Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

SAR based Review on Diverse Heterocyclic Compounds with Various Potential Molecular Targets in the Fight against COVID-19: A Medicinal Chemist Perspective

Author(s): Anish Madan, Mansi Garg, Garvit Satija, Barkha Sharma, Mohammad Shaquiquzzaman*, Mymoona Akhter, Ashif Iqubal, Mohammad Ahmed Khan, Suhel Parvez, Anwesha Das, Khursheed Ahmad Sheikh and Mohammad Mumtaz Alam*

Volume 23, Issue 14, 2023

Published on: 01 March, 2023

Page: [1319 - 1339] Pages: 21

DOI: 10.2174/1568026623666230126104156

Price: $65

Abstract

Coronavirus disease (COVID-19) was reported to be transmitted from bats to humans and, became a pandemic in 2020. COVID-19 is responsible for millions of deaths worldwide and still, the numbers are increasing. Further, despite the availability of vaccines, mutation in the virus continuously poses a threat of re-emergence of the more lethal form of the virus. So far, the repurposing of drugs has been exercised heavily for the identification of therapeutic agents against COVID-19, which led FDA to approve many drugs for the same e.g., remdesivir, favipiravir, ribavirin, etc. The anti-COVID drugs explored via other approaches include nirmatrelvir (used in combination with ritonavir as Paxlovid), tixagevimab and cilgavimab (both used in combination with each other) and others. However, these approved drugs failed to achieve a significant clinical outcome. Globally, natural bioactive have also been explored for anti-COVID-19 effects, based on their traditional medicinal values. Although the clinical findings suggest that FDA-approved drugs and natural bioactives can help reducing the overall mortality rate but the significant clinical outcome was not achieved. Therefore, the focus has been shifted towards new drug development. In line with that, a lot of work has been done and still going on to explore heterocyclic compounds as potent anti- COVID-19 drugs. Several heterocyclic scaffolds have been previously reported with potent antiinflammatory, anticancer, anti-viral, antimicrobial and anti-tubercular effects. Few of them are under consideration for clinical trials whereas others are under preclinical investigation. Hence, this review discusses the evidence of rationally designed and tested heterocyclic compounds acting on different targets against COVID-19. The present article will help the researches and will serve as a pivotal resource in the design and development of novel anti-COVID-19 drugs.

Keywords: Heterocyclic, COVID-19, Cytokine storm, Acute respiratory distress syndrome, Inflammation, Oxidative stress, Molecular targets.

Graphical Abstract
[1]
Jena, N.R. Drug targets, mechanisms of drug action, and therapeutics against SARS-CoV-2. Chem. Phys. Impact, 2021, 2, 100011.
[http://dx.doi.org/10.1016/j.chphi.2021.100011]
[2]
WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. https://covid19.who.int/ (Aug 13, 2022).
[3]
Iqubal, A.; Iqubal, M.K.; Ahmed, M.; Haque, S.E. Natural products, a potential therapeutic modality in management and treatment of nCoV-19 infection: Preclinical and clinical based evidence. Curr. Pharm. Des., 2021, 27(9), 1153-1169.
[http://dx.doi.org/10.2174/1381612827999210111190855] [PMID: 33430746]
[4]
Iqubal, A.; Hoda, F.; Najmi, A.K.; Haque, S.E. Macrophage activation and cytokine release syndrome in COVID-19: Current updates and analysis of repurposed and investigational anti-cytokine drugs. Drug Res., 2021, 71(4), 173-179.
[http://dx.doi.org/10.1055/a-1291-7692] [PMID: 33434935]
[5]
Ghosh, S.; Durgvanshi, S.; Han, S.S.; Bhaskar, R.; Sinha, J.K. Therapeutics for the management of cytokine release syndrome in COVID-19. Curr. Top. Med. Chem., 2022, 22.
[http://dx.doi.org/10.2174/1568026622666220707114121] [PMID: 35796445]
[6]
Adachi, S.; Koma, T.; Doi, N.; Nomaguchi, M.; Adachi, A. Commentary: Origin and evolution of pathogenic coronaviruses. Front. Immunol., 2020, 11, 811.
[http://dx.doi.org/10.3389/fimmu.2020.00811] [PMID: 32373134]
[7]
Shamsi, A.; Mohammad, T.; Anwar, S.; Amani, S.; Khan, M.S.; Husain, F.M.; Rehman, M.T.; Islam, A.; Hassan, M.I. Potential drug targets of SARS-CoV-2: From genomics to therapeutics. Int. J. Biol. Macromol., 2021, 177, 1-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.071] [PMID: 33577820]
[8]
Astuti, I.; Ysrafil, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr., 2020, 14(4), 407-412.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[9]
Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis., 2021, 40(5), 905-919.
[http://dx.doi.org/10.1007/s10096-020-04138-6] [PMID: 33389262]
[10]
Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; Martinez, A. COVID-19: Drug targets and potential treatments. J. Med. Chem., 2020, 63(21), 12359-12386.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[11]
Wang, Y.T.; Long, X.Y.; Ding, X.; Fan, S.R.; Cai, J.Y.; Yang, B.J.; Zhang, X.F.; Luo, R.; Yang, L.; Ruan, T.; Ren, J.; Jing, C.X.; Zheng, Y.T.; Hao, X.J.; Chen, D.Z. Novel nucleocapsid protein-targeting phenanthridine inhibitors of SARS-CoV-2. Eur. J. Med. Chem., 2022, 227, 113966.
[http://dx.doi.org/10.1016/j.ejmech.2021.113966] [PMID: 34749200]
[12]
Satyanarayana, M.V.; Reddy, A.G.; Yedukondalu, M.; Tej, M.B.; Hossain, K.A.; Rao, M.V.B.; Pal, M. In silico assessment and sonochemical synthesis of 2-alkynyl 3-chloropyrazines as prospective ligands for SARS-CoV-2. J. Mol. Struct., 2021, 1231, 129981.
[http://dx.doi.org/10.1016/j.molstruc.2021.129981] [PMID: 33518802]
[13]
Nesaragi, A.R.; Kamble, R.R.; Hoolageri, S.R.; Mavazzan, A.; Madar, S.F.; Anand, A.; Joshi, S.D. WELPSA: A natural catalyst of alkali and alkaline earth metals for the facile synthesis of tetrahydrobenzo[b]pyrans and pyrano[2,3‐d]pyrimidinones as inhibitors of SARS‐CoV‐2. Appl. Organomet. Chem., 2022, 36(1), e6469.
[http://dx.doi.org/10.1002/aoc.6469] [PMID: 34898800]
[14]
Li, H.; Cheng, C.; Li, S.; Wu, Y.; Liu, Z.; Liu, M.; Chen, J.; Zhong, Q.; Zhang, X.; Liu, S.; Song, G. Discovery and structural optimization of 3-O-β-chacotriosyl oleanane-type triterpenoids as potent entry inhibitors of SARS-CoV-2 virus infections. Eur. J. Med. Chem., 2021, 215, 113242.
[http://dx.doi.org/10.1016/j.ejmech.2021.113242] [PMID: 33588180]
[15]
Yin, W.; Mao, C.; Luan, X.; Shen, D.D.; Shen, Q.; Su, H.; Wang, X.; Zhou, F.; Zhao, W.; Gao, M.; Chang, S.; Xie, Y.C.; Tian, G.; Jiang, H.W.; Tao, S.C.; Shen, J.; Jiang, Y.; Jiang, H.; Xu, Y.; Zhang, S.; Zhang, Y.; Xu, H.E. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368(6498), 1499-1504.
[http://dx.doi.org/10.1126/science.abc1560] [PMID: 32358203]
[16]
Mostafa-Hedeab, G. ACE2 as drug target of COVID-19 virus treatment, simplified updated review. Rep. Biochem. Mol. Biol., 2020, 9(1), 97-105.
[http://dx.doi.org/10.29252/rbmb.9.1.97] [PMID: 32821757]
[17]
Sanna, V.; Satta, S.; Hsiai, T.; Sechi, M. Development of targeted nanoparticles loaded with antiviral drugs for SARS-CoV-2 inhibition. Eur. J. Med. Chem., 2022, 231, 114121.
[http://dx.doi.org/10.1016/j.ejmech.2022.114121] [PMID: 35114539]
[18]
Mahgoub, S.; Kotb El-Sayed, M.I.; El-Shehry, M.F.; Mohamed Awad, S.; Mansour, Y.E.; Fatahala, S.S. Synthesis of novel calcium channel blockers with ACE2 inhibition and dual antihypertensive/anti-inflammatory effects: A possible therapeutic tool for COVID-19. Bioorg. Chem., 2021, 116, 105272.
[http://dx.doi.org/10.1016/j.bioorg.2021.105272] [PMID: 34474305]
[19]
Elfiky, A.A. Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253, 117592.
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[20]
Tiwari, V. Denovo designing, retro-combinatorial synthesis, and molecular dynamics analysis identify novel antiviral VTRM1.1 against RNA-dependent RNA polymerase of SARS CoV2 virus. Int. J. Biol. Macromol., 2021, 171, 358-365.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.223] [PMID: 33421473]
[21]
Zhao, J.; Zhang, G.; Zhang, Y.; Yi, D.; Li, Q.; Ma, L.; Guo, S.; Li, X.; Guo, F.; Lin, R.; Luu, G.; Liu, Z.; Wang, Y.; Cen, S. 2-((1Hindol-3-yl)thio)-N-phenyl-acetamides: SARS-CoV-2 RNA-dependent RNA polymerase inhibitors. Antiviral Res., 2021, 196, 105209.
[http://dx.doi.org/10.1016/j.antiviral.2021.105209] [PMID: 34801588]
[22]
Venkateshan, M.; Muthu, M.; Suresh, J.; Ranjith Kumar, R. Azafluorene derivatives as inhibitors of SARS CoV-2 RdRp: Synthesis, physicochemical, quantum chemical, modeling and molecular docking analysis. J. Mol. Struct., 2020, 1220, 128741.
[http://dx.doi.org/10.1016/j.molstruc.2020.128741] [PMID: 32834110]
[23]
Rajesh, K.M.; Gideon, D.A.; Richard, M.; Nirusimhan, V.; Sherlin, R.A.; Edward, J.C.; Jeyaraman, J.; Dhayabaran, V. In silico evaluation of isatin-based derivatives with RNA-dependent RNA polymerase of the novel coronavirus SARS-CoV-2. J. Biomol. Struct. Dyn., 2022, 40(15), 6710-6724.
[24]
Bobiļeva, O.; Bobrovs, R.; Kaņepe, I.; Patetko, L.; Kalniņš, G.; Šišovs, M.; Bula, A.L.; Grı̅nberga, S.; Borodušķis, M.; Ramata-Stunda, A.; Rostoks, N.; Jirgensons, A.; Tars, K.; Jaudzems, K. Potent SARS-CoV-2 mRNA cap methyltransferase inhibitors by bioisosteric replacement of methionine in SAM cosubstrate. ACS Med. Chem. Lett., 2021, 12(7), 1102-1107.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00140] [PMID: 34257831]
[25]
Medhi, B.; Prajapat, M.; Sarma, P.; Shekhar, N.; Avti, P.; Sinha, S.; Kaur, H.; Kumar, S.; Bhattacharyya, A.; Kumar, H.; Bansal, S. Drug for corona virus: A systematic review. Indian J. Pharmacol., 2020, 52(1), 56-65.
[http://dx.doi.org/10.4103/ijp.IJP_115_20] [PMID: 32201449]
[26]
Mengist, H.M.; Dilnessa, T.; Jin, T. Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Front Chem., 2021, 9, 622898.
[http://dx.doi.org/10.3389/fchem.2021.622898] [PMID: 33889562]
[27]
Culhane, J.C.; Cole, P.A. LSD1 and the chemistry of histone demethylation. Curr. Opin. Chem. Biol., 2007, 11(5), 561-568.
[http://dx.doi.org/10.1016/j.cbpa.2007.07.014] [PMID: 17851108]
[28]
Bai, B.; Belovodskiy, A.; Hena, M.; Kandadai, A.S.; Joyce, M.A.; Saffran, H.A.; Shields, J.A.; Khan, M.B.; Arutyunova, E.; Lu, J.; Bajwa, S.K.; Hockman, D.; Fischer, C.; Lamer, T.; Vuong, W.; van Belkum, M.J.; Gu, Z.; Lin, F.; Du, Y.; Xu, J.; Rahim, M.; Young, H.S.; Vederas, J.C.; Tyrrell, D.L.; Lemieux, M.J.; Nieman, J.A. Peptidomimetic α-acyloxymethylketone warheads with six-membered lactam P1 glutamine mimic: SARS-CoV-2 3CL protease inhibition, coronavirus antiviral activity, and in vitro biological stability. J. Med. Chem., 2022, 65(4), 2905-2925.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00616] [PMID: 34242027]
[29]
Li, L.; Chenna, B.C.; Yang, K.S.; Cole, T.R.; Goodall, Z.T.; Giardini, M.; Moghadamchargari, Z.; Hernandez, E.A.; Gomez, J.; Calvet, C.M.; Bernatchez, J.A.; Mellott, D.M.; Zhu, J.; Rademacher, A.; Thomas, D.; Blankenship, L.R.; Drelich, A.; Laganowsky, A.; Tseng, C.T.K.; Liu, W.R.; Wand, A.J.; Cruz-Reyes, J.; Siqueira-Neto, J.L.; Meek, T.D. Self-masked aldehyde inhibitors: A novel strategy for inhibiting cysteine proteases. J. Med. Chem., 2021, 64(15), 11267-11287.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00628] [PMID: 34288674]
[30]
Konno, S.; Kobayashi, K.; Senda, M.; Funai, Y.; Seki, Y.; Tamai, I.; Schäkel, L.; Sakata, K.; Pillaiyar, T.; Taguchi, A.; Taniguchi, A.; Gütschow, M.; Müller, C.E.; Takeuchi, K.; Hirohama, M.; Kawaguchi, A.; Kojima, M.; Senda, T.; Shirasaka, Y.; Kamitani, W.; Hayashi, Y. 3CL protease inhibitors with an electrophilic arylketone moiety as anti-SARS-CoV-2 agents. J. Med. Chem., 2022, 65(4), 2926-2939.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00665] [PMID: 34313428]
[31]
Ghosh, A.K.; Raghavaiah, J.; Shahabi, D.; Yadav, M.; Anson, B.J.; Lendy, E.K.; Hattori, S.; Higashi-Kuwata, N.; Mitsuya, H.; Mesecar, A.D. Indole chloropyridinyl ester-derived SARS-CoV-2 3CLpro inhibitors: Enzyme inhibition, antiviral efficacy, structure–activity relationship, and x-ray structural studies. J. Med. Chem., 2021, 64(19), 14702-14714.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01214] [PMID: 34528437]
[32]
Hoffman, R.L.; Kania, R.S.; Brothers, M.A.; Davies, J.F.; Ferre, R.A.; Gajiwala, K.S.; He, M.; Hogan, R.J.; Kozminski, K.; Li, L.Y.; Lockner, J.W.; Lou, J.; Marra, M.T.; Mitchell, L.J., Jr; Murray, B.W.; Nieman, J.A.; Noell, S.; Planken, S.P.; Rowe, T.; Ryan, K.; Smith, G.J., III; Solowiej, J.E.; Steppan, C.M.; Taggart, B. Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19. J. Med. Chem., 2020, 63(21), 12725-12747.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01063] [PMID: 33054210]
[33]
Kneller, D.W.; Li, H.; Galanie, S.; Phillips, G.; Labbé, A.; Weiss, K.L.; Zhang, Q.; Arnould, M.A.; Clyde, A.; Ma, H.; Ramanathan, A.; Jonsson, C.B.; Head, M.S.; Coates, L.; Louis, J.M.; Bonnesen, P.V.; Kovalevsky, A. Structural, electronic, and electrostatic determinants for inhibitor binding to subsites S1 and S2 in SARS-CoV-2 main protease. J. Med. Chem., 2021, 64(23), 17366-17383.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01475] [PMID: 34705466]
[34]
Zhang, L.; Lin, D.; Kusov, Y.; Nian, Y.; Ma, Q.; Wang, J.; von Brunn, A.; Leyssen, P.; Lanko, K.; Neyts, J.; de Wilde, A.; Snijder, E.J.; Liu, H.; Hilgenfeld, R. α-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment. J. Med. Chem., 2020, 63(9), 4562-4578.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01828] [PMID: 32045235]
[35]
Wu, R.J.; Zhou, K.X.; Yang, H.; Song, G.Q.; Li, Y.H.; Fu, J.X.; Zhang, X.; Yu, S.J.; Wang, L.Z.; Xiong, L.X.; Niu, C.W.; Song, F.H.; Yang, H.; Wang, J.G. Chemical synthesis, crystal structure, versatile evaluation of their biological activities and molecular simulations of novel pyrithiobac derivatives. Eur. J. Med. Chem., 2019, 167, 472-484.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.002] [PMID: 30784880]
[36]
Douche, D.; Sert, Y.; Brandán, S.A.; Kawther, A.A.; Bilmez, B.; Dege, N.; Louzi, A.E.; Bougrin, K.; Karrouchi, K.; Himmi, B. 5-((1H-imidazol-1-yl)methyl)quinolin-8-ol as potential antiviral SARS-CoV-2 candidate: Synthesis, crystal structure, Hirshfeld surface analysis, DFT and molecular docking studies. J. Mol. Struct., 2021, 1232, 130005.
[http://dx.doi.org/10.1016/j.molstruc.2021.130005] [PMID: 33526951]
[37]
Omar, A.Z.; Mosa, T.M.; El-sadany, S.K.; Hamed, E.A.; El-atawy, M. Novel piperazine based compounds as potential inhibitors for SARS-CoV-2 protease enzyme: Synthesis and molecular docking study. J. Mol. Struct., 2021, 1245, 131020.
[http://dx.doi.org/10.1016/j.molstruc.2021.131020] [PMID: 34248201]
[38]
Zhang, J.W.; Xiong, Y.; Wang, F.; Zhang, F.M.; Yang, X.; Lin, G.Q.; Tian, P.; Ge, G.; Gao, D. Discovery of 9,10-dihydrophenanthrene derivatives as SARS-CoV-2 3CLpro inhibitors for treating COVID-19. Eur. J. Med. Chem., 2022, 228, 114030.
[http://dx.doi.org/10.1016/j.ejmech.2021.114030] [PMID: 34883292]
[39]
Stille, J.K.; Tjutrins, J.; Wang, G.; Venegas, F.A.; Hennecker, C.; Rueda, A.M.; Sharon, I.; Blaine, N.; Miron, C.E.; Pinus, S.; Labarre, A.; Plescia, J.; Burai Patrascu, M.; Zhang, X.; Wahba, A.S.; Vlaho, D.; Huot, M.J.; Schmeing, T.M.; Mittermaier, A.K.; Moitessier, N. Design, synthesis and in vitro evaluation of novel SARS-CoV-2 3CLpro covalent inhibitors. Eur. J. Med. Chem., 2022, 229, 114046.
[http://dx.doi.org/10.1016/j.ejmech.2021.114046] [PMID: 34995923]
[40]
Odabasoglu, H.Y.; Erdogan, T.; Karci, F. Synthesis & characterization of heterocyclic disazo - azomethine dyes and investigating their molecular docking & dynamics properties on acetylcholine esterase (AChE), heat shock protein (HSP90α), nicotinamide Nmethyl transferase (NNMT) and SARS-CoV-2 (2019-nCoV, COVID-19) main protease (Mpro). J. Mol. Struct., 2022, 1252, 131974.
[http://dx.doi.org/10.1016/j.molstruc.2021.131974]
[41]
Domínguez-Villa, F.X.; Durán-Iturbide, N.A.; Ávila-Zárraga, J.G. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorg. Chem., 2021, 106, 104497.
[http://dx.doi.org/10.1016/j.bioorg.2020.104497] [PMID: 33261847]
[42]
Al-Wahaibi, L.H.; Mostafa, A.; Mostafa, Y.A.; Abou-Ghadir, O.F.; Abdelazeem, A.H.; Gouda, A.M.; Kutkat, O.; Abo Shama, N.M.; Shehata, M.; Gomaa, H.A.M.; Abdelrahman, M.H.; Mohamed, F.A.M.; Gu, X.; Ali, M.A.; Trembleau, L.; Youssif, B.G.M. Discovery of novel oxazole-based macrocycles as anti-coronaviral agents targeting SARS-CoV-2 main protease. Bioorg. Chem., 2021, 116, 105363.
[http://dx.doi.org/10.1016/j.bioorg.2021.105363] [PMID: 34555629]
[43]
Cui, J.; Jia, J. Discovery of juglone and its derivatives as potent SARS-CoV-2 main proteinase inhibitors. Eur. J. Med. Chem., 2021, 225, 113789.
[http://dx.doi.org/10.1016/j.ejmech.2021.113789] [PMID: 34438124]
[44]
Tahir, T.; Tabassum, R.; Javed, Q.; Ali, A.; Ashfaq, M.; Shahzad, M.I. Synthesis, kinetics, structure-activity relationship and in silico ADME studies of new diazenyl azo-phenol derivatives against urease, SARS-CoV-2 main protease (Mpro) and ribosomal protein S1 (RpsA) of Mycobacterium tuberculosis. J. Mol. Struct., 2022, 1254, 132336.
[http://dx.doi.org/10.1016/j.molstruc.2022.132336]
[45]
Liu, P.; Liu, H.; Sun, Q.; Liang, H.; Li, C.; Deng, X.; Liu, Y.; Lai, L. Potent inhibitors of SARS-CoV-2 3C-like protease derived from N-substituted isatin compounds. Eur. J. Med. Chem., 2020, 206, 112702.
[http://dx.doi.org/10.1016/j.ejmech.2020.112702] [PMID: 32798789]
[46]
Gupta, Y.; Kumar, S.; Zak, S.E.; Jones, K.A.; Upadhyay, C.; Sharma, N.; Azizi, S.A.; Kathayat, R.S.; Poonam, ; Herbert, A.S.; Durvasula, R.; Dickinson, B.C.; Dye, J.M.; Rathi, B.; Kempaiah, P. Antiviral evaluation of hydroxyethylamine analogs: Inhibitors of SARS-CoV-2 main protease (3CLpro), a virtual screening and simulation approach. Bioorg. Med. Chem., 2021, 47, 116393.
[http://dx.doi.org/10.1016/j.bmc.2021.116393] [PMID: 34509862]
[47]
Deshmukh, M.G.; Ippolito, J.A.; Zhang, C.H.; Stone, E.A.; Reilly, R.A.; Miller, S.J.; Jorgensen, W.L.; Anderson, K.S. Structure-guided design of a perampanel-derived pharmacophore targeting the SARS-CoV-2 main protease. Structure, 2021, 29(8), 823-833.e5.
[http://dx.doi.org/10.1016/j.str.2021.06.002] [PMID: 34161756]
[48]
Breidenbach, J.; Lemke, C.; Pillaiyar, T.; Schäkel, L.; Al Hamwi, G.; Diett, M.; Gedschold, R.; Geiger, N.; Lopez, V.; Mirza, S.; Namasivayam, V.; Schiedel, A.C.; Sylvester, K.; Thimm, D.; Vielmuth, C.; Phuong Vu, L.; Zyulina, M.; Bodem, J.; Gütschow, M.; Müller, C.E. Targeting the main protease of SARS‐CoV‐2: From the establishment of high throughput screening to the design of tailored inhibitors. Angew. Chem. Int. Ed., 2021, 60(18), 10423-10429.
[http://dx.doi.org/10.1002/anie.202016961] [PMID: 33655614]
[49]
Singhal, S.; Khanna, P.; Khanna, L. Synthesis, comparative in vitro antibacterial, antioxidant and UV fluorescence studies of bis indole Schiff bases and molecular docking with ct‐DNA and SARS‐CoV‐2 Mpro. Luminescence, 2021, 36(6), 1531-1543.
[http://dx.doi.org/10.1002/bio.4098] [PMID: 34087041]
[50]
Khorsandi, Z.; Afshinpour, M.; Molaei, F.; Askandar, R.H.; Keshavarzipour, F.; Abbasi, M.; Sadeghi-Aliabadi, H. Design and synthesis of novel Phe-Phe hydroxyethylene derivatives as potential coronavirus main protease inhibitors. J. Biomol. Struct. Dyn., 2022, 40(17), 7940-7948.
[PMID: 33784944]
[51]
Zhang, C.H.; Stone, E.A.; Deshmukh, M.; Ippolito, J.A.; Ghahremanpour, M.M.; Tirado-Rives, J.; Spasov, K.A.; Zhang, S.; Takeo, Y.; Kudalkar, S.N.; Liang, Z.; Isaacs, F.; Lindenbach, B.; Miller, S.J.; Anderson, K.S.; Jorgensen, W.L. Potent noncovalent inhibitors of the main protease of SARS-CoV-2 from molecular sculpting of the drug perampanel guided by free energy perturbation calculations. ACS Cent. Sci., 2021, 7(3), 467-475.
[http://dx.doi.org/10.1021/acscentsci.1c00039] [PMID: 33786375]
[52]
Ghahremanpour, M.M.; Tirado-Rives, J.; Deshmukh, M.; Ippolito, J.A.; Zhang, C-H.; de Vaca, I.C.; Liosi, M-E.; Anderson, K.S.; Jorgensen, W.L. Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Med. Chem. Lett., 2020, 11(12), 2526-2533.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00521] [PMID: 32869018]
[53]
Bai, B.; Arutyunova, E.; Khan, M.B.; Lu, J.; Joyce, M.A.; Saffran, H.A.; Shields, J.A.; Kandadai, A.S.; Belovodskiy, A.; Hena, M.; Vuong, W.; Lamer, T.; Young, H.S.; Vederas, J.C.; Tyrrell, D.L.; Lemieux, M.J.; Nieman, J.A. Peptidomimetic nitrile warheads as SARS-CoV-2 3CL protease inhibitors. RSC Med. Chem., 2021, 12(10), 1722-1730.
[http://dx.doi.org/10.1039/D1MD00247C] [PMID: 34778773]
[54]
Karagoz Genç, Z.; Genç, M.; Çoşut, B.; Turgut, M. The novel tetrahydropyrimidine derivative as inhibitor of SARS CoV-2: Synthesis, modeling and molecular docking analysis. J. Biomol. Struct. Dyn., 2022, 40(20), 10045-10056.
[http://dx.doi.org/10.1080/07391102.2021.1938230] [PMID: 34180374]
[55]
Dai, W.; Jochmans, D.; Xie, H.; Yang, H.; Li, J.; Su, H.; Chang, D.; Wang, J.; Peng, J.; Zhu, L.; Nian, Y.; Hilgenfeld, R.; Jiang, H.; Chen, K.; Zhang, L.; Xu, Y.; Neyts, J.; Liu, H. Design, synthesis, and biological evaluation of peptidomimetic aldehydes as broad-spectrum inhibitors against enterovirus and SARS-CoV-2. J. Med. Chem., 2022, 65(4), 2794-2808.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02258] [PMID: 33872498]
[56]
Kitamura, N.; Sacco, M.D.; Ma, C.; Hu, Y.; Townsend, J.A.; Meng, X.; Zhang, F.; Zhang, X.; Ba, M.; Szeto, T.; Kukuljac, A.; Marty, M.T.; Schultz, D.; Cherry, S.; Xiang, Y.; Chen, Y.; Wang, J. Expedited approach toward the rational design of noncovalent SARS-CoV-2 main protease inhibitors. J. Med. Chem., 2022, 65(4), 2848-2865.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00509] [PMID: 33891389]
[57]
Liu, N.; Zhang, Y.; Lei, Y.; Wang, R.; Zhan, M.; Liu, J.; An, Y.; Zhou, Y.; Zhan, J.; Yin, F.; Li, Z. Design and evaluation of a novel peptide–drug conjugate covalently targeting SARS-CoV-2 papain-like protease. J. Med. Chem., 2022, 65(1), 876-884.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02022] [PMID: 34981929]
[58]
Welker, A.; Kersten, C.; Müller, C.; Madhugiri, R.; Zimmer, C.; Müller, P.; Zimmermann, R.; Hammerschmidt, S.; Maus, H.; Ziebuhr, J.; Sotriffer, C.; Schirmeister, T. Structure‐activity relationships of benzamides and isoindolines designed as SARS‐CoV protease inhibitors effective against SARS‐CoV‐2. ChemMedChem, 2021, 16(2), 340-354.
[http://dx.doi.org/10.1002/cmdc.202000548] [PMID: 32930481]
[59]
Shan, H.; Liu, J.; Shen, J.; Dai, J.; Xu, G.; Lu, K.; Han, C.; Wang, Y.; Xu, X.; Tong, Y.; Xiang, H.; Ai, Z.; Zhuang, G.; Hu, J.; Zhang, Z.; Li, Y.; Pan, L.; Tan, L. Development of potent and selective inhibitors targeting the papain-like protease of SARS-CoV-2. Cell Chem. Biol., 2021, 28(6), 855-865.e9.
[http://dx.doi.org/10.1016/j.chembiol.2021.04.020] [PMID: 33979649]
[60]
Shen, Z.; Ratia, K.; Cooper, L.; Kong, D.; Lee, H.; Kwon, Y.; Li, Y.; Alqarni, S.; Huang, F.; Dubrovskyi, O.; Rong, L.; Thatcher, G.R.J.; Xiong, R. Design of SARS-CoV-2 PLpro inhibitors for COVID-19 antiviral therapy leveraging binding cooperativity. J. Med. Chem., 2022, 65(4), 2940-2955.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01307] [PMID: 34665619]
[61]
Senanayake, S.L. Overcoming nonstructural protein 15-nidoviral uridylate-specific endoribonuclease (NSP15/NendoU) activity of SARS-CoV-2. Future Drug Discov., 2020, 2(3), FDD42.
[http://dx.doi.org/10.4155/fdd-2020-0012]
[62]
Leung, A.K.L.; Griffin, D.E.; Bosch, J.; Fehr, A.R. The conserved macrodomain is a potential therapeutic target for coronaviruses and alphaviruses. Pathogens, 2022, 11(1), 94.
[http://dx.doi.org/10.3390/pathogens11010094] [PMID: 35056042]
[63]
Brosey, C.A.; Houl, J.H.; Katsonis, P.; Balapiti-Modarage, L.P.F.; Bommagani, S.; Arvai, A.; Moiani, D.; Bacolla, A.; Link, T.; Warden, L.S.; Lichtarge, O.; Jones, D.E.; Ahmed, Z.; Tainer, J.A. Targeting SARS-CoV-2 Nsp3 macrodomain structure with insights from human poly(ADP-ribose) glycohydrolase (PARG) structures with inhibitors. Prog. Biophys. Mol. Biol., 2021, 163, 171-186.
[http://dx.doi.org/10.1016/j.pbiomolbio.2021.02.002] [PMID: 33636189]
[64]
Iqubal, A.; Iqubal, M.K.; Hoda, F.; Najmi, A.K.; Haque, S.E. COVID-19 and cardiovascular complications: An update from the underlying mechanism to consequences and possible clinical intervention. Expert Rev. Anti Infect. Ther., 2021, 19(9), 1083-1092.
[http://dx.doi.org/10.1080/14787210.2021.1893692] [PMID: 33618607]
[65]
Kumar, S.; Gupta, Y.; Zak, S.E.; Upadhyay, C.; Sharma, N.; Herbert, A.S.; Durvasula, R.; Potemkin, V.; Dye, J.M. A novel compound active against SARS-CoV-2 targeting uridylate-specific endoribonuclease (NendoU/NSP15): In silico and in vitro investigations. RSC Med. Chem., 2021, 12, 1757-1764.
[66]
Ricke-Hoch, M.; Stelling, E.; Lasswitz, L.; Gunesch, A.P.; Kasten, M.; Zapatero-Belinchón, F.J.; Brogden, G.; Gerold, G.; Pietschmann, T.; Montiel, V.; Balligand, J.L.; Facciotti, F.; Hirsch, E.; Gausepohl, T.; Elbahesh, H.; Rimmelzwaan, G.F.; Höfer, A.; Kühnel, M.P.; Jonigk, D.; Eigendorf, J.; Tegtbur, U.; Mink, L.; Scherr, M.; Illig, T.; Schambach, A.; Pfeffer, T.J.; Hilfiker, A.; Haverich, A.; Hilfiker-Kleiner, D. Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease. PLoS One, 2021, 16(8), e0255335.
[http://dx.doi.org/10.1371/journal.pone.0255335] [PMID: 34347801]
[67]
Desantis, J.; Mercorelli, B.; Celegato, M.; Croci, F.; Bazzacco, A.; Baroni, M.; Siragusa, L.; Cruciani, G.; Loregian, A.; Goracci, L. Indomethacin-based PROTACs as pan-coronavirus antiviral agents. Eur. J. Med. Chem., 2021, 226, 113814.
[http://dx.doi.org/10.1016/j.ejmech.2021.113814] [PMID: 34534839]
[68]
Haribabu, J.; Garisetti, V.; Malekshah, R.E.; Srividya, S.; Gayathri, D.; Bhuvanesh, N.; Mangalaraja, R.V.; Echeverria, C.; Karvembu, R. Design and synthesis of heterocyclic azole based bioactive compounds: Molecular structures, quantum simulation, and mechanistic studies through docking as multi-target inhibitors of SARS-CoV-2 and cytotoxicity. J. Mol. Struct., 2022, 1250, 131782.
[http://dx.doi.org/10.1016/j.molstruc.2021.131782] [PMID: 34697505]
[69]
Ni, Y.; Liao, J.; Qian, Z.; Wu, C.; Zhang, X.; Zhang, J.; Xie, Y.; Jiang, S. Synthesis and evaluation of enantiomers of hydroxychloroquine against SARS-CoV-2 in vitro. Bioorg. Med. Chem., 2022, 53, 116523.
[http://dx.doi.org/10.1016/j.bmc.2021.116523] [PMID: 34875467]
[70]
Obakachi, V.A.; Kushwaha, N.D.; Kushwaha, B.; Mahlalela, M.C.; Shinde, S.R.; Kehinde, I.; Karpoormath, R. Design and synthesis of pyrazolone-based compounds as potent blockers of SARS-CoV-2 viral entry into the host cells. J. Mol. Struct., 2021, 1241, 130665.
[http://dx.doi.org/10.1016/j.molstruc.2021.130665] [PMID: 34007088]
[71]
Di Sarno, V.; Lauro, G.; Musella, S.; Ciaglia, T.; Vestuto, V.; Sala, M.; Scala, M.C.; Smaldone, G.; Di Matteo, F.; Novi, S.; Tecce, M.F.; Moltedo, O.; Bifulco, G.; Campiglia, P.; Gomez-Monterrey, I.M.; Snoeck, R.; Andrei, G.; Ostacolo, C.; Bertamino, A. Identification of a dual acting SARS-CoV-2 proteases inhibitor through in silico design and step-by-step biological characterization. Eur. J. Med. Chem., 2021, 226, 113863.
[http://dx.doi.org/10.1016/j.ejmech.2021.113863] [PMID: 34571172]
[72]
Khan, S.; Kale, M.; Siddiqui, F.; Nema, N. Novel pyrimidine-benzimidazole hybrids with antibacterial and antifungal properties and potential inhibition of SARS-CoV-2 main protease and spike glycoprotein. Digit. Chinese Med., 2021, 4(2), 102-119.
[http://dx.doi.org/10.1016/j.dcmed.2021.06.004]
[73]
Khalil, T.E.; Elbadawy, H.A.; Attia, A.A.; El-Sayed, D.S. Synthesis, spectroscopic, and computational studies on molecular charge-transfer complex of 2-((2-hydroxybenzylidene) amino)-2-(hydroxymethyl) propane-1, 3-diol with chloranilic acid: Potential antiviral activity simulation of CT-complex against SARS-CoV-2. J. Mol. Struct., 2022, 1251, 132010.
[http://dx.doi.org/10.1016/j.molstruc.2021.132010] [PMID: 34866653]
[74]
Benbouguerra, K.; Chafai, N.; Chafaa, S.; Touahria, Y.I.; Tlidjane, H. New α-Hydrazinophosphonic acid: Synthesis, characterization, DFT study and in silico prediction of its potential inhibition of SARS-CoV-2 main protease. J. Mol. Struct., 2021, 1239, 130480.
[http://dx.doi.org/10.1016/j.molstruc.2021.130480] [PMID: 33903777]
[75]
Wang, K.; Wu, J.J.; Xin-Zhang, ; Zeng, Q.X.; Zhang, N.; Huang, W.J.; Tang, S.; Wang, Y.X.; Kong, W.J.; Wang, Y.C.; Li, Y.H.; Song, D.Q. Discovery and evolution of 12N-substituted aloperine derivatives as anti-SARS-CoV-2 agents through targeting late entry stage. Bioorg. Chem., 2021, 115, 105196.
[http://dx.doi.org/10.1016/j.bioorg.2021.105196] [PMID: 34333425]
[76]
Suárez, M.; Makowski, K.; Lemos, R.; Almagro, L.; Rodríguez, H.; Herranz, M.Á.; Molero, D.; Ortiz, O.; Maroto, E.; Albericio, F.; Murata, Y.; Martín, N. An androsterone‐H2@C60 hybrid: Synthesis, properties and molecular docking simulations with SARS‐Cov‐2. ChemPlusChem, 2021, 86(7), 970-971.
[http://dx.doi.org/10.1002/cplu.202100133] [PMID: 33970560]
[77]
Linet, A.; Joseph, M.M.; Haritha, M.; Shamna, K.; Varughese, S.; Devi, P.S.; Suresh, C.H.; Maiti, K.K.; Neogi, I. De novo design and synthesis of boomerang-shaped molecules and their in silico and SERS-based interactions with SARS-CoV-2 spike protein and ACE2. New J. Chem., 2021, 45(38), 17777-17781.
[http://dx.doi.org/10.1039/D1NJ02955J]
[78]
Duran, N.; Polat, M.F.; Aktas, D.A.; Alagoz, M.A.; Ay, E.; Cimen, F.; Tek, E.; Anil, B.; Burmaoglu, S.; Algul, O. New chalcone derivatives as effective against SARS‐CoV‐2 agent. Int. J. Clin. Pract., 2021, 75(12), e14846.
[http://dx.doi.org/10.1111/ijcp.14846] [PMID: 34519118]
[79]
Li, Y.; Cao, L.; Li, G.; Cong, F.; Li, Y.; Sun, J.; Luo, Y.; Chen, G.; Li, G.; Wang, P.; Xing, F.; Ji, Y.; Zhao, J.; Zhang, Y.; Guo, D.; Zhang, X. Remdesivir metabolite GS-441524 effectively inhibits SARS-CoV-2 infection in mouse models. J. Med. Chem., 2022, 65(4), 2785-2793.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01929] [PMID: 33523654]
[80]
Girgis, A.S.; Panda, S.S.; Srour, A.M.; Abdelnaser, A.; Nasr, S.; Moatasim, Y.; Kutkat, O.; El Taweel, A.; Kandeil, A.; Mostafa, A.; Ali, M.A.; Fawzy, N.G.; Bekheit, M.S.; Shalaby, E.M.; Gigli, L.; Fayad, W.; Soliman, A.A.F. 3-Alkenyl-2-oxindoles: Synthesis, antiproliferative and antiviral properties against SARS-CoV-2. Bioorg. Chem., 2021, 114, 105131.
[http://dx.doi.org/10.1016/j.bioorg.2021.105131] [PMID: 34243074]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy