Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Antihypertensive Effect of Euphorbia cheiradenia in Rats

Author(s): Smail Amthaghri, Ayoub Amssayef, Miloudia Slaoui and Mohamed Eddouks*

Volume 21, Issue 3, 2023

Published on: 02 March, 2023

Page: [213 - 222] Pages: 10

DOI: 10.2174/1871525721666230118154023

Open Access Journals Promotions 2
Abstract

Aims: The study aimed to investigate the effect of Euphorbia cheiradenia on blood pressure.

Background: Euphorbia cheiradenia is a medicinal plant with several medicinal properties.

Objective: This study aimed to study the vasorelaxant and antihypertensive capacity of the aqueous extract of Euphorbia cheiradenia (E. cheiradenia), and to evaluate its effect on angiotensinconverting enzyme 2 (ACE2).

Methods: The antihypertensive ability of aerial parts of the aqueous extract of E. cheiradenia (AEEC) was investigated in L-NAME-induced hypertensive rats, and its vasorelaxant effect was performed on the isolated thoracic rat aorta. In addition, the possible inhibitory effect of AEEC on ACE2 was also studied.

Results: AEEC lowered blood pressure parameters in hypertensive rats. The study of the vasorelaxant activity revealed that AEEC partially relaxed the aortic rings through activation of the KATP channel and inhibition of the β-adrenergic pathway. Whereas pretreatment of aortic rings with nifedipine, indomethacin, L-NAME, and methylene blue did not attenuate AEEC-induced vasorelaxation. However, AEEC did not affect ACE2 in isolated rat aortas.

Conclusion: The study showed that aqueous E. cheiradenia extract exhibits significant antihypertensive activity in hypertensive rats.

Keywords: Hypertension, Euphorbia cheiradenia, L-NAME, vasorelaxant, KATP channels, adrenergic receptors β, ACE2.

Graphical Abstract
[1]
Lewington, S.; Clarke, R.; Qizilbash, N.; Peto, R.; Collins, R. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet, 2002, 360(9349), 1903-1913.
[http://dx.doi.org/10.1016/S0140-6736(02)11911-8] [PMID: 12493255]
[2]
Chow, C.K.; Teo, K.K.; Rangarajan, S.; Islam, S.; Gupta, R.; Avezum, A.; Bahonar, A.; Chifamba, J.; Dagenais, G.; Diaz, R.; Kazmi, K.; Lanas, F.; Wei, L.; Lopez-Jaramillo, P.; Fanghong, L.; Ismail, N.H.; Puoane, T.; Rosengren, A.; Szuba, A.; Temizhan, A.; Wielgosz, A.; Yusuf, R.; Yusufali, A.; McKee, M.; Liu, L.; Mony, P.; Yusuf, S. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA, 2013, 310(9), 959-968.
[http://dx.doi.org/10.1001/jama.2013.184182] [PMID: 24002282]
[3]
Eddouks, M.; Maghrani, M.; Lemhadri, A.; Ouahidi, M.L.; Jouad, H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J. Ethnopharmacol., 2002, 82(2-3), 97-103.
[http://dx.doi.org/10.1016/S0378-8741(02)00164-2] [PMID: 12241983]
[4]
Amirghofran, Z.; Malek-hosseini, S.; Gholmoghaddam, H.; Kalalinia, F. Inhibition of tumor cells growth and stimulation of lymphocytes by Euphorbia species. Immunopharmacol. Immunotoxicol., 2011, 33(1), 34-42.
[http://dx.doi.org/10.3109/08923971003699018] [PMID: 20331330]
[5]
Ajebli, M.; Eddouks, M. Antihypertensive activity of Petroselinum crispum through inhibition of vascular calcium channels in rats. J. Ethnopharmacol., 2019, 242, 112039.
[http://dx.doi.org/10.1016/j.jep.2019.112039] [PMID: 31252093]
[6]
Ajebli, M.; Eddouks, M. Eucalyptus globulus possesses antihypertensive activity in L-NAME-induced hypertensive rats and relaxes isolated rat thoracic aorta through nitric oxide pathway. Nat. Prod. Res., 2019, 1-3.
[PMID: 30966776]
[7]
Potue, P.; Wunpathe, C.; Maneesai, P.; Kukongviriyapan, U.; Prachaney, P.; Pakdeechote, P. Nobiletin alleviates vascular alterations through modulation of Nrf-2/HO-1 and MMP pathways in L -NAME induced hypertensive rats. Food Funct., 2019, 10(4), 1880-1892.
[http://dx.doi.org/10.1039/C8FO02408A] [PMID: 30864566]
[8]
Iaccarino, G.; Cipolletta, E.; Fiorillo, A.; Annecchiarico, M.; Ciccarelli, M.; Cimini, V.; Koch, W.J.; Trimarco, B. Beta(2)-adrenergic receptor gene delivery to the endothelium corrects impaired adrenergic vasorelaxation in hypertension. Circulation, 2002, 106(3), 349-355.
[http://dx.doi.org/10.1161/01.CIR.0000022690.55143.56] [PMID: 12119252]
[9]
Akdad, M.; Eddouks, M. Cardiovascular effects of micromeria graeca (L.) benth. ex rchb in normotensive and hypertensive rats. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(8), 1253-1261.
[http://dx.doi.org/10.2174/1871530319666191206163136] [PMID: 31822260]
[10]
Amssayef, A.; Eddouks, M. Aqueous extract of Matricaria pubescens exhibits antihypertensive activity in L-NAME-induced hypertensive rats through its vasorelaxant effect. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(2), 135-143.
[http://dx.doi.org/10.2174/1871525717666191007151413] [PMID: 31589128]
[11]
EL-Ouady, F.; Eddouks, M. Warionia saharae induces antihypertensive and vasorelaxant activities through nitric oxide and KATP channels pathways in rats. J. Complement. Integr. Med., 2019, 17(1), jcim.
[12]
Chen, L.; Li, X.; Chen, M.; Feng, Y.; Xiong, C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res., 2020, 116(6), 1097-1100.
[http://dx.doi.org/10.1093/cvr/cvaa078] [PMID: 32227090]
[13]
Liu, F.; Long, X.; Zhang, B.; Zhang, W.; Chen, X.; Zhang, Z. ACE2 expression in pancreas may cause pancreatic damage after sars-cov-2 infection. Clin. Gastroenterol. Hepatol., 2020, 18(9), 2128-2130.e2.
[http://dx.doi.org/10.1016/j.cgh.2020.04.040] [PMID: 32334082]
[14]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[15]
De Maria, M.L.; Araújo, L.D.; Fraga-Silva, R.A.; Pereira, L.A.; Ribeiro, H.J.; Menezes, G.B.; Shenoy, V.; Raizada, M.K.; Ferreira, A.J. Anti-hypertensive effects of diminazene aceturate: An angiotensin- converting enzyme 2 activator in rats. PPL, 2016, 23(1), 9-16.
[http://dx.doi.org/10.2174/0929866522666151013130550] [PMID: 26458404]
[16]
Bosso, M.; Thanaraj, T.A.; Abu-Farha, M.; Alanbaei, M.; Abubaker, J.; Al-Mulla, F. The two faces of ACE2: The role of ACE2 receptor and its polymorphisms in hypertension and COVID-19. Mol. Ther. Methods Clin. Dev., 2020, 18, 321-327.
[http://dx.doi.org/10.1016/j.omtm.2020.06.017] [PMID: 32665962]
[17]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[18]
Behl, T.; Kaur, I.; Bungau, S.; Kumar, A.; Uddin, M.S.; Kumar, C.; Pal, G. Sahil; Shrivastava, K.; Zengin, G.; Arora, S. The dual impact of ACE2 in COVID-19 and ironical actions in geriatrics and pediatrics with possible therapeutic solutions. Life Sci., 2020, 257, 118075.
[http://dx.doi.org/10.1016/j.lfs.2020.118075] [PMID: 32653522]
[19]
Sartório, C.L.; Pimentel, E.B.; Santos, R.L.; Rouver, W.N.; Mill, J.G. Acute hypotensive effect of diminazene aceturate in spontaneously hypertensive rats: role of NO and Mas receptor. Clin. Exp. Pharmacol. Physiol., 2020, 47(10), 1440-1681.13368.
[http://dx.doi.org/10.1111/1440-1681.13368] [PMID: 32603499]

© 2024 Bentham Science Publishers | Privacy Policy