Research Article

色甘酸衍生物改善淀粉样蛋白的异常错误折叠和神经细胞中的神经炎症

卷 30, 期 39, 2023

发表于: 16 February, 2023

页: [4479 - 4491] 页: 13

弟呕挨: 10.2174/0929867330666230123101934

价格: $65

摘要

背景:阿尔茨海默病(AD)的代表性症状主要是淀粉样蛋白的错误折叠,如淀粉样蛋白-β (Aβ)和tau蛋白。此外,与神经炎症信号相关的神经病理学最近被认为是AD的一个重要特征。目前,许多候选药物仍在研究中,以减轻AD的症状,包括淀粉样蛋白错误折叠和神经炎症。 目的:本研究旨在鉴定从邻苯二甲酸修饰的两种化学衍生物CNU 010和CNU 011的抗AD作用。 方法:合成了从邻苯二甲酸衍生的CNU 010和CNU 011。采用硫黄素T法鉴定Aβ和tau的抑制作用。此外,用衍生品CNU 010和CNU 011进行western blot以证实其对炎症的影响。 结果:CNU 010和CNU 011显著抑制Aβ和tau蛋白的聚集。此外,它们还降低了活化B细胞中具有代表性的早期炎症信号标志物丝裂原活化蛋白(MAP)激酶和核因子κB轻链增强子(NF- κB)信号蛋白的表达水平。此外,还证实了对脂多糖(LPS)诱导的环氧合酶(COX)-2和诱导型一氧化氮合酶(iNOS)表达的抑制作用。 结论:我们的研究结果显示,色莫利衍生物对淀粉样蛋白异常聚集和神经炎症信号的多种有益作用,这表明CNU 010和CNU 011可以进一步开发为治疗AD的潜在候选药物。

关键词: 阿尔茨海默病,色莫利钠,衍生物,β -淀粉样蛋白(1-42),tau蛋白,神经炎症。

[1]
Subhramanyam, C.S.; Wang, C.; Hu, Q.; Dheen, S.T. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin. Cell Dev. Biol., 2019, 94, 112-120.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.004] [PMID: 31077796]
[2]
Mander, P.; Brown, G.C. Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: A dual-key mechanism of inflammatory neurodegeneration. J. Neuroinflammation, 2005, 2(1), 20.
[http://dx.doi.org/10.1186/1742-2094-2-20] [PMID: 16156895]
[3]
Bachstetter, A.D.; Xing, B.; de Almeida, L.; Dimayuga, E.R.; Watterson, D.M.; Van Eldik, L.J. Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). J. Neuroinflammation, 2011, 8(1), 79.
[http://dx.doi.org/10.1186/1742-2094-8-79] [PMID: 21733175]
[4]
Wang, W.Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med., 2015, 3(10), 136.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2015.03.49] [PMID: 26207229]
[5]
Chung, Y.J.; Zhou, H.R.; Pestka, J.J. Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-α expression by deoxynivalenol (vomitoxin). Toxicol. Appl. Pharmacol., 2003, 193(2), 188-201.
[http://dx.doi.org/10.1016/S0041-008X(03)00299-0] [PMID: 14644621]
[6]
Tawfik, H. A.; Ewies, E. F.; El-Hamouly, W.S.J.I. Synthesis of chromones and their applications during the last ten years during the last ten years. IJRPC, 2014, 4(4), 1046-1085.
[7]
Kilpatrick, L.E.; Jakabovics, E.; McCawley, L.J.; Kane, L.H.; Korchak, H.M. Cromolyn inhibits assembly of the NADPH oxidase and superoxide anion generation by human neutrophils. J. Immunol., 1995, 154(7), 3429-3436.
[http://dx.doi.org/10.4049/jimmunol.154.7.3429] [PMID: 7897224]
[8]
Viscardi, R.M.; Hasday, J.D.; Gumpper, K.F.; Taciak, V.; Campbell, A.B.; Palmer, T.W. Cromolyn sodium prophylaxis inhibits pulmonary proinflammatory cytokines in infants at high risk for bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med., 1997, 156(5), 1523-1529.
[http://dx.doi.org/10.1164/ajrccm.156.5.9611088] [PMID: 9372670]
[9]
Hori, Y.; Takeda, S.; Cho, H.; Wegmann, S.; Shoup, T.M.; Takahashi, K.; Irimia, D.; Elmaleh, D.R.; Hyman, B.T.; Hudry, E. A Food and Drug Administration-approved asthma therapeutic agent impacts amyloid β in the brain in a transgenic model of Alzheimer disease. J. Biol. Chem., 2015, 290(4), 1966-1978.
[http://dx.doi.org/10.1074/jbc.M114.586602] [PMID: 25468905]
[10]
Zhang, C.; Griciuc, A.; Hudry, E.; Wan, Y.; Quinti, L.; Ward, J.; Forte, A.M.; Shen, X.; Ran, C.; Elmaleh, D.R.; Tanzi, R.E. Cromolyn reduces levels of the Alzheimer’s disease-associated amyloid β-protein by promoting microglial phagocytosis. Sci. Rep., 2018, 8(1), 1144.
[http://dx.doi.org/10.1038/s41598-018-19641-2] [PMID: 29348604]
[11]
Gupta, S.K.; Kumar, S.; Bolton, S.; Behl, C.R.; Malick, A.W. Optimization of iontophoretic transdermal delivery of a peptide and a non-peptide drug. J. Control. Release, 1994, 30(3), 253-261.
[http://dx.doi.org/10.1016/0168-3659(94)90031-0]
[12]
Leone-Bay, A.; Leipold, H.; Sarubbi, D.; Variano, B.; Rivera, T.; Baughman, R.A. Oral delivery of sodium cromolyn: preliminary studies in vivo and in vitro. Pharm. Res., 1996, 13(2), 222-226.
[http://dx.doi.org/10.1023/A:1016034913181] [PMID: 8932440]
[13]
Lozupone, M.; Solfrizzi, V.; D’Urso, F.; Di Gioia, I.; Sardone, R.; Dibello, V.; Stallone, R.; Liguori, A.; Ciritella, C.; Daniele, A.; Bellomo, A.; Seripa, D.; Panza, F. Anti-amyloid-β protein agents for the treatment of Alzheimer’s disease: An update on emerging drugs. Expert Opin. Emerg. Drugs, 2020, 25(3), 319-335.
[http://dx.doi.org/10.1080/14728214.2020.1808621] [PMID: 32772738]
[14]
Brune, K. Persistence of NSAIDs at effect sites and rapid disappearance from side-effect compartments contributes to tolerability. Curr. Med. Res. Opin., 2007, 23(12), 2985-2995.
[http://dx.doi.org/10.1185/030079907X242584] [PMID: 17949535]
[15]
Azam, F.; Alabdullah, N.H.; Ehmedat, H.M.; Abulifa, A.R.; Taban, I.; Upadhyayula, S. NSAIDs as potential treatment option for preventing amyloid β toxicity in Alzheimer’s disease: An investigation by docking, molecular dynamics, and DFT studies. J. Biomol. Struct. Dyn., 2018, 36(8), 2099-2117.
[http://dx.doi.org/10.1080/07391102.2017.1338164] [PMID: 28571516]
[16]
Thomas, T.; Nadackal, T.G.; Thomas, K. Aspirin and non-steroidal anti-inflammatory drugs inhibit amyloid-β aggregation. Neuroreport, 2001, 12(15), 3263-3267.
[http://dx.doi.org/10.1097/00001756-200110290-00024] [PMID: 11711868]
[17]
Kim, S.; Chang, W.E.; Kumar, R.; Klimov, D.K. Naproxen interferes with the assembly of Aβ oligomers implicated in Alzheimer’s disease. Biophys. J., 2011, 100(8), 2024-2032.
[http://dx.doi.org/10.1016/j.bpj.2011.02.044] [PMID: 21504739]
[18]
Gasparini, L.; Ongini, E.; Wenk, G. Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: Old and new mechanisms of action. J. Neurochem., 2004, 91(3), 521-536.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02743.x] [PMID: 15485484]
[19]
Ling, Q.; Murdoch, E.; Ruan, K.H. How can we address the controversies surrounding the use of NSAIDS in neurodegeneration? Future Med. Chem., 2016, 8(11), 1153-1155.
[http://dx.doi.org/10.4155/fmc-2016-0084] [PMID: 27357618]
[20]
Guzman-Martinez, L.; Maccioni, R.B.; Andrade, V.; Navarrete, L.P.; Pastor, M.G.; Ramos-Escobar, N. Neuroinflammation as a common feature of neurodegenerative disorders. Front. Pharmacol., 2019, 10, 1008.
[http://dx.doi.org/10.3389/fphar.2019.01008] [PMID: 31572186]
[21]
Benek, O.; Korabecny, J.; Soukup, O. A perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol. Sci., 2020, 41(7), 434-445.
[http://dx.doi.org/10.1016/j.tips.2020.04.008] [PMID: 32448557]
[22]
Palomer, A.; Cabré, F.; Pascual, J.; Campos, J.; Trujillo, M.A.; Entrena, A.; Gallo, M.A.; García, L.; Mauleón, D.; Espinosa, A. Identification of novel cyclooxygenase-2 selective inhibitors using pharmacophore models. J. Med. Chem., 2002, 45(7), 1402-1411.
[http://dx.doi.org/10.1021/jm010458r] [PMID: 11906281]
[23]
Katritzky, A.; Sahu, S.; Panda, S.; Asiri, A. NSAID conjugates with carnosine and amino acids. Synthesis, 2013, 45(24), 3369-3374.
[http://dx.doi.org/10.1055/s-0033-1339920]
[24]
Majumder, J.; Das, M.R.; Deb, J.; Jana, S.S.; Dastidar, P. β-Amino acid and amino-alcohol conjugation of a nonsteroidal anti-inflammatory drug (NSAID) imparts hydrogelation displaying remarkable biostability, biocompatibility, and anti-inflammatory properties. Langmuir, 2013, 29(32), 10254-10263.
[http://dx.doi.org/10.1021/la401929v] [PMID: 23859562]
[25]
Li, W.; Mak, M.; Jiang, H.; Wang, Q.; Pang, Y.; Chen, K.; Han, Y. Novel anti-Alzheimer’s dimer bis(7)-Cognitin: Cellular and molecular mechanisms of neuroprotection through multiple targets. Neurotherapeutics, 2009, 6(1), 187-201.
[http://dx.doi.org/10.1016/j.nurt.2008.10.040] [PMID: 19110209]
[26]
Cairns, H.; Fitzmaurice, C.; Hunter, D.; Johnson, P.B.; King, J.; Lee, T.B.; Lord, G.H.; Minshull, R.; Cox, J.S.G. Synthesis and structure-activity relations of disodium cromoglycate and some related compounds. J. Med. Chem., 1972, 15(6), 583-589.
[http://dx.doi.org/10.1021/jm00276a003] [PMID: 4624147]
[27]
Soto, C.; Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci., 2018, 21(10), 1332-1340.
[http://dx.doi.org/10.1038/s41593-018-0235-9] [PMID: 30250260]
[28]
Kim, W.G.; Mohney, R.P.; Wilson, B.; Jeohn, G.H.; Liu, B.; Hong, J.S. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: Role of microglia. J. Neurosci., 2000, 20(16), 6309-6316.
[http://dx.doi.org/10.1523/JNEUROSCI.20-16-06309.2000] [PMID: 10934283]
[29]
Citron, M. Alzheimer’s disease: Strategies for disease modification. Nat. Rev. Drug Discov., 2010, 9(5), 387-398.
[http://dx.doi.org/10.1038/nrd2896] [PMID: 20431570]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy