Wu, Y. Mesenchymal stem cell–based therapy as a new approach for the treatment of systemic sclerosis. Clin. Rev. Allergy Immunol., 2022.
[http://dx.doi.org/10.1007/s12016-021-08892-z] [PMID: 35031958]
[7]
da Cruz, S.P.; Cruz, S.; Pereira, S.; Saboya, C.; Lack Veiga, J.C.; Ramalho, A. Adequacy and Vitamin D in the preoperative period of roux-en-Y gastric bypass, bariatric surgery, can protect metabolic health in metabolically healthy and unhealthy individuals. Nutrients, 2022, 14(3), 402.
[http://dx.doi.org/10.3390/nu14030402] [PMID: 35276762]
[8]
(a) Hollis, B.W.; Wagner, C.L. Substantial vitamin D supplementation is required during the prenatal period to improve birth outcomes. Nutrients, 2022, 14(4), 899.
[http://dx.doi.org/10.3390/nu14040899] [PMID: 35215549];
b) Galeh, H.E.G.; Froushani, S.M.A.; Ahangaran, N.A.; Hadai, S.N. Affects of educated monocytes with xenogeneic mesenchymal stem cell -derived conditioned medium in a mouse model of chronic asthma. Immunol. Invest., 2018, 47(5), 504-520.
[http://dx.doi.org/10.1080/08820139.2018.1458108] [PMID: 29671652]
[9]
Dubus, M.; Varin, J.; Papa, S.; Chevrier, J.; Quilès, F.; Francius, G.; Audonnet, S.; Mauprivez, C.; Gangloff, S.C.; Siboni, R.; Ohl, X.; Reffuveille, F.; Kerdjoudj, H. Bone marrow mesenchymal stem cells offer an immune-privileged niche to Cutibacterium acnes in case of implant-associated osteomyelitis. Acta Biomater., 2022, 137, 305-315.
[http://dx.doi.org/10.1016/j.actbio.2021.10.026] [PMID: 34678484]
[10]
Bai, K.; Li, X.; Zhong, J.; Ng, E.H.Y.; Yeung, W.S.B.; Lee, C-L.; Chiu, P.C.N. Placenta-derived exosomes as a modulator in maternal immune tolerance during pregnancy. Front. Immunol., 2021, 12, 1-17.
[11]
Vacaru, A.M.; Mazilu, A.M.; Dumitrescu, M.; Fenyo, I.M.; Gafencu, A.V.; Vacaru, A.M. Treatment with mesenchymal stromal cells overexpressing fas-ligand ameliorates acute graft-versus-host disease in mice. Int. J. Mol. Sci., 2022, 23(1), 534.
[http://dx.doi.org/10.3390/ijms23010534] [PMID: 35008964]
[12]
Abdul-Razek, N.; El-Mallah, A-M.M.; A Abuelsaad, A.S; Abdel-Latif, M. enhancement of anti-allergic effect of diethylcarbamazine citrate in asthmatic mouse model: testing of anti-drug antibodies and querceti. Iran. J. Allergy Asthma Immunol., 2020, 19(4), 373-385.
[http://dx.doi.org/10.18502/ijaai.v19i4.4112] [PMID: 33463104]
[13]
Kumari, M.V.; Amarasiri, L.; Rajindrajith, S.; Devanarayana, N.M. Gastric motility and pulmonary function in children with functional abdominal pain disorders and asthma: A pathophysiological study. PLoS One, 2022, 17(1), e0262086.
[http://dx.doi.org/10.1371/journal.pone.0262086] [PMID: 34982797]
[14]
Habets, D.H.J.; Pelzner, K.; Wieten, L.; Spaanderman, M.E.A.; Villamor, E.; Al-Nasiry, S. Intravenous immunoglobulins improve live birth rate among women with underlying immune conditions and recurrent pregnancy loss: a systematic review and meta-analysis. Allergy Asthma Clin. Immunol., 2022, 18(1), 23.
[http://dx.doi.org/10.1186/s13223-022-00660-8] [PMID: 35277202]
[15]
Jin, J.; Sunusi, S.; Lu, H. Group 2 innate lymphoid cells (ILC2s) are important in typical type 2 immune-mediated diseases and an essential therapeutic target. J. Int. Med. Res., 2022, 50(1), 3000605211053156.
[http://dx.doi.org/10.1177/03000605211053156] [PMID: 35048721]
[16]
Alvites, R.; Branquinho, M.; Sousa, A.C.; Lopes, B.; Sousa, P.; Maurício, A.C. Mesenchymal stem/stromal cells and their paracrine activity-immunomodulation mechanisms and how to influence the therapeutic potential. Pharmaceutics, 2022, 14(2), 381.
[http://dx.doi.org/10.3390/pharmaceutics14020381] [PMID: 35214113]
[17]
Chiang, C.Y.; Chang, J.H.; Chuang, H.C.; Fan, C.K.; Hou, T.Y.; Lin, C.L.; Lee, Y.L. Schisandrin B promotes Foxp3+ regulatory T cell expansion by activating heme oxygenase-1 in dendritic cells and exhibits immunomodulatory effects in Th2-mediated allergic asthma. Eur. J. Pharmacol., 2022, 918, 174775.
[http://dx.doi.org/10.1016/j.ejphar.2022.174775] [PMID: 35085518]
[18]
Nejatifar, F.; Foumani, A.A.; Poor, A.R.G.; Nejad, A.T. Association of Metabolic Syndrome and Asthma Status: A Prospective Study from Guilan Province, Iran. Endocr. Metab. Immune Disord. Drug Targets, 2022, 22(4), 395-400.
[http://dx.doi.org/10.2174/1871530321666210305125059] [PMID: 33676392]
[19]
Zou, L.; Cheng, Y.; Yang, L.; Zhang, F.; Zhao, H.; Nian, L.; Li, Y.; Feng, Y. Association of IL-17A gene polymorphism rs2275913 with the polycystic ovary syndrome in Yunnan Province, China. Eur. J. Obstet. Gynecol. Reprod. Biol., 2022, 271, 27-30.
[http://dx.doi.org/10.1016/j.ejogrb.2022.01.031] [PMID: 35134670]
[20]
Li, Z.; Wang, K.; Shivappa, N.; Hébert, J.R.; Chen, H.; Liu, H.; Jiang, X. Inflammatory potential of diet and colorectal carcinogenesis: a prospective longitudinal cohort. Br. J. Cancer, 2022, 126(12), 1735-1743.
[http://dx.doi.org/10.1038/s41416-022-01731-8] [PMID: 35136208]
[21]
Mezey, É. Human mesenchymal stem/stromal cells in immune regulation and therapy. Stem Cells Transl. Med., 2022, 11(2), 114-134.
[http://dx.doi.org/10.1093/stcltm/szab020] [PMID: 35298659]
[22]
Deng, J.; Lu, C.; Zhao, Q.; Chen, K.; Ma, S.; Li, Z. The Th17/Treg cell balance: crosstalk among the immune system, bone and microbes in periodontitis. J. Periodontal Res., 2022, 57(2), 246-255.
[http://dx.doi.org/10.1111/jre.12958] [PMID: 34878170]
[23]
National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th edition; National Academies Press (US): Washington (DC), 2011.
[http://dx.doi.org/10.17226/12910]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy