Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Poly(Glutamic Acid)-Engineered Nanoplatforms for Enhanced Cancer Phototherapy

Author(s): Yu Zhang*, Yiming Lu, Yicong Li, Yixin Xu and Wenliang Song*

Volume 21, Issue 3, 2024

Published on: 27 January, 2023

Page: [326 - 338] Pages: 13

DOI: 10.2174/1567201820666230116164511

Price: $65

Open Access Journals Promotions 2
Abstract

Phototherapies, including photothermal therapy and photodynamic therapy, have gained booming development over the past several decades for their attractive non-invasiveness nature, negligible adverse effects, minimal systemic toxicity, and high spatial selectivity. Phototherapy usually requires three components: light irradiation, photosensitizers, and molecular oxygen. Photosensitizers can convert light energy into heat or reactive oxygen species, which can be used in the tumor-killing process. The direct application of photosensitizers in tumor therapy is restricted by their poor water solubility, fast clearance, severe toxicity, and low cellular uptake. The encapsulation of photosensitizers into nanostructures is an attractive strategy to overcome these critical limitations. Poly(glutamic acid) (PGA) is a kind of poly(amino acid)s containing the repeating units of glutamic acid. PGA has superiority for cancer treatment because of its good biocompatibility, low immunogenicity, and modulated pH responsiveness. The hydrophilicity nature of PGA allows the physical entrapment of photosensitizers and anticancer drugs via the construction of amphiphilic polymers. Moreover, the pendent carboxyl groups of PGA enable chemical conjugation with therapeutic agents. In this mini-review, we highlight the stateof- the-art design and fabrication of PGA-based nanoplatforms for phototherapy. We also discuss the potential challenges and future perspectives of phototherapy, and clinical translation of PGA-based nanomedicines.

Keywords: Cancer, imaging, photodynamic therapy, phototherapy, photothermal therapy, poly(glutamic acid).

Graphical Abstract
[1]
Ackroyd, R.; Kelty, C.; Brown, N.; Reed, M. The history of photodetection and photodynamic therapy. Photochem. Photobiol., 2001, 74(5), 656-669.
[http://dx.doi.org/10.1562/0031-8655(2001)074<0656:THOPAP>2.0.CO;2] [PMID: 11723793]
[2]
Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol., 2020, 17(11), 657-674.
[http://dx.doi.org/10.1038/s41571-020-0410-2] [PMID: 32699309]
[3]
Wang, W.; Chen, C.; Ying, Y.; Lv, S.; Wang, Y.; Zhang, X.; Cai, Z.; Gu, W.; Li, Z.; Jiang, G.; Gao, F. Smart PdH@ MnO2 yolk-shell nanostructures for spatiotemporally synchronous targeted hydrogen delivery and oxygen-elevated phototherapy of melanoma. ACS Nano, 2022, 16(4), 5597-5614.
[http://dx.doi.org/10.1021/acsnano.1c10450] [PMID: 35315637]
[4]
Chen, W.; Zhao, P.; Yang, Y.; Yu, D.G. Electrospun beads-on-the-string nanoproducts: preparation and drug delivery application. Curr. Drug Deliv., 2022, 19.
[PMID: 35619275]
[5]
Zhang, X.; Ong’achwa, M.J.; Pan, W.; Cai, W.; Xi, Z.; Shen, F.; Zhang, L.; Yang, Y.; Gao, F.; Guan, M. Carbon nitride hollow theranostic nanoregulators executing laser-activatable water splitting for enhanced ultrasound/fluorescence imaging and cooperative phototherapy. ACS Nano, 2020, 14(4), 4045-4060.
[http://dx.doi.org/10.1021/acsnano.9b08737] [PMID: 32255341]
[6]
Liu, H.; Wang, H.; Lu, X.; Murugadoss, V.; Huang, M.; Yang, H.; Wan, F.; Yu, D.G.; Guo, Z. Electrospun structural nanohybrids combining three composites for fast helicide delivery. Adv. Compos. Hybrid Mater., 2022, 5(2), 1017-1029.
[http://dx.doi.org/10.1007/s42114-022-00478-3]
[7]
Pan, W.; Dai, C.; Li, Y.; Yin, Y.; Gong, L.; Machuki, J.O.; Yang, Y.; Qiu, S.; Guo, K.; Gao, F. PRP-chitosan thermoresponsive hydrogel combined with black phosphorus nanosheets as injectable biomaterial for biotherapy and phototherapy treatment of rheumatoid arthritis. Biomaterials, 2020, 239, 119851.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119851] [PMID: 32078955]
[8]
Liu, H.; Jiang, W.; Yang, Z.; Chen, X.; Yu, D.G.; Shao, J. Hybrid films prepared from a combination of electrospinning and casting for offering a dual-phase drug release. Polymers, 2022, 14(11), 2132.
[http://dx.doi.org/10.3390/polym14112132] [PMID: 35683805]
[9]
Beik, J.; Asadi, M.; Khoei, S.; Laurent, S.; Abed, Z.; Mirrahimi, M.; Farashahi, A.; Hashemian, R.; Ghaznavi, H.; Shakeri-Zadeh, A. Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. J. Photochem. Photobiol. B, 2019, 199, 111599.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111599] [PMID: 31470271]
[10]
Dibaba, S.T.; Caputo, R.; Xi, W.; Zhang, J.Z.; Wei, R.; Zhang, Q.; Zhang, J.; Ren, W.; Sun, L. NIR light-degradable antimony nanoparticle-based drug-delivery nanosystem for synergistic chemo-photothermal therapy in vitro. ACS Appl. Mater. Interfaces, 2019, 11(51), 48290-48299.
[http://dx.doi.org/10.1021/acsami.9b20249] [PMID: 31802657]
[11]
Li, Y.; Wu, Y.; Chen, J.; Wan, J.; Xiao, C.; Guan, J.; Song, X.; Li, S.; Zhang, M.; Cui, H.; Li, T.; Yang, X.; Li, Z.; Yang, X. A simple glutathione-responsive turn-on theranostic nanoparticle for dual-modal imaging and chemo-photothermal combination therapy. Nano Lett., 2019, 19(8), 5806-5817.
[http://dx.doi.org/10.1021/acs.nanolett.9b02769] [PMID: 31331172]
[12]
Liu, X.; Zhang, M.; Song, W.; Zhang, Y.; Yu, D.G.; Liu, Y. Electrospun core (HPMC-Acetaminophen)-shell (PVP-sucralose) nanohybrids for rapid drug delivery. Gels, 2022, 8(6), 357.
[http://dx.doi.org/10.3390/gels8060357] [PMID: 35735701]
[13]
Qi, T.; Chen, B.; Wang, Z.; Du, H.; Liu, D.; Yin, Q.; Liu, B.; Zhang, Q.; Wang, Y. A pH-Activatable nanoparticle for dual-stage precisely mitochondria-targeted photodynamic anticancer therapy. Biomaterials, 2019, 213, 119219.
[http://dx.doi.org/10.1016/j.biomaterials.2019.05.030] [PMID: 31132647]
[14]
Ji, Y.; Song, W.; Xu, L.; Yu, D.G.; Annie Bligh, S.W. A review on electrospun poly (amino acid) nanofibers and their applications of hemostasis and wound healing. Biomolecules, 2022, 12(6), 794.
[http://dx.doi.org/10.3390/biom12060794] [PMID: 35740919]
[15]
Wang, P.; Wu, W.; Gao, R.; Zhu, H.; Wang, J.; Du, R.; Li, X.; Zhang, C.; Cao, S.; Xiang, R. Engineered cell-assisted photoactive nanoparticle delivery for image-guided synergistic photodynamic/photothermal therapy of cancer. ACS Appl. Mater. Interfaces, 2019, 11(15), 13935-13944.
[http://dx.doi.org/10.1021/acsami.9b00022] [PMID: 30915833]
[16]
Zheng, Y.; Li, Z.; Chen, H.; Gao, Y. Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. Eur. J. Pharm. Sci., 2020, 144, 105213.
[http://dx.doi.org/10.1016/j.ejps.2020.105213] [PMID: 31926941]
[17]
Perry, R.R.; Smith, P.D.; Evans, S.; Pass, H. Intravenous vs intraperitoneal sensitizer: Implications for intraperitoneal photodynamic therapy. Photochem. Photobiol., 1991, 53(3), 335-340.
[http://dx.doi.org/10.1111/j.1751-1097.1991.tb03637.x] [PMID: 1829531]
[18]
Jiang, B.P.; Zhou, B.; Lin, Z.; Liang, H.; Shen, X.C. Recent advances in carbon nanomaterials for cancer phototherapy. Chemistry, 2019, 25(16), 3993-4004.
[http://dx.doi.org/10.1002/chem.201804383] [PMID: 30328167]
[19]
Song, W.; Zhang, Y.; Yu, D.G.; Tran, C.H.; Wang, M.; Varyambath, A.; Kim, J.; Kim, I. Efficient synthesis of folate-conjugated hollow polymeric capsules for accurate drug delivery to cancer cells. Biomacromolecules, 2021, 22(2), 732-742.
[http://dx.doi.org/10.1021/acs.biomac.0c01520] [PMID: 33331770]
[20]
Zhang, Y.; Uthaman, S.; Song, W.; Eom, K.H.; Jeon, S.H.; Huh, K.M.; Babu, A.; Park, I.K.; Kim, I. Multistimuli-responsive polymeric vesicles for accelerated drug release in chemo-photothermal therapy. ACS Biomater. Sci. Eng., 2020, 6(9), 5012-5023.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00585] [PMID: 33455294]
[21]
Luo, Z.; Guo, Y.; Liu, J.; Qiu, H.; Zhao, M.; Zou, W.; Li, S. Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives. Biotechnol. Biofuels, 2016, 9(1), 134.
[http://dx.doi.org/10.1186/s13068-016-0537-7] [PMID: 27366207]
[22]
Shih, I.L.; Van, Y.T. The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour. Technol., 2001, 79(3), 207-225.
[http://dx.doi.org/10.1016/S0960-8524(01)00074-8] [PMID: 11499575]
[23]
Sanda, F.; Fujiyama, T.; Endo, T. Chemical synthesis of poly-γ-glutamic acid by polycondensation of γ-glutamic acid dimer: Synthesis and reaction of poly-γ-glutamic acid methyl ester. J. Polym. Sci. A Polym. Chem., 2001, 39(5), 732-741.
[http://dx.doi.org/10.1002/1099-0518(20010301)39:5<732:AID-POLA1045>3.0.CO;2-P]
[24]
Sirisansaneeyakul, S.; Cao, M.; Kongklom, N.; Chuensangjun, C.; Shi, Z.; Chisti, Y. Microbial production of poly-γ-glutamic acid. World J. Microbiol. Biotechnol., 2017, 33(9), 173.
[http://dx.doi.org/10.1007/s11274-017-2338-y] [PMID: 28875418]
[25]
Park, S.B.; Sung, M.H.; Uyama, H.; Han, D.K. Poly(glutamic acid): Production, composites, and medical applications of the next-generation biopolymer. Prog. Polym. Sci., 2021, 113, 101341.
[http://dx.doi.org/10.1016/j.progpolymsci.2020.101341]
[26]
Shih; Van; Shen, M. Biomedical applications of chemically and microbiologically synthesized poly(glutamic acid) and poly(lysine). Mini Rev. Med. Chem., 2004, 4(2), 179-188.
[http://dx.doi.org/10.2174/1389557043487420] [PMID: 14965290]
[27]
Ata, R.; Othman, N.Z.; Malek, R.A.; Leng, O.M.; Aziz, R.A.; Enshasy, H.E. Polyglutamic acid applications in pharmaceutical and biomedical industries. Pharm. Lett., 2016, 8(9), 217-225.
[28]
Zhang, Y.; Song, W.; Lu, Y.; Xu, Y.; Wang, C.; Yu, D.G.; Kim, I. Recent advances in poly(α-L-glutamic acid)-based nanomaterials for drug delivery. Biomolecules, 2022, 12(5), 636.
[http://dx.doi.org/10.3390/biom12050636] [PMID: 35625562]
[29]
Zhang, Y.; Li, S.; Xu, Y.; Shi, X.; Zhang, M.; Huang, Y.; Liang, Y.; Chen, Y.; Ji, W.; Kim, J.R.; Song, W.; Yu, D.G.; Kim, I. Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities. Nano Res., 2022, 15(6), 5556-5568.
[http://dx.doi.org/10.1007/s12274-022-4160-6]
[30]
Zhao, W.; Gnanou, Y.; Hadjichristidis, N. Fast and living ring-opening polymerization of α-amino acid N-carboxyanhydrides triggered by an “alliance” of primary and secondary amines at room temperature. Biomacromolecules, 2015, 16(4), 1352-1357.
[http://dx.doi.org/10.1021/acs.biomac.5b00134] [PMID: 25761228]
[31]
Baumgartner, R.; Fu, H.; Song, Z.; Lin, Y.; Cheng, J. Cooperative polymerization of α-helices induced by macromolecular architecture. Nat. Chem., 2017, 9(7), 614-622.
[http://dx.doi.org/10.1038/nchem.2712] [PMID: 28644469]
[32]
Zhang, Y.; Liu, R.; Jin, H.; Song, W.; Augustine, R.; Kim, I. Straightforward access to linear and cyclic polypeptides. Commun. Chem., 2018, 1(1), 40.
[http://dx.doi.org/10.1038/s42004-018-0040-0]
[33]
Chen, C.; Fu, H.; Baumgartner, R.; Song, Z.; Lin, Y.; Cheng, J. Proximity-induced cooperative polymerization in “hinged” helical polypeptides. J. Am. Chem. Soc., 2019, 141(22), 8680-8683.
[http://dx.doi.org/10.1021/jacs.9b02298] [PMID: 31016974]
[34]
Zhao, W.; Lv, Y.; Li, J.; Feng, Z.; Ni, Y.; Hadjichristidis, N. Fast and selective organocatalytic ring-opening polymerization by fluorinated alcohol without a cocatalyst. Nat. Commun., 2019, 10(1), 3590.
[http://dx.doi.org/10.1038/s41467-019-11524-y] [PMID: 31399569]
[35]
Zhang, Y.; Song, W.; Li, S.; Kim, D.K.; Kim, J.H.; Kim, J.R.; Kim, I. Facile and scalable synthesis of topologically nanoengineered polypeptides with excellent antimicrobial activities. Chem. Commun., 2020, 56(3), 356-359.
[http://dx.doi.org/10.1039/C9CC08095C] [PMID: 31825398]
[36]
Pisarevsky, E.; Blau, R.; Epshtein, Y.; Ben-Shushan, D.; Eldar-Boock, A.; Tiram, G.; Koshrovski, M.S.; Scomparin, A.; Pozzi, S.; Krivitsky, A.; Shenbach-Koltin, G.; Yeini, E.; Fridrich, L.; White, R.; Satchi-Fainaro, R. Rational design of polyglutamic acid delivering an optimized combination of drugs targeting mutated BRAF and MEK in melanoma. Adv. Ther., 2020, 3(8), 2000028.
[http://dx.doi.org/10.1002/adtp.202000028] [PMID: 35754977]
[37]
Duro-Castano, A.; Sousa-Herves, A.; Armiñán, A.; Charbonnier, D.; Arroyo-Crespo, J.J.; Wedepohl, S.; Calderón, M.; Vicent, M.J. Polyglutamic acid-based crosslinked doxorubicin nanogels as an anti-metastatic treatment for triple negative breast cancer. J. Control. Release, 2021, 332, 10-20.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.005] [PMID: 33587988]
[38]
Qu, J.; Wang, R.; Peng, S.; Shi, M.; Yang, S.T.; Luo, J.; Lin, J.; Zhou, Q. Stepwise dual pH and redox-responsive cross-linked polypeptide nanoparticles for enhanced cellular uptake and effective cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(45), 7129-7140.
[http://dx.doi.org/10.1039/C9TB01773A] [PMID: 31663585]
[39]
Das, M.P.; Pandey, G.; Neppolian, B.; Das, J. Design of poly-l-glutamic acid embedded mesoporous bioactive glass nanospheres for pH-stimulated chemotherapeutic drug delivery and antibacterial susceptibility. Colloids Surf. B Biointerfaces, 2021, 202, 111700.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111700] [PMID: 33756297]
[40]
Johnson, L.C.; Akinmola, A.T.; Scholz, C. Poly(glutamic acid): From natto to drug delivery systems. Biocatal. Agric. Biotechnol., 2022, 40, 102292.
[http://dx.doi.org/10.1016/j.bcab.2022.102292]
[41]
Wang, J.; Xu, W.; Zhang, N.; Yang, C.; Xu, H.; Wang, Z.; Li, B.; Ding, J.; Chen, X. X-ray-responsive polypeptide nanogel for concurrent chemoradiotherapy. J. Control. Release, 2021, 332, 1-9.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.003] [PMID: 33561483]
[42]
Ma, S.; Song, W.; Xu, Y.; Si, X.; Lv, S.; Zhang, Y.; Tang, Z.; Chen, X. Rationally designed polymer conjugate for tumor-specific amplification of oxidative stress and boosting antitumor immunity. Nano Lett., 2020, 20(4), 2514-2521.
[http://dx.doi.org/10.1021/acs.nanolett.9b05265] [PMID: 32109068]
[43]
Yang, C.; Song, W.; Zhang, D.; Yu, H.; Yin, L.; Shen, N.; Deng, M.; Tang, Z.; Gu, J.; Chen, X. Poly (l-glutamic acid)-g-methoxy poly (ethylene glycol)-gemcitabine conjugate improves the anticancer efficacy of gemcitabine. Int. J. Pharm., 2018, 550(1-2), 79-88.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.037] [PMID: 30138704]
[44]
Yang, S.; Zhu, F.; Wang, Q.; Liang, F.; Qu, X.; Gan, Z.; Yang, Z. Nano-rods of doxorubicin with poly(L -glutamic acid) as a carrier-free formulation for intratumoral cancer treatment. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(45), 7283-7292.
[http://dx.doi.org/10.1039/C6TB02127A] [PMID: 32263730]
[45]
Li, M.; Song, W.; Tang, Z.; Lv, S.; Lin, L.; Sun, H.; Li, Q.; Yang, Y.; Hong, H.; Chen, X. Nanoscaled poly(L-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer. ACS Appl. Mater. Interfaces, 2013, 5(5), 1781-1792.
[http://dx.doi.org/10.1021/am303073u] [PMID: 23410916]
[46]
Jiang, Z.; Feng, X.; Zou, H.; Xu, W.; Zhuang, X. Poly(l-glutamic acid)-cisplatin nanoformulations with detachable PEGylation for prolonged circulation half-life and enhanced cell internalization. Bioact. Mater., 2021, 6(9), 2688-2697.
[http://dx.doi.org/10.1016/j.bioactmat.2021.01.034] [PMID: 33665501]
[47]
Song, W.; Tang, Z.; Shen, N.; Yu, H.; Jia, Y.; Zhang, D.; Jiang, J.; He, C.; Tian, H.; Chen, X. Combining disulfiram and poly(l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance. J. Control. Release, 2016, 231, 94-102.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.039] [PMID: 26928530]
[48]
Zhang, Y.; He, P.; Zhang, P.; Yi, X.; Xiao, C.; Chen, X. Polypeptides-drug conjugates for anticancer therapy. Adv. Healthc. Mater., 2021, 10(11), 2001974.
[http://dx.doi.org/10.1002/adhm.202001974] [PMID: 33929786]
[49]
Sun, H.; Gu, X.; Zhang, Q.; Xu, H.; Zhong, Z.; Deng, C. Cancer nanomedicines based on synthetic polypeptides. Biomacromolecules, 2019, 20(12), 4299-4311.
[http://dx.doi.org/10.1021/acs.biomac.9b01291] [PMID: 31659901]
[50]
Richter, K.; Haslbeck, M.; Buchner, J. The heat shock response: life on the verge of death. Mol. Cell, 2010, 40(2), 253-266.
[http://dx.doi.org/10.1016/j.molcel.2010.10.006] [PMID: 20965420]
[51]
Knavel, E.M.; Brace, C.L. Tumor ablation: Common modalities and general practices. Tech. Vasc. Interv. Radiol., 2013, 16(4), 192-200.
[http://dx.doi.org/10.1053/j.tvir.2013.08.002] [PMID: 24238374]
[52]
Wang, Y.; Meng, H.M.; Li, Z. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy. Nanoscale, 2021, 13(19), 8751-8772.
[http://dx.doi.org/10.1039/D1NR00323B] [PMID: 33973616]
[53]
Xu, C.; Wang, Y.; Wang, E.; Yan, N.; Sheng, S.; Chen, J.; Lin, L.; Guo, Z.; Tian, H.; Chen, X. Effective eradication of tumors by enhancing photoacoustic-imaging-guided combined photothermal therapy and ultrasonic therapy. Adv. Funct. Mater., 2021, 31(10), 2009314.
[http://dx.doi.org/10.1002/adfm.202009314]
[54]
Zhen, X.; Pu, K.; Jiang, X. Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: Signal amplification and second near-infrared construction. Small, 2021, 17(6), 2004723.
[http://dx.doi.org/10.1002/smll.202004723] [PMID: 33448155]
[55]
Weber, J.; Beard, P.C.; Bohndiek, S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods, 2016, 13(8), 639-650.
[http://dx.doi.org/10.1038/nmeth.3929] [PMID: 27467727]
[56]
Steinberg, I.; Huland, D.M.; Vermesh, O.; Frostig, H.E.; Tummers, W.S.; Gambhir, S.S. Photoacoustic clinical imaging. Photoacoustics, 2019, 14, 77-98.
[http://dx.doi.org/10.1016/j.pacs.2019.05.001] [PMID: 31293884]
[57]
Gulati, S. Mansi; Vijayan, S.; Kumar, S.; Agarwal, V.; Harikumar, B.; Varma, R.S. Magnetic nanocarriers adorned on graphene: Promising contrast-enhancing agents with state-of-the-art performance in magnetic resonance imaging (MRI) and theranostics. Mat. Adv., 2022, 3(7), 2971-2989.
[http://dx.doi.org/10.1039/D1MA01071A]
[58]
Jeong, Y.; Hwang, H.S.; Na, K. Theranostics and contrast agents for magnetic resonance imaging. Biomater. Res., 2018, 22(1), 20.
[http://dx.doi.org/10.1186/s40824-018-0130-1] [PMID: 30065849]
[59]
Xu, C.; Wang, Y.; Yu, H.; Tian, H.; Chen, X. Multifunctional theranostic nanoparticles derived from fruit-extracted anthocyanins with dynamic disassembly and elimination abilities. ACS Nano, 2018, 12(8), 8255-8265.
[http://dx.doi.org/10.1021/acsnano.8b03525] [PMID: 30088914]
[60]
Wang, Y.; Wang, Z.; Xu, C.; Tian, H.; Chen, X. A disassembling strategy overcomes the EPR effect and renal clearance dilemma of the multifunctional theranostic nanoparticles for cancer therapy. Biomaterials, 2019, 197, 284-293.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.025] [PMID: 30677557]
[61]
Kim, D.; Le, Q.V.; Kim, Y.B.; Oh, Y.K. Safety and photochemotherapeutic application of poly(γ-glutamic acid)-based biopolymeric nanoparticle. Acta Pharm. Sin. B, 2019, 9(3), 565-574.
[http://dx.doi.org/10.1016/j.apsb.2019.01.005] [PMID: 31193800]
[62]
Wu, F.; Zhang, M.; Lu, H.; Liang, D.; Huang, Y.; Xia, Y.; Hu, Y.; Hu, S.; Wang, J.; Yi, X.; Zhang, J. Triple stimuli-responsive magnetic hollow porous carbon-based nanodrug delivery system for magnetic resonance imaging-guided synergistic photothermal/chemotherapy of cancer. ACS Appl. Mater. Interfaces, 2018, 10(26), 21939-21949.
[http://dx.doi.org/10.1021/acsami.8b07213] [PMID: 29893126]
[63]
Feng, B.; Xu, Z.; Zhou, F.; Yu, H.; Sun, Q.; Wang, D.; Tang, Z.; Yu, H.; Yin, Q.; Zhang, Z.; Li, Y. Near infrared light-actuated gold nanorods with cisplatin-polypeptide wrapping for targeted therapy of triple negative breast cancer. Nanoscale, 2015, 7(36), 14854-14864.
[http://dx.doi.org/10.1039/C5NR03693C] [PMID: 26222373]
[64]
Hou, G.; Qian, J.; Xu, W.; Sun, T.; Wang, J.; Wang, Y.; Suo, A. Multifunctional PEG-b-polypeptide-decorated gold nanorod for targeted combined chemo-photothermal therapy of breast cancer. Colloids Surf. B Biointerfaces, 2019, 181, 602-611.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.025] [PMID: 31202131]
[65]
Liu, P.; Wang, Y.; An, L.; Tian, Q.; Lin, J.; Yang, S. Ultrasmall WO3−x@γ-poly-L-glutamic acid nanoparticles as a photoacoustic imaging and effective photothermal-enhanced chemodynamic therapy agent for cancer. ACS Appl. Mater. Interfaces, 2018, 10(45), 38833-38844.
[http://dx.doi.org/10.1021/acsami.8b15678] [PMID: 30351904]
[66]
Kiew, L.V.; Cheah, H.Y.; Voon, S.H.; Gallon, E.; Movellan, J.; Ng, K.H.; Alpugan, S.; Lee, H.B.; Dumoulin, F.; Vicent, M.J.; Chung, L.Y. Near-infrared activatable phthalocyanine−poly-L-glutamic acid conjugate: Enhanced in vivo safety and antitumor efficacy toward an effective photodynamic cancer therapy. Nanomedicine, 2017, 13(4), 1447-1458.
[http://dx.doi.org/10.1016/j.nano.2017.02.002] [PMID: 28214608]
[67]
Dou, X.; Nomoto, T.; Takemoto, H.; Matsui, M.; Tomoda, K.; Nishiyama, N. Effect of multiple cyclic RGD peptides on tumor accumulation and intratumoral distribution of IRDye 700DX-conjugated polymers. Sci. Rep., 2018, 8(1), 8126.
[http://dx.doi.org/10.1038/s41598-018-26593-0] [PMID: 29802410]
[68]
Hou, M.; Chen, W.; Zhao, J.; Dai, D.; Yang, M.; Yi, C. Facile synthesis and in vivo bioimaging applications of porphyrin derivative-encapsulated polymer nanoparticles. Chin. Chem. Lett., 2022, 33(8), 4101-4106.
[http://dx.doi.org/10.1016/j.cclet.2022.01.049]
[69]
Bao, Y.; Yu, H.; Yang, L.; Chen, L. Combretastatin A4-combined photodynamic therapy for enhanced tumor therapeutic efficacy. Mater. Today Commun., 2021, 28, 102616.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102616]
[70]
Yu, H.; Bao, Y.; Xu, C.; Chen, L.; Tang, Z. Poly(L-glutamic acid)-drug conjugates for chemo- and photodynamic combination therapy. Macromol. Biosci., 2021, 21(1), 2000192.
[http://dx.doi.org/10.1002/mabi.202000192] [PMID: 33043592]
[71]
Tang, X.; Wang, Z.; Zhu, Y.; Xiao, H.; Xiao, Y.; Cui, S.; Lin, B.; Yang, K.; Liu, H. Hypoxia-activated ROS burst liposomes boosted by local mild hyperthermia for photo/chemodynamic therapy. J. Control. Release, 2020, 328, 100-111.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.035] [PMID: 32858074]
[72]
Zhang, M.; Wang, W.; Wu, F.; Zheng, T.; Ashley, J.; Mohammadniaei, M.; Zhang, Q.; Wang, M.; Li, L.; Shen, J.; Sun, Y. Biodegradable poly(γ-glutamic acid)@glucose oxidase@carbon dot nanoparticles for simultaneous multimodal imaging and synergetic cancer therapy. Biomaterials, 2020, 252, 120106.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120106] [PMID: 32417651]
[73]
Delgado-Vargas, F.; Jiménez, A.R.; Paredes-López, O. Natural pigments: Carotenoids, anthocyanins, and betalains--characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr., 2000, 40(3), 173-289.
[http://dx.doi.org/10.1080/10408690091189257] [PMID: 10850526]
[74]
Liu, Y.; Ai, K.; Liu, J.; Deng, M.; He, Y.; Lu, L. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater., 2013, 25(9), 1353-1359.
[http://dx.doi.org/10.1002/adma.201204683] [PMID: 23280690]
[75]
Shim, G.; Ko, S.; Kim, D.; Le, Q.V.; Park, G.T.; Lee, J.; Kwon, T.; Choi, H.G.; Kim, Y.B.; Oh, Y.K. Light-switchable systems for remotely controlled drug delivery. J. Control. Release, 2017, 267, 67-79.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.009] [PMID: 28888917]
[76]
Tang, Z.; Liu, Y.; He, M.; Bu, W. Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angew. Chem. Int. Ed., 2019, 58(4), 946-956.
[http://dx.doi.org/10.1002/anie.201805664] [PMID: 30048028]
[77]
Zhang, C.; Bu, W.; Ni, D.; Zhang, S.; Li, Q.; Yao, Z.; Zhang, J.; Yao, H.; Wang, Z.; Shi, J. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton Reaction. Angew. Chem. Int. Ed., 2016, 55(6), 2101-2106.
[http://dx.doi.org/10.1002/anie.201510031] [PMID: 26836344]
[78]
Wang, X.; Zhong, X.; Liu, Z.; Cheng, L. Recent progress of chemodynamic therapy-induced combination cancer therapy. Nano Today, 2020, 35, 100946.
[http://dx.doi.org/10.1016/j.nantod.2020.100946]
[79]
Bokare, A.D.; Choi, W. Review of iron-free fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater., 2014, 275, 121-135.
[http://dx.doi.org/10.1016/j.jhazmat.2014.04.054] [PMID: 24857896]
[80]
Allison, R.R. Photodynamic therapy: Oncologic horizons. Future Oncol., 2014, 10(1), 123-124.
[http://dx.doi.org/10.2217/fon.13.176] [PMID: 24328413]
[81]
Purushothaman, B.; Choi, J.; Park, S.; Lee, J.; Samson, A.A.S.; Hong, S.; Song, J.M. Biotin-conjugated PEGylated porphyrin self-assembled nanoparticles co-targeting mitochondria and lysosomes for advanced chemo-photodynamic combination therapy. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(1), 65-79.
[http://dx.doi.org/10.1039/C8TB01923A] [PMID: 32254951]
[82]
Nakamura, H.; Liao, L.; Hitaka, Y.; Tsukigawa, K.; Subr, V.; Fang, J.; Ulbrich, K.; Maeda, H. Micelles of zinc protoporphyrin conjugated to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer for imaging and light-induced antitumor effects in vivo. J. Control. Release, 2013, 165(3), 191-198.
[http://dx.doi.org/10.1016/j.jconrel.2012.11.017] [PMID: 23220104]
[83]
Vaidya, A.; Sun, Y.; Feng, Y.; Emerson, L.; Jeong, E.K.; Lu, Z.R. Contrast-enhanced MRI-guided photodynamic cancer therapy with a pegylated bifunctional polymer conjugate. Pharm. Res., 2008, 25(9), 2002-2011.
[http://dx.doi.org/10.1007/s11095-008-9608-1] [PMID: 18584312]
[84]
Arroyo-Crespo, J.J.; Armiñán, A.; Charbonnier, D.; Balzano-Nogueira, L.; Huertas-López, F.; Martí, C.; Tarazona, S.; Forteza, J.; Conesa, A.; Vicent, M.J. Tumor microenvironment-targeted poly-L-glutamic acid-based combination conjugate for enhanced triple negative breast cancer treatment. Biomaterials, 2018, 186, 8-21.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.023] [PMID: 30278346]
[85]
Kiew, L.V.; Cheah, H.Y.; Voon, S.H.; Gallon, E.; Movellan, J.; Ng, K.H.; Alpugan, S.; Lee, H.B.; Dumoulin, F.; Vicent, M.J.; Chung, L.Y. Near-infrared activatable phthalocyanine-poly-L-glutamic acid conjugate: increased cellular uptake and light-dark toxicity ratio toward an effective photodynamic cancer therapy. Nanomedicine, 2017, 13(4), 1447-1458.
[http://dx.doi.org/10.1016/j.nano.2017.02.002] [PMID: 28214608]
[86]
Bao, Y.; Yu, H.; Zhang, Y.; Chen, L. Comparative study of two poly(amino acid)-based photosensitizer-delivery systems for photodynamic therapy. Int. J. Biol. Macromol., 2021, 169, 153-160.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.019] [PMID: 33326837]
[87]
Zhang, Y.; Shen, W.; Zhang, P.; Chen, L.; Xiao, C. GSH-triggered release of sulfur dioxide gas to regulate redox balance for enhanced photodynamic therapy. Chem. Commun., 2020, 56(42), 5645-5648.
[http://dx.doi.org/10.1039/D0CC00470G] [PMID: 32313913]
[88]
Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev., 2016, 45(23), 6597-6626.
[http://dx.doi.org/10.1039/C6CS00271D] [PMID: 27722328]
[89]
He, H.; Zhu, R.; Sun, W.; Cai, K.; Chen, Y.; Yin, L. Selective cancer treatment via photodynamic sensitization of hypoxia-responsive drug delivery. Nanoscale, 2018, 10(6), 2856-2865.
[http://dx.doi.org/10.1039/C7NR07677K] [PMID: 29364314]
[90]
Kim, S.; Tachikawa, T.; Fujitsuka, M.; Majima, T. Far-red fluorescence probe for monitoring singlet oxygen during photodynamic therapy. J. Am. Chem. Soc., 2014, 136(33), 11707-11715.
[http://dx.doi.org/10.1021/ja504279r] [PMID: 25075870]
[91]
Tang, Z-H.; Chen, X-S. Tumor-targeting drug delivery systems based on poly (L-glutamic acid)-g-poly (ethylene glycol). Acta Polym. Sin., 2019, 50(6), 543-552.
[92]
Song, W.; Tang, Z.; Zhang, D.; Li, M.; Gu, J.; Chen, X. A cooperative polymeric platform for tumor-targeted drug delivery. Chem. Sci., 2016, 7(1), 728-736.
[http://dx.doi.org/10.1039/C5SC01698C] [PMID: 28791115]
[93]
Wei, Z.; Liang, P.; Xie, J.; Song, C.; Tang, C.; Wang, Y.; Yin, X.; Cai, Y.; Han, W.; Dong, X. Carrier-free nano-integrated strategy for synergetic cancer anti-angiogenic therapy and phototherapy. Chem. Sci., 2019, 10(9), 2778-2784.
[http://dx.doi.org/10.1039/C8SC04123G] [PMID: 30996997]
[94]
Liang, P.; Huang, X.; Wang, Y.; Chen, D.; Ou, C.; Zhang, Q.; Shao, J.; Huang, W.; Dong, X. Tumor-microenvironment-responsive nanoconjugate for synergistic antivascular activity and phototherapy. ACS Nano, 2018, 12(11), 11446-11457.
[http://dx.doi.org/10.1021/acsnano.8b06478] [PMID: 30345740]
[95]
Chen, D.; Yu, Q.; Huang, X.; Dai, H.; Luo, T.; Shao, J.; Chen, P.; Chen, J.; Huang, W.; Dong, X. A highly-efficient type I photosensitizer with robust vascular-disruption activity for hypoxic-and-metastatic tumor specific photodynamic therapy. Small, 2020, 16(23), 2001059.
[http://dx.doi.org/10.1002/smll.202001059] [PMID: 32378337]
[96]
Song, L.; Chen, B.; Qin, Z.; Liu, X.; Guo, Z.; Lou, H.; Liu, H.; Sun, W.; Guo, C.; Li, C. Temperature‐dependent CAT‐Like RGD‐BPNS@ SMFN nanoplatform for PTT‐PDT self‐synergetic tumor phototherapy. Adv. Healthc. Mater., 2022, 11(8), 2102298.
[http://dx.doi.org/10.1002/adhm.202102298] [PMID: 34918483]
[97]
Bian, H.; Ma, D.; Zhang, X.; Xin, K.; Yang, Y.; Peng, X.; Xiao, Y. Tailored engineering of novel xanthonium polymethine dyes for synergetic PDT and PTT triggered by 1064 nm laser toward deep‐seated tumors. Small, 2021, 17(21), 2100398.
[http://dx.doi.org/10.1002/smll.202100398] [PMID: 33885221]
[98]
Bu, Y.; Huang, R.; Li, Z.; Zhang, P.; Zhang, L.; Yang, Y.; Liu, Z.; Guo, K.; Gao, F. Anisotropic truncated octahedral Au with Pt deposition on arris for localized surface plasmon resonance-enhanced photothermal and photodynamic therapy of osteosarcoma. ACS Appl. Mater. Interfaces, 2021, 13(30), 35328-35341.
[http://dx.doi.org/10.1021/acsami.1c07181] [PMID: 34291912]
[99]
Geng, B.; Yang, D.; Pan, D.; Wang, L.; Zheng, F.; Shen, W.; Zhang, C.; Li, X. NIR-responsive carbon dots for efficient photothermal cancer therapy at low power densities. Carbon, 2018, 134, 153-162.
[http://dx.doi.org/10.1016/j.carbon.2018.03.084]
[100]
Sun, S.; Chen, J.; Jiang, K.; Tang, Z.; Wang, Y.; Li, Z.; Liu, C.; Wu, A.; Lin, H. Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power. ACS Appl. Mater. Interfaces, 2019, 11(6), 5791-5803.
[http://dx.doi.org/10.1021/acsami.8b19042] [PMID: 30648846]
[101]
Tomić S.; Janjetović K.; Mihajlović D.; Milenković M.; Kravić S.T.; Marković Z.; Todorović M.B.; Spitalsky, Z.; Micusik, M.; Vučević D.; Čolić M.; Trajković V. Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. Biomaterials, 2017, 146, 13-28.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.040] [PMID: 28892752]
[102]
Hassan, H.A.F.M.; Smyth, L.; Wang, J.T.W.; Costa, P.M.; Ratnasothy, K.; Diebold, S.S.; Lombardi, G.; Al-Jamal, K.T. Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy. Biomaterials, 2016, 104, 310-322.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.005] [PMID: 27475727]
[103]
Maddocks, O.D.K.; Berkers, C.R.; Mason, S.M.; Zheng, L.; Blyth, K.; Gottlieb, E.; Vousden, K.H. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature, 2013, 493(7433), 542-546.
[http://dx.doi.org/10.1038/nature11743] [PMID: 23242140]
[104]
Zhang, L.; Wang, Z.; Zhang, Y.; Cao, F.; Dong, K.; Ren, J.; Qu, X. Erythrocyte membrane cloaked metal-organic framework nanoparticle as biomimetic nanoreactor for starvation-activated colon cancer therapy. ACS Nano, 2018, 12(10), 10201-10211.
[http://dx.doi.org/10.1021/acsnano.8b05200] [PMID: 30265804]
[105]
Zhang, C.; Ni, D.; Liu, Y.; Yao, H.; Bu, W.; Shi, J. Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nat. Nanotechnol., 2017, 12(4), 378-386.
[http://dx.doi.org/10.1038/nnano.2016.280] [PMID: 28068318]
[106]
Zou, M.Z.; Liu, W.L.; Li, C.X.; Zheng, D.W.; Zeng, J.Y.; Gao, F.; Ye, J.J.; Zhang, X.Z. A multifunctional biomimetic nanoplatform for relieving hypoxia to enhance chemotherapy and inhibit the PD‐1/PD‐L1 axis. Small, 2018, 14(28), 1801120.
[http://dx.doi.org/10.1002/smll.201801120] [PMID: 29882235]
[107]
Fan, Q.; Chen, Z.; Wang, C.; Liu, Z. Toward biomaterials for enhancing immune checkpoint blockade therapy. Adv. Funct. Mater., 2018, 28(37), 1802540.
[http://dx.doi.org/10.1002/adfm.201802540]
[108]
Yang, Y.; Zhu, W.; Dong, Z.; Chao, Y.; Xu, L.; Chen, M.; Liu, Z. 1D coordination polymer nanofibers for low-temperature photothermal therapy. Adv. Mater., 2017, 29(40), 1703588.
[http://dx.doi.org/10.1002/adma.201703588] [PMID: 28833643]
[109]
Liu, J.; Li, H.J.; Luo, Y.L.; Xu, C.F.; Du, X.J.; Du, J.Z.; Wang, J. Enhanced primary tumor penetration facilitates nanoparticle draining into lymph nodes after systemic injection for tumor metastasis inhibition. ACS Nano, 2019, 13(8), 8648-8658.
[http://dx.doi.org/10.1021/acsnano.9b03472] [PMID: 31328920]
[110]
An, Y.P.; Xiao, R.; Cui, H.; Cui, Z.J. Selective activation by photodynamic action of cholecystokinin receptor in the freshly isolated rat pancreatic acini. Br. J. Pharmacol., 2003, 139(4), 872-880.
[http://dx.doi.org/10.1038/sj.bjp.0705295] [PMID: 12813011]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy