Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

受体型蛋白酪氨酸磷酸酶ε(PTPRE)通过激活AKT和ERK1/2信号通路在甲状腺癌中起致癌作用

卷 23, 期 6, 2023

发表于: 15 February, 2023

页: [471 - 481] 页: 11

弟呕挨: 10.2174/1568009623666230118111745

价格: $65

摘要

背景:甲状腺癌(thyroid carcinoma,TC)是人类常见的恶性肿瘤,近年来发病率呈上升趋势。研究表明,受体型蛋白酪氨酸磷酸酶 ε (PTPRE) 是癌症进展中肿瘤发生的关键调节因子,但其在 TC 中的作用尚未揭示。 目的:在这项工作中,我们探讨了 PTPRE 在 TC 进展中的重要作用。 方法:采用RT-qPCR和Western blot检测TC临床标本和细胞系中PTPRE的表达。通过MTT和细胞周期分析测量细胞增殖。通过伤口愈合、transwell 和免疫荧光染色分析分析细胞迁移、侵袭和上皮-间质转化 (EMT)。 Western blot分析AKT和ERK1/2信号通路相关蛋白水平。 结果:PTPRE 在 TC 临床样本和细胞系中高表达,尤其是未分化甲状腺癌 (ATC)。高水平的 PTPRE 与肿瘤大小和 TNM 分期相关。上调 PTPRE 促进细胞增殖,增强 TC 细胞的迁移、侵袭和 EMT,而 PTPRE 的敲低抑制这些行为。重要的是,我们证实 AKT 和 ERK1/2 信号通路被 PTPRE 激活,这反映在磷酸化 AKT 和 ERK1/2 的蛋白质水平提高。 结论:因此,我们表明 PTPRE 通过激活 AKT 和 ERK1/2 信号通路在 TC 进展中发挥致癌作用。这些发现表明,调节 PTPRE 表达可能是干扰 TC 进展的潜在策略。

关键词: PTPRE,甲状腺癌,AKT,ERK1 / 2,EMT,TNM,RT-qPCR。

图形摘要
[1]
Hu, J.; Yuan, I.J.; Mirshahidi, S.; Simental, A.; Lee, S.C.; Yuan, X. Thyroid carcinoma: Phenotypic features, underlying biology and potential relevance for targeting therapy. Int. J. Mol. Sci., 2021, 22(4), 1950.
[http://dx.doi.org/10.3390/ijms22041950] [PMID: 33669363]
[2]
Sherma, S.I. Thyroid carcinoma. Lancet, 2003, 361(9356), 501-511.
[http://dx.doi.org/10.1016/S0140-6736(03)12488-9] [PMID: 12583960]
[3]
Sadowski, S.M.; Köhler, B.B.; Meyer, P.; Pusztaszeri, M.; Robert, J.H.; Triponez, F. Treatment of differentiated thyroid cancer. Rev. Med. Suisse, 2012, 8(346), 1321-1325.
[PMID: 22792596]
[4]
Kazaure, H.S.; Roman, S.A.; Sosa, J.A. Aggressive variants of papillary thyroid cancer: Incidence, characteristics and predictors of survival among 43,738 patients. Ann. Surg. Oncol., 2012, 19(6), 1874-1880.
[http://dx.doi.org/10.1245/s10434-011-2129-x] [PMID: 22065195]
[5]
Baloch, Z.W. LiVolsi, V.A. Special types of thyroid carcinoma. Histopathology, 2018, 72(1), 40-52.
[http://dx.doi.org/10.1111/his.13348] [PMID: 29239042]
[6]
Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid cancer. Lancet, 2016, 388(10061), 2783-2795.
[http://dx.doi.org/10.1016/S0140-6736(16)30172-6] [PMID: 27240885]
[7]
Nath, M.C.; Erickson, L.A. Aggressive variants of papillary thyroid carcinoma: Hobnail, tall cell, columnar, and solid. Adv. Anat. Pathol., 2018, 25(3), 172-179.
[http://dx.doi.org/10.1097/PAP.0000000000000184] [PMID: 29351089]
[8]
Skuletic, V.; Radosavljevic, G.D.; Pantic, J.; Markovic, B.S.; Jovanovic, I.; Jankovic, N.; Petrovic, D.; Jevtovic, A.; Dzodic, R.; Arsenijevic, N. Angiogenic and lymphangiogenic profiles in histological variants of papillary thyroid carcinoma. Polish Arch. Intern. Med., 2017, 127(6), 429-437.
[http://dx.doi.org/10.20452/pamw.3999] [PMID: 28425432]
[9]
Xu, X.; Jing, J. Advances on circRNAs contribute to carcinogenesis and progression in papillary thyroid carcinoma. Front. Endocrinol., 2021, 11555243
[http://dx.doi.org/10.3389/fendo.2020.555243] [PMID: 33551989]
[10]
Abe, I.; Lam, A.K. Anaplastic thyroid carcinoma: Updates on WHO classification, clinicopathological features and staging. Histol. Histopathol., 2021, 36(3), 239-248.
[PMID: 33170501]
[11]
Abe, I.; Lam, A.K. Anaplastic thyroid carcinoma: Current issues in genomics and therapeutics. Curr. Oncol. Rep., 2021, 23(3), 31.
[http://dx.doi.org/10.1007/s11912-021-01019-9] [PMID: 33582932]
[12]
Saini, S.; Tulla, K.; Maker, A.V.; Burman, K.D.; Prabhakar, B.S. Therapeutic advances in anaplastic thyroid cancer: A current perspective. Mol. Cancer, 2018, 17(1), 154.
[http://dx.doi.org/10.1186/s12943-018-0903-0] [PMID: 30352606]
[13]
Sugitani, I.; Miyauchi, A.; Sugino, K.; Okamoto, T.; Yoshida, A.; Suzuki, S. Prognostic factors and treatment outcomes for anaplastic thyroid carcinoma: ATC Research Consortium of Japan cohort study of 677 patients. World J. Surg., 2012, 36(6), 1247-1254.
[http://dx.doi.org/10.1007/s00268-012-1437-z] [PMID: 22311136]
[14]
Krueger, N.X.; Streuli, M.; Saito, H. Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J., 1990, 9(10), 3241-3252.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07523.x] [PMID: 2170109]
[15]
Fischer, E.H.; Charbonneau, H.; Tonks, N.K. Protein tyrosine phosphatases: A diverse family of intracellular and transmembrane enzymes. Science, 1991, 253(5018), 401-406.
[http://dx.doi.org/10.1126/science.1650499] [PMID: 1650499]
[16]
Charbonneau, H.; Tonks, N.K. 1002 protein phosphatases? Annu. Rev. Cell Biol., 1992, 8(1), 463-493.
[http://dx.doi.org/10.1146/annurev.cb.08.110192.002335] [PMID: 1335746]
[17]
Hunter, T. The genesis of tyrosine phosphorylation. Cold Spring Harb. Perspect. Biol., 2014, 6(5)a020644
[http://dx.doi.org/10.1101/cshperspect.a020644] [PMID: 24789824]
[18]
Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature, 2001, 411(6835), 355-365.
[http://dx.doi.org/10.1038/35077225] [PMID: 11357143]
[19]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[20]
Torkamani, A.; Verkhivker, G.; Schork, N.J. Cancer driver mutations in protein kinase genes. Cancer Lett., 2009, 281(2), 117-127.
[http://dx.doi.org/10.1016/j.canlet.2008.11.008] [PMID: 19081671]
[21]
Liang, J.; Shi, J.; Wang, N.; Zhao, H.; Sun, J. Tuning the protein phosphorylation by receptor type protein tyrosine phosphatase epsilon (PTPRE) in normal and cancer cells. J. Cancer, 2019, 10(1), 105-111.
[http://dx.doi.org/10.7150/jca.27633] [PMID: 30662530]
[22]
Chen, B.; Liao, Z.; Qi, Y.; Zhang, H.; Su, C.; Liang, H.; Zhang, B.; Chen, X. miR-631 inhibits intrahepatic metastasis of hepatocellular carcinoma by targeting PTPRE. Front. Oncol., 2020, 10565266
[http://dx.doi.org/10.3389/fonc.2020.565266] [PMID: 33344226]
[23]
Nunes-Xavier, C.E.; Elson, A.; Pulido, R. Epidermal growth factor receptor (EGFR)-mediated positive feedback of protein-tyrosine phosphatase epsilon (PTPepsilon) on ERK1/2 and AKT protein pathways is required for survival of human breast cancer cells. J. Biol. Chem., 2012, 287(5), 3433-3444.
[http://dx.doi.org/10.1074/jbc.M111.293928] [PMID: 22117074]
[24]
Laczmanska, I.; Laczmanski, L.; Sasiadek, M.M. Expression analysis of tyrosine phosphatase genes at different stages of renal cell carcinoma. Anticancer Res., 2020, 40(10), 5667-5671.
[http://dx.doi.org/10.21873/anticanres.14580] [PMID: 32988891]
[25]
Kabir, N.N.; Rönnstrand, L.; Kazi, J.U. Deregulation of protein phosphatase expression in acute myeloid leukemia. Med. Oncol., 2013, 30(2), 517.
[http://dx.doi.org/10.1007/s12032-013-0517-8] [PMID: 23440723]
[26]
Yu, X.M.; Schneider, D.F.; Leverson, G.; Chen, H.; Sippel, R.S. Follicular variant of papillary thyroid carcinoma is a unique clinical entity: A population-based study of 10,740 cases. Thyroid, 2013, 23(10), 1263-1268.
[http://dx.doi.org/10.1089/thy.2012.0453] [PMID: 23477346]
[27]
Tang, J.; Tian, Z.; Liao, X.; Wu, G. SOX13/TRIM11/YAP axis promotes the proliferation, migration and chemoresistance of anaplastic thyroid cancer. Int. J. Biol. Sci., 2021, 17(2), 417-429.
[http://dx.doi.org/10.7150/ijbs.54194] [PMID: 33613102]
[28]
Elson, A. Protein tyrosine phosphatase ε increases the risk of mammary hyperplasia and mammary tumors in transgenic mice. Oncogene, 1999, 18(52), 7535-7542.
[http://dx.doi.org/10.1038/sj.onc.1203098] [PMID: 10602512]
[29]
Luo, K.; Lodish, H.F. Positive and negative regulation of type II TGF-beta receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J., 1997, 16(8), 1970-1981.
[http://dx.doi.org/10.1093/emboj/16.8.1970] [PMID: 9155023]
[30]
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119(6), 1420-1428.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[31]
Cicchini, C.; Amicone, L.; Alonzi, T.; Marchetti, A.; Mancone, C.; Tripodi, M. Molecular mechanisms controlling the phenotype and the EMT/MET dynamics of hepatocyte. Liver Int., 2015, 35(2), 302-310.
[http://dx.doi.org/10.1111/liv.12577] [PMID: 24766136]
[32]
Liao, Z.; Chen, L.; Zhang, X.; Zhang, H.; Tan, X.; Dong, K.; Lu, X.; Zhu, H.; Liu, Q.; Zhang, Z.; Ding, Z.; Dong, W.; Zhu, P.; Chu, L.; Liang, H.; Datta, P.K.; Zhang, B.; Chen, X. PTPRε acts as a metastatic promoter in hepatocellular carcinoma by facilitating recruitment of SMAD3 to TGF-β receptor 1. Hepatology, 2020, 72(3), 997-1012.
[http://dx.doi.org/10.1002/hep.31104] [PMID: 31903610]
[33]
Wu, D.; Liu, Z.; Li, J.; Zhang, Q.; Zhong, P.; Teng, T.; Chen, M.; Xie, Z.; Ji, A.; Li, Y. Epigallocatechin-3-gallate inhibits the growth and increases the apoptosis of human thyroid carcinoma cells through suppression of EGFR/RAS/RAF/MEK/ERK signaling pathway. Cancer Cell Int., 2019, 19(1), 43.
[http://dx.doi.org/10.1186/s12935-019-0762-9] [PMID: 30858760]
[34]
Lim, Y.C.; Cha, Y.Y. Epigallocatechin-3-gallate induces growth inhibition and apoptosis of human anaplastic thyroid carcinoma cells through suppression of EGFR/ERK pathway and cyclin B1/CDK1 complex. J. Surg. Oncol., 2011, 104(7), 776-780.
[http://dx.doi.org/10.1002/jso.21999] [PMID: 21725973]
[35]
Zheng, X.; Wang, S.; Hong, S.; Liu, J.; Jiang, C. Knockdown of eIF3a attenuated cell growth in K1 human thyroid cancer cells. Genes Genom, 2021, 43(4), 379-388.
[http://dx.doi.org/10.1007/s13258-021-01048-5] [PMID: 33595813]
[36]
Wabakken, T.; Hauge, H.; Finne, E.F.; Wiedlocha, A.; Aasheim, H.C. Expression of human protein tyrosine phosphatase epsilon in leucocytes: A potential ERK pathway-regulating phosphatase. Scand. J. Immunol., 2002, 56(2), 195-203.
[http://dx.doi.org/10.1046/j.1365-3083.2002.01126.x] [PMID: 12121439]
[37]
Gil-Henn, H.; Elson, A. Tyrosine phosphatase-epsilon activates Src and supports the transformed phenotype of Neu-induced mammary tumor cells. J. Biol. Chem., 2003, 278(18), 15579-15586.
[http://dx.doi.org/10.1074/jbc.M210273200] [PMID: 12598528]
[38]
Granot-Attas, S.; Elson, A. Protein tyrosine phosphatase epsilon activates Yes and Fyn in Neu-induced mammary tumor cells. Exp. Cell Res., 2004, 294(1), 236-243.
[http://dx.doi.org/10.1016/j.yexcr.2003.11.003] [PMID: 14980517]
[39]
Du, Y.; Grandis, J.R. Receptor-type protein tyrosine phosphatases in cancer. Chin. J. Cancer, 2015, 34(2), 61-69.
[http://dx.doi.org/10.5732/cjc.014.10146] [PMID: 25322863]
[40]
Takada, T.; Noguchi, T.; Inagaki, K.; Hosooka, T.; Fukunaga, K.; Yamao, T.; Ogawa, W.; Matozaki, T.; Kasuga, M. Induction of apoptosis by stomach cancer-associated protein-tyrosine phosphatase-1. J. Biol. Chem., 2002, 277(37), 34359-34366.
[http://dx.doi.org/10.1074/jbc.M206541200] [PMID: 12101188]
[41]
Hou, J.; Xu, J.; Jiang, R.; Wang, Y.; Chen, C.; Deng, L.; Huang, X.; Wang, X.; Sun, B. Estrogen-sensitive PTPRO expression represses hepatocellular carcinoma progression by control of STAT3. Hepatology, 2013, 57(2), 678-688.
[http://dx.doi.org/10.1002/hep.25980] [PMID: 22821478]
[42]
Wang, P.; Hu, Y.; Qu, P.; Zhao, Y.; Liu, J.; Zhao, J.; Kong, B. Protein tyrosine phosphatase receptor type Z1 inhibits the cisplatin resistance of ovarian cancer by regulating PI3K/AKT/mTOR signal pathway. Bioengineered, 2022, 13(1), 1931-1941.
[http://dx.doi.org/10.1080/21655979.2021.2022268] [PMID: 35001804]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy