Research Article

脂多糖对不同年龄大鼠结肠的影响

卷 30, 期 39, 2023

发表于: 10 February, 2023

页: [4492 - 4503] 页: 12

弟呕挨: 10.2174/0929867330666230113112803

价格: $65

摘要

背景:脂多糖(lipopolaccharide, LPS)是一种引起炎症的内毒素,随着年龄的增长,脂多糖的含量逐渐增加。结肠对LPS刺激的反应是否会随着年龄的增长而增加尚不清楚。 目的:研究了LPS刺激对成年大鼠和老龄大鼠结肠的影响。 方法:选取健康雄性SD大鼠43只,4月龄时分为成年组和lps刺激成年组,22月龄时分为衰老组和lps刺激衰老组。腹腔注射LPS (1mg/kg)刺激大鼠24 h,观察结肠形态变化,检测肠道炎症反应、紧密连接蛋白、肠上皮细胞凋亡和增殖。 结果:LPS刺激后,成年大鼠结肠出现一系列形态学改变,炎症反应(TLR4、NF-κB、IL-1β)升高,紧密连接蛋白(ZO-1、Claudin1、Claudin2)水平改变,肠上皮细胞Bax、Bcl2和增殖(PCNA)增加。上述变化在衰老大鼠中也有发现。LPS刺激在一定程度上进一步促进衰老大鼠结肠的上述变化。 结论:在LPS刺激和衰老过程中,大鼠的一系列结肠变化被明显破坏,在LPS刺激的衰老大鼠中,这些变化在一定程度上进一步加重。

关键词: 脂多糖,衰老,炎症,紧密连接,凋亡,肠上皮细胞。脂多糖,衰老,炎症,紧密连接,凋亡,肠上皮细胞。

« Previous
[1]
Groschwitz, K.R.; Hogan, S.P. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol., 2009, 124(1), 3-20.
[http://dx.doi.org/10.1016/j.jaci.2009.05.038] [PMID: 19560575]
[2]
Su, L.; Nalle, S.C.; Shen, L.; Turner, E.S.; Singh, G.; Breskin, L.A.; Khramtsova, E.A.; Khramtsova, G.; Tsai, P.Y.; Fu, Y.X.; Abraham, C.; Turner, J.R. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology, 2013, 145(2), 407-415.
[http://dx.doi.org/10.1053/j.gastro.2013.04.011] [PMID: 23619146]
[3]
Tran, L.; Greenwood-Van Meerveld, B. Age-associated remodeling of the intestinal epithelial barrier. J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68(9), 1045-1056.
[http://dx.doi.org/10.1093/gerona/glt106] [PMID: 23873964]
[4]
Zeisel, M.B.; Dhawan, P.; Baumert, T.F. Tight junction proteins in gastrointestinal and liver disease. Gut, 2019, 68(3), 547-561.
[http://dx.doi.org/10.1136/gutjnl-2018-316906] [PMID: 30297438]
[5]
Chen, P.; Stärkel, P.; Turner, J.R.; Ho, S.B.; Schnabl, B. Dysbiosis induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology, 2015, 61(3), 883-894.
[http://dx.doi.org/10.1002/hep.27489] [PMID: 25251280]
[6]
Branca, J.J.V.; Gulisano, M.; Nicoletti, C. Intestinal epithelial barrier functions in ageing. Ageing Res. Rev., 2019, 54, 100938.
[http://dx.doi.org/10.1016/j.arr.2019.100938] [PMID: 31369869]
[7]
Cerqueira César Machado, M.; Pinheiro da Silva, F. Intestinal barrier dysfunction in human pathology and aging. Curr. Pharm. Des., 2016, 22(30), 4645-4650.
[http://dx.doi.org/10.2174/1381612822666160510125331] [PMID: 27160754]
[8]
Roth, S.; Franken, P.; Sacchetti, A.; Kremer, A.; Anderson, K.; Sansom, O.; Fodde, R. Paneth cells in intestinal homeostasis and tissue injury. PLoS One, 2012, 7(6), e38965.
[http://dx.doi.org/10.1371/journal.pone.0038965] [PMID: 22745693]
[9]
Gehart, H.; Clevers, H. Tales from the crypt: New insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(1), 19-34.
[http://dx.doi.org/10.1038/s41575-018-0081-y] [PMID: 30429586]
[10]
Gong, Q.; He, L.; Wang, M.; Zuo, S.; Gao, H.; Feng, Y.; Du, L.; Luo, Y.; Li, J. Comparison of the TLR4/NFκB and NLRP3 signalling pathways in major organs of the mouse after intravenous injection of lipopolysaccharide. Pharm. Biol., 2019, 57(1), 555-563.
[http://dx.doi.org/10.1080/13880209.2019.1653326] [PMID: 31446815]
[11]
Hersoug, L.G.; Møller, P.; Loft, S. Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutr. Res. Rev., 2018, 31(2), 153-163.
[http://dx.doi.org/10.1017/S0954422417000269] [PMID: 29362018]
[12]
Cao, S.; Zhang, Q.; Wang, C.; Wu, H.; Jiao, L.; Hong, Q.; Hu, C. LPS challenge increased intestinal permeability, disrupted mitochondrial function and triggered mitophagy of piglets. Innate Immun., 2018, 24(4), 221-230.
[http://dx.doi.org/10.1177/1753425918769372] [PMID: 29642727]
[13]
Guerville, M.; Boudry, G. Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 311(1), G1-G15.
[http://dx.doi.org/10.1152/ajpgi.00098.2016] [PMID: 27151941]
[14]
Steimle, A.; Michaelis, L.; Di Lorenzo, F.; Kliem, T.; Münzner, T.; Maerz, J.K.; Schäfer, A.; Lange, A.; Parusel, R.; Gronbach, K.; Fuchs, K.; Silipo, A.; Öz, H.H.; Pichler, B.J.; Autenrieth, I.B.; Molinaro, A.; Frick, J.S. Weak agonistic LPS restores intestinal immune homeostasis. Mol. Ther., 2019, 27(11), 1974-1991.
[http://dx.doi.org/10.1016/j.ymthe.2019.07.007] [PMID: 31416777]
[15]
Guo, S.; Nighot, M.; Al-Sadi, R.; Alhmoud, T.; Nighot, P.; Ma, T.Y. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J. Immunol., 2015, 195(10), 4999-5010.
[http://dx.doi.org/10.4049/jimmunol.1402598] [PMID: 26466961]
[16]
Li, L.; Wan, G.; Han, B.; Zhang, Z. Echinacoside alleviated LPS-induced cell apoptosis and inflammation in rat intestine epithelial cells by inhibiting the mTOR/STAT3 pathway. Biomed. Pharmacother., 2018, 104, 622-628.
[http://dx.doi.org/10.1016/j.biopha.2018.05.072] [PMID: 29803175]
[17]
Lee, S.M.; Kim, N.; Yoon, H.; Nam, R.H.; Lee, D.H. Microbial changes and host response in F344 rat colon depending on sex and age following a high-fat diet. Front. Microbiol., 2018, 9(9), 2236.
[http://dx.doi.org/10.3389/fmicb.2018.02236] [PMID: 30298061]
[18]
Moorefield, E.C.; Andres, S.F.; Blue, R.E.; Van Landeghem, L.; Mah, A.T.; Santoro, M.A.; Ding, S. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells. Aging, 2017, 9(8), 1898-1915.
[http://dx.doi.org/10.18632/aging.101279] [PMID: 28854151]
[19]
Kim, K.A.; Jeong, J.J.; Yoo, S.Y.; Kim, D.H. Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. BMC Microbiol., 2016, 16(1), 9.
[http://dx.doi.org/10.1186/s12866-016-0625-7] [PMID: 26772806]
[20]
Ren, W.; Wu, K.; Li, X.; Luo, M.; Liu, H.; Zhang, S.; Hu, Y. Age-related changes in small intestinal mucosa epithelium architecture and epithelial tight junction in rat models. Aging Clin. Exp. Res., 2014, 26(2), 183-191.
[http://dx.doi.org/10.1007/s40520-013-0148-0] [PMID: 24243034]
[21]
Jo, H.J.; Kim, N.; Nam, R.H.; Kang, J.M.; Kim, J.H.; Choe, G.; Lee, H.S.; Park, J.H.; Chang, H.; Kim, H.; Lee, M.Y.; Kim, Y.S.; Kim, J.S.; Jung, H.C. Fat deposition in the tunica muscularis and decrease of interstitial cells of Cajal and nNOS-positive neuronal cells in the aged rat colon. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 306(8), G659-G669.
[http://dx.doi.org/10.1152/ajpgi.00304.2012] [PMID: 24525022]
[22]
Phillips, R.J.; Pairitz, J.C.; Powley, T.L. Age-related neuronal loss in the submucosal plexus of the colon of Fischer 344 rats. Neurobiol. Aging, 2007, 28(7), 1124-1137.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.05.019] [PMID: 16793176]
[23]
Phillips, R.J.; Rhodes, B.S.; Powley, T.L. Effects of age on sympathetic innervation of the myenteric plexus and gastrointestinal smooth muscle of Fischer 344 rats. Anat. Embryol., 2006, 211(6), 673-683.
[http://dx.doi.org/10.1007/s00429-006-0123-z] [PMID: 17024301]
[24]
Patankar, J.V.; Becker, C. Cell death in the gut epithelium and implications for chronic inflammation. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(9), 543-556.
[http://dx.doi.org/10.1038/s41575-020-0326-4] [PMID: 32651553]
[25]
Dun, Y.; Liu, M.; Chen, J.; Peng, D.; Zhao, H.; Zhou, Z.; Wang, T.; Liu, C.; Guo, Y.; Zhang, C.; Yuan, D. Panax japonicusRegulatory effects of saponins from on colonic epithelial tight junctions in aging rats. J. Ginseng Res., 2018, 42(1), 50-56.
[http://dx.doi.org/10.1016/j.jgr.2016.12.011] [PMID: 29348722]
[26]
Wang, J.; Ghosh, S.S.; Ghosh, S. Curcumin improves intestinal barrier function: Modulation of intracellular signaling, and organization of tight junctions. Am. J. Physiol. Cell Physiol., 2017, 312(4), C438-C445.
[http://dx.doi.org/10.1152/ajpcell.00235.2016] [PMID: 28249988]
[27]
Marchiando, A.M.; Shen, L.; Graham, W.V.; Edelblum, K.L.; Duckworth, C.A.; Guan, Y.; Montrose, M.H.; Turner, J.R.; Watson, A.J.M. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology, 2011, 140(4), 1208-1218.
[http://dx.doi.org/10.1053/j.gastro.2011.01.004] [PMID: 21237166]
[28]
Rawat, M.; Nighot, M.; Al-Sadi, R.; Gupta, Y.; Viszwapriya, D.; Yochum, G.; Koltun, W.; Ma, T.Y. IL1B increases intestinal tight junction permeability by up-regulation of MIR200C-3p, which degrades occludin mRNA. Gastroenterology, 2020, 159(4), 1375-1389.
[http://dx.doi.org/10.1053/j.gastro.2020.06.038] [PMID: 32569770]
[29]
Zhang, Y.; Zhou, F.; Wang, Z.; Li, Z.; Li, J. PNU-282987 attenuates intestinal epithelial barrier dysfunction in LPS-induced endotoxemia. Inflammation, 2020, 43(2), 417-424.
[http://dx.doi.org/10.1007/s10753-019-01096-w] [PMID: 31950323]
[30]
Xie, M.Y.; Hou, L.J.; Sun, J.J.; Zeng, B.; Xi, Q.Y.; Luo, J.Y.; Chen, T.; Zhang, Y.L. Porcine milk exosome MiRNAs attenuate LPS-induced apoptosis through inhibiting TLR4/NF-κB and p53 pathways in intestinal epithelial cells. J. Agric. Food Chem., 2019, 67(34), 9477-9491.
[http://dx.doi.org/10.1021/acs.jafc.9b02925] [PMID: 31429552]
[31]
Murphy, J.R. Host defenses in murine malaria: Immunological characteristics of a protracted state of immunity to Plasmodium yoelii. Infect. Immun., 1980, 27(1), 68-74.
[http://dx.doi.org/10.1128/iai.27.1.68-74.1980] [PMID: 6987179]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy