Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Biomaterial Based Stem Cells Therapy for Cancer

Author(s): Akanksha Pandey, Rishabha Malviya*, Pramod Kumar Sharma and Kalpana Rahate

Volume 18, Issue 8, 2023

Published on: 27 January, 2023

Page: [1041 - 1055] Pages: 15

DOI: 10.2174/1574888X18666230110154333

Price: $65

Abstract

Biomaterials are developed to aid a variety of regenerative medicine strategies, such as providing a framework for cell adhesion and proliferation or serving as carriers of bioactive factors, while stem cells are increasingly implanted in biomaterial scaffolds to improve therapeutic efficacy. Advanced biomaterials like metals, synthetic polymers, and ceramics are used in bone regeneration technology. The ultimate goal of biomaterial-directed SC (stem cells) culture is to replicate the physical and biochemical characteristics of the physiological SC niche. The primary structural component of tumour ECM (extracellular matrix) is collagen. Cancer initiation, EMT (epithelial-mesenchymal transition), drug resistance, and CSC (cancer stem cells) self-renewal have all been linked to collagen subtypes. The enhancement of liver CSCs has already been investigated using collagen I-based platforms. Alginate and chitosan are two naturally occurring polymers with biological macromolecules that are similar. Biomaterial-based therapies, on the whole, offer incredible versatility and tailorability in the fight against the disease. They could also be used as tissue-engineered scaffolds for immune cell replenishment, potentially making them a key weapon in the next generation of therapeutic approaches.

Keywords: Stem cell therapy, biomaterial, cancer, patient care, cancer treatment, collagen.

Graphical Abstract
[1]
Qi C, Yan X, Huang C, Melerzanov A, Du Y. Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine. Protein Cell 2015; 6(9): 638-53.
[http://dx.doi.org/10.1007/s13238-015-0179-8] [PMID: 26088192]
[2]
Discher DE, Janmey P, Wang Y. Tissue cells feel and respond to the stiffness of their substrate. Science 2005; 310(5751): 1139-43.
[http://dx.doi.org/10.1126/science.1116995] [PMID: 16293750]
[3]
Peng H, Liu X, Wang G, et al. Polymeric multifunctional nanomaterials for theranostics. J Mater Chem B Mater Biol Med 2015; 3(34): 6856-70.
[http://dx.doi.org/10.1039/C5TB00617A] [PMID: 32262535]
[4]
Mao AS, Mooney DJ. Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci USA 2015; 112(47): 14452-9.
[http://dx.doi.org/10.1073/pnas.1508520112] [PMID: 26598661]
[5]
Jayaraman P, Gandhimathi C, Venugopal JR, Becker DL, Ramakrishna S, Srinivasan DK. Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Adv Drug Deliv Rev 2015; 94: 77-95.
[http://dx.doi.org/10.1016/j.addr.2015.09.007] [PMID: 26415888]
[6]
Cao W, Liu J, Wang L, et al. Modeling liver cancer and therapy responsiveness using organoids derived from primary mouse liver tumors. Carcinogenesis 2019; 40(1): 145-54.
[http://dx.doi.org/10.1093/carcin/bgy129] [PMID: 30289434]
[7]
Zhang S, Liu Y, Zhang X, et al. Prostaglandin E 2 hydrogel improves cutaneous wound healing via M2 macrophages polarization. Theranostics 2018; 8(19): 5348-61.
[http://dx.doi.org/10.7150/thno.27385] [PMID: 30555551]
[8]
Lam MT, Wu JC. Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev Cardiovasc Ther 2012; 10(8): 1039-49.
[http://dx.doi.org/10.1586/erc.12.99] [PMID: 23030293]
[9]
Lau EYT, Ho NPY, Lee TKW. Cancer stem cells and their microenvironment: biology and therapeutic implications. Stem Cells Int 2017; 2017(17): 1-11.
[http://dx.doi.org/10.1155/2017/3714190] [PMID: 28337221]
[10]
Ottenbrite RM, Kim SW. Polymeric drugs and drug delivery systems. Florida, USA: CRC Press 2019.
[http://dx.doi.org/10.1201/9780429136405]
[11]
Kleinsmith LJ, Pierce GB Jr. Multipotentiality of single embryonal carcinoma cells. Cancer Res 1964; 24: 1544-51.
[PMID: 14234000]
[12]
Schätzlein AG. Delivering cancer stem cell therapies – A role for nanomedicines? Eur J Cancer 2006; 42(9): 1309-15.
[http://dx.doi.org/10.1016/j.ejca.2006.01.044] [PMID: 16682183]
[13]
Greaves M, Maley CC. Clonal evolution in cancer. Nature 2012; 481(7381): 306-13.
[http://dx.doi.org/10.1038/nature10762] [PMID: 22258609]
[14]
Farrar WL. Cancer stem cells. N Engl J Med 2005; 355: 1-191.
[15]
Marotta LLC, Polyak K. Cancer stem cells: A model in the making. Curr Opin Genet Dev 2009; 19(1): 44-50.
[http://dx.doi.org/10.1016/j.gde.2008.12.003] [PMID: 19167210]
[16]
Clevers H. The cancer stem cell: Premises, promises and challenges. Nat Med 2011; 17(3): 313-9.
[http://dx.doi.org/10.1038/nm.2304] [PMID: 21386835]
[17]
Wicha MS, Liu S, Dontu G. Cancer stem cells: An old idea--a paradigm shift. Cancer Res 2006; 66(4): 1883-90.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3153] [PMID: 16488983]
[18]
Kaiser J. The cancer stem cell gamble. Science 2015; 347(6219): 226-9.
[http://dx.doi.org/10.1126/science.347.6219.226] [PMID: 25593170]
[19]
Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007; 17(2): 165-72.
[http://dx.doi.org/10.1016/j.cub.2006.11.033] [PMID: 17196391]
[20]
Chew SA, Danti S. Biomaterial‐based implantable devices for cancer therapy. Adv Healthc Mater 2017; 6(2): 1600766.
[http://dx.doi.org/10.1002/adhm.201600766] [PMID: 27886461]
[21]
Fong ELS, Lamhamedi-Cherradi SE, Burdett E, et al. Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc Natl Acad Sci USA 2013; 110(16): 6500-5.
[http://dx.doi.org/10.1073/pnas.1221403110] [PMID: 23576741]
[22]
Bersini S, Jeon JS, Dubini G, et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 2014; 35(8): 2454-61.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.050] [PMID: 24388382]
[23]
Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS, Rusling JF. Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 2009; 81(21): 9129-34.
[http://dx.doi.org/10.1021/ac9018022] [PMID: 19775154]
[24]
Mani V, Chikkaveeraiah BV, Patel V, Gutkind JS, Rusling JF. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano 2009; 3(3): 585-94.
[http://dx.doi.org/10.1021/nn800863w] [PMID: 19216571]
[25]
Kim KS, Park W, Hu J, Bae YH, Na K. A cancer-recognizable MRI contrast agents using pH-responsive polymeric micelle. Biomaterials 2014; 35(1): 337-43.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.004] [PMID: 24139764]
[26]
Ewend MG, Sampath P, Williams JA, Tyler BM, Brem H. Local delivery of chemotherapy prolongs survival in experimental brain metastases from breast carcinoma. Neurosurgery 1998; 43(5): 1185-92.
[http://dx.doi.org/10.1097/00006123-199811000-00093] [PMID: 9802862]
[27]
Frazier JL, Wang PP, Case D, et al. Local delivery of minocycline and systemic BCNU have synergistic activity in the treatment of intracranial glioma. J Neurooncol 2003; 64(3): 203-9.
[http://dx.doi.org/10.1023/A:1025695423097] [PMID: 14558595]
[28]
Minelli C, Lowe SB, Stevens MM. Engineering nanocomposite materials for cancer therapy. Small 2010; 6(21): 2336-57.
[http://dx.doi.org/10.1002/smll.201000523] [PMID: 20878632]
[29]
Frank A, Eric M, Robert L, Omid C. Nanoparticle technologies for cancer therapy. In: Handbook of Experimental Pharmacology. Springer 2010; 197: pp. 55-86.
[30]
Nsereko S, Amiji M. Localized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations. Biomaterials 2002; 23(13): 2723-31.
[http://dx.doi.org/10.1016/S0142-9612(02)00005-4] [PMID: 12059022]
[31]
Peng Z, Wang C, Fang E, Lu X, Wang G, Tong Q. Co-delivery of doxorubicin and SATB1 shRNA by thermosensitive magnetic cationic liposomes for gastric cancer therapy. PLoS One 2014; 9(3): e92924.
[http://dx.doi.org/10.1371/journal.pone.0092924] [PMID: 24675979]
[32]
Kaminskas LM, McLeod VM, Ryan GM, et al. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 2014; 183: 18-26.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.012] [PMID: 24637466]
[33]
Liu Z, Fan AC, Rakhra K, et al. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed 2009; 48(41): 7668-72.
[http://dx.doi.org/10.1002/anie.200902612] [PMID: 19760685]
[34]
Ong ZY, Wiradharma N, Yang YY. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev 2014; 78: 28-45.
[http://dx.doi.org/10.1016/j.addr.2014.10.013] [PMID: 25453271]
[35]
Ku SH, Kim K, Choi K, Kim SH, Kwon IC. Tumor-targeting multifunctional nanoparticles for siRNA delivery: Recent advances in cancer therapy. Adv Healthc Mater 2014; 3(8): 1182-93.
[http://dx.doi.org/10.1002/adhm.201300607] [PMID: 24577795]
[36]
Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 2013; 48(3): 416-27.
[http://dx.doi.org/10.1016/j.ejps.2012.12.006] [PMID: 23262059]
[37]
Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7(9): 771-82.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[38]
Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367(6464): 645-8.
[http://dx.doi.org/10.1038/367645a0] [PMID: 7509044]
[39]
Saini M, Roser F, Hussein S, Samii M, Bellinzona M. Intralesional mitoxantrone biopolymer-mediated chemotherapy prolongs survival in rats with experimental brain tumors. J Neurooncol 2004; 68(3): 225-32.
[http://dx.doi.org/10.1023/B:NEON.0000033381.96370.6b] [PMID: 15332325]
[40]
Wahlberg LU, Almqvist PM, Glantz MJ, Boëthius J. Polymeric controlled-release amsacrine chemotherapy in an experimental glioma model. Acta Neurochir (Wien) 1996; 138(11): 1323-9.
[http://dx.doi.org/10.1007/BF01411063] [PMID: 8980737]
[41]
Weingart JD, Sipos EP, Brem H. The role of minocycline in the treatment of intracranial 9L glioma. J Neurosurg 1995; 82(4): 635-40.
[http://dx.doi.org/10.3171/jns.1995.82.4.0635] [PMID: 7897527]
[42]
Bow H, Hwang LS, Schildhaus N, et al. Local delivery of angiogenesis-inhibitor minocycline combined with radiotherapy and oral temozolomide chemotherapy in 9L glioma. J Neurosurg 2014; 120(3): 662-9.
[http://dx.doi.org/10.3171/2013.11.JNS13556] [PMID: 24359008]
[43]
Pradilla G, Legnani FG, Petrangolini G, et al. Local delivery of a synthetic endostatin fragment for the treatment of experimental gliomas. Neurosurgery 2005; 57(5): 1032-40.
[http://dx.doi.org/10.1227/01.NEU.0000180059.33665.c1] [PMID: 16284573]
[44]
Judy KD, Olivi A, Buahin KG, et al. Effectiveness of controlled release of a cyclophosphamide derivative with polymers against rat gliomas. J Neurosurg 1995; 82(3): 481-6.
[http://dx.doi.org/10.3171/jns.1995.82.3.0481] [PMID: 7861228]
[45]
Ikegaki N, Shimada H, Fox AM, et al. Transient treatment with epigenetic modifiers yields stable neuroblastoma stem cells resembling aggressive large-cell neuroblastomas. Proc Natl Acad Sci USA 2013; 110(15): 6097-102.
[http://dx.doi.org/10.1073/pnas.1118262110] [PMID: 23479628]
[46]
Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1(5): 555-67.
[http://dx.doi.org/10.1016/j.stem.2007.08.014] [PMID: 18371393]
[47]
Manome Y, Kobayashi T, Mori M, et al. Local delivery of doxorubicin for malignant glioma by a biodegradable PLGA polymer sheet. Anticancer Res 2006; 26(5A): 3317-26.
[PMID: 17094447]
[48]
Jackson JK, Min W, Cruz TF, et al. A polymer-based drug delivery system for the antineoplastic agent bis(maltolato)oxovanadium in mice. Br J Cancer 1997; 75(7): 1014-20.
[http://dx.doi.org/10.1038/bjc.1997.174] [PMID: 9083337]
[49]
Zhang X, Jackson JK, Wong W, et al. Development of biodegradable polymeric paste formulations for taxol: An in vitro and in vivo study. Int J Pharm 1996; 137(2): 199-208.
[http://dx.doi.org/10.1016/0378-5173(96)04521-8]
[50]
Dordunoo SK, Oktaba AMC, Hunter W, Min W, Cruz T, Burt HM. Release of taxol from poly(ϵ-caprolactone) pastes: Effect of water-soluble additives. J Control Release 1997; 44(1): 87-94.
[http://dx.doi.org/10.1016/S0168-3659(96)01510-6]
[51]
Nie Y, Zhang S, Liu N, Li Z. Extracellular matrix enhances therapeutic effects of stem cells in regenerative medicine. In: Travascio F, Ed. Composition and Function of the Extracellular Matrix in the Human Body. 2016; pp. 323-40.
[http://dx.doi.org/10.5772/62229]
[52]
Nie Y, Li Z. Controlled nitric oxide release for tissue repair and regeneration. Turk J Biol 2016; 40(2): 316-26.
[http://dx.doi.org/10.3906/biy-1507-143]
[53]
Feng G, Cui J, Zheng Y, Han Z, Xu Y, Li Z. Identification, characterization and biological significance of very small embryonic-like stem cells (VSELs) in regenerative medicine. Histol Histopathol 2012; 27(7): 827-33.
[PMID: 22648539]
[54]
Mimeault M, Batra SK. Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 2006; 24(11): 2319-45.
[http://dx.doi.org/10.1634/stemcells.2006-0066] [PMID: 16794264]
[55]
Evans ND, Gentleman E, Polak JM. Scaffolds for stem cells. Mater Today 2006; 9(12): 26-33.
[http://dx.doi.org/10.1016/S1369-7021(06)71740-0]
[56]
Mitjavila-Garcia MT, Simonin C, Peschanski M. Embryonic stem cells: meeting the needs for cell therapy. Adv Drug Deliv Rev 2005; 57(13): 1935-43.
[PMID: 16257083]
[57]
Syed BA, Evans JB. Stem cell therapy market. Nat Rev Drug Discov 2013; 12(3): 185-6.
[http://dx.doi.org/10.1038/nrd3953] [PMID: 23449299]
[58]
Han J, Menicanin D, Gronthos S, Bartold PM. Stem cells, tissue engineering and periodontal regeneration. Aust Dent J 2014; 59 (Suppl. 1): 117-30.
[http://dx.doi.org/10.1111/adj.12100] [PMID: 24111843]
[59]
Nie Y, Zhang K, Zhang S, et al. Nitric oxide releasing hydrogel promotes endothelial differentiation of mouse. Acta Biomater 2017; 63: 190-9.
[http://dx.doi.org/10.1016/j.actbio.2017.08.037] [PMID: 28859902]
[60]
Nallanthighal S, Heiserman JP, Cheon DJ. The role of the extracellular matrix in cancer stemness. Front Cell Dev Biol 2019; 7: 86.
[http://dx.doi.org/10.3389/fcell.2019.00086] [PMID: 31334229]
[61]
Ganjibakhsh M, Mehraein F, Koruji M, Aflatoonian R, Farzaneh P. Three-dimensional decellularized amnion membrane scaffold as a novel tool for cancer research; cell behavior, drug resistance and cancer stem cell content. Mater Sci Eng C 2019; 100: 330-40.
[http://dx.doi.org/10.1016/j.msec.2019.02.090] [PMID: 30948069]
[62]
Xue G, Ren Z, Grabham PW, et al. Reprogramming mediated radio-resistance of 3D-grown cancer cells. J Radiat Res (Tokyo) 2015; 56(4): 656-62.
[http://dx.doi.org/10.1093/jrr/rrv018] [PMID: 25883172]
[63]
Chanmee T, Ontong P, Itano N. Hyaluronan: A modulator of the tumor microenvironment. Cancer Lett 2016; 375(1): 20-30.
[http://dx.doi.org/10.1016/j.canlet.2016.02.031] [PMID: 26921785]
[64]
Florczyk SJ, Wang K, Jana S, et al. Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials 2013; 34(38): 10143-50.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.034] [PMID: 24075410]
[65]
Wang X, Dai X, Zhang X, Li X, Xu T, Lan Q. Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of different extracellular matrix. Biochem Biophys Res Commun 2018; 498(4): 1052-7.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.114] [PMID: 29551682]
[66]
Qiao S, Zhao Y, Li C, et al. An alginate-based platform for cancer stem cell research. Acta Biomater 2016; 37: 83-92.
[http://dx.doi.org/10.1016/j.actbio.2016.04.032] [PMID: 27109764]
[67]
Liang Y, Jeong J, DeVolder RJ, et al. A cell-instructive hydrogel to regulate malignancy of 3D tumor spheroids with matrix rigidity. Biomaterials 2011; 32(35): 9308-15.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.045] [PMID: 21911252]
[68]
Abbasian M, Mousavi E, Khalili M, Arab-Bafrani Z. Using of keratin substrate for enrichment of HT29 colorectal cancer stem‐like cells. J Biomed Mater Res B Appl Biomater 2019; 107(4): 1264-71.
[http://dx.doi.org/10.1002/jbm.b.34219] [PMID: 30281900]
[69]
Chen L, Xiao Z, Meng Y, et al. The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs. Biomaterials 2012; 33(5): 1437-44.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.056] [PMID: 22078807]
[70]
Choi M, Yu SJ, Choi Y, et al. Polymer thin film–induced tumor spheroids acquire cancer stem cell–like properties. Cancer Res 2018; 78(24): 6890-902.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0927] [PMID: 30352813]
[71]
Florczyk SJ, Kievit FM, Wang K, Erickson AE, Ellenbogen RG, Zhang M. 3D porous chitosan–alginate scaffolds promote proliferation and enrichment of cancer stem-like cells. J Mater Chem B Mater Biol Med 2016; 4(38): 6326-34.
[http://dx.doi.org/10.1039/C6TB01713D] [PMID: 28133535]
[72]
Kievit FM, Florczyk SJ, Leung MC, et al. Proliferation and enrichment of CD133+ glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds. Biomaterials 2014; 35(33): 9137-43.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.037] [PMID: 25109438]
[73]
Liu J, Tan Y, Zhang H, et al. Soft fibrin gels promote selection and growth of tumorigenic cells. Nat Mater 2012; 11(8): 734-41.
[http://dx.doi.org/10.1038/nmat3361] [PMID: 22751180]
[74]
Narkhede AA, Shevde LA, Rao SS. Biomimetic strategies to recapitulate organ specific microenvironments for studying breast cancer metastasis. Int J Cancer 2017; 141(6): 1091-109.
[http://dx.doi.org/10.1002/ijc.30748] [PMID: 28439901]
[75]
Rao W, Zhao S, Yu J, Lu X, Zynger DL, He X. Enhanced enrichment of prostate cancer stem-like cells with miniaturized 3D culture in liquid core-hydrogel shell microcapsules. Biomaterials 2014; 35(27): 7762-73.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.011] [PMID: 24952981]
[76]
Xu X, Liu C, Liu Y, et al. Enrichment of cancer stem cell-like cells by culture in alginate gel beads. J Biotechnol 2014; 177: 1-12.
[http://dx.doi.org/10.1016/j.jbiotec.2014.02.016] [PMID: 24607645]
[77]
Liu C, Liu Y, Xu X, et al. Potential effect of matrix stiffness on the enrichment of tumor initiating cells under three-dimensional culture conditions. Exp Cell Res 2015; 330(1): 123-34.
[http://dx.doi.org/10.1016/j.yexcr.2014.07.036] [PMID: 25108138]
[78]
Sakai S, Inamoto K, Ashida T, Takamura R, Taya M. Cancer stem cell marker-expressing cell-rich spheroid fabrication from PANC-1 cells using alginate microcapsules with spherical cavities templated by gelatin microparticles. Biotechnol Prog 2015; 31(4): 1071-6.
[http://dx.doi.org/10.1002/btpr.2111] [PMID: 26013961]
[79]
Wang X, Dai X, Zhang X, et al. 3D bioprinted glioma cell-laden scaffolds enriching glioma stem cells via epithelial-mesenchymal transition. J Biomed Mater Res A 2019; 107(2): 383-91.
[http://dx.doi.org/10.1002/jbm.a.36549] [PMID: 30350390]
[80]
Palomeras S, Rabionet M, Ferrer I, et al. Breast cancer stem cell culture and enrichment using poly (ε-caprolactone) scaffolds. Molecules 2016; 21(4): 537.
[http://dx.doi.org/10.3390/molecules21040537] [PMID: 27120585]
[81]
Sawyer AJ, Piepmeier JM, Saltzman WM. New methods for direct delivery of chemotherapy for treating brain tumors. Yale J Biol Med 2006; 79(3-4): 141-52.
[PMID: 17940624]
[82]
Lorger M. Tumor microenvironment in the brain. Cancers (Basel) 2012; 4(1): 218-43.
[http://dx.doi.org/10.3390/cancers4010218] [PMID: 24213237]
[83]
Dolecek TA, Propp JM, Stroup NE, Kruchko C. Propp. J.M.; Stroup, N.E.; Kruchko, C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-oncol 2012; 14 (Suppl. 5): v1-v49.
[http://dx.doi.org/10.1093/neuonc/nos218]
[84]
Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114(2): 97-109.
[http://dx.doi.org/10.1007/s00401-007-0243-4] [PMID: 17618441]
[85]
Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ. Exciting new advances in neuro‐oncology: the avenue to a cure for malignant glioma. CA: A Cancer. J for Clini 2010; 60(3): 166-93.
[86]
Westphal M, Hilt DC, Bortey E, et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol 2003; 5(2): 79-88.
[http://dx.doi.org/10.1093/neuonc/5.2.79] [PMID: 12672279]
[87]
Hochberg FH, Pruitt A. Assumptions in the radiotherapy of glioblastoma. Neurology 1980; 30(9): 907-11.
[http://dx.doi.org/10.1212/WNL.30.9.907] [PMID: 6252514]
[88]
Chang CH, Horton J, Schoenfeld D, et al. Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint radiation therapy oncology group and eastern cooperative oncology group study. Cancer 1983; 52(6): 997-1007.
[http://dx.doi.org/10.1002/1097-0142(19830915)52:6<997::AID-CNCR2820520612>3.0.CO;2-2] [PMID: 6349785]
[89]
Bodell WJ, Bodell AP, Giannini DD. Levels and distribution of BCNU in GBM tumors following intratumoral injection of DTI-015 (BCNU-ethanol). Neuro-oncol 2007; 9(1): 12-9.
[http://dx.doi.org/10.1215/15228517-2006-014] [PMID: 17018699]
[90]
Hamstra DAI, Moffat BA, Hall DE, et al. Intratumoral injection of BCNU in ethanol (DTI-015) results in enhanced delivery to tumor – a pharmacokinetic study. J Neurooncol 2005; 73(3): 225-38.
[http://dx.doi.org/10.1007/s11060-004-5675-2] [PMID: 15980973]
[91]
Yimam MA, Bui T, Ho RJY. Effects of lipid association on lomustine (CCNU) administered intracerebrally to syngeneic 36B-10 rat brain tumors. Cancer Lett 2006; 244(2): 211-9.
[http://dx.doi.org/10.1016/j.canlet.2005.12.024] [PMID: 16455196]
[92]
Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: A review. J Pharm Pharm Sci 2003; 6(2): 252-73.
[PMID: 12935438]
[93]
Gilhus NE, Barnes M, Brainin M. European Handbook of Neurological Management. NJ, USA: Blackwell Publishing Ltd. 2011; Vol. 1.
[94]
Langley RR, Fidler IJ. The seed and soil hypothesis revisited-The role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 2011; 128(11): 2527-35.
[http://dx.doi.org/10.1002/ijc.26031] [PMID: 21365651]
[95]
Sperduto PW, Berkey B, Gaspar LE, Mehta M, Curran W. A new prognostic index and comparison to three other indices for patients with brain metastases: An analysis of 1,960 patients in the RTOG database. Int J Radiat Oncol Biol Phys 2008; 70(2): 510-4.
[http://dx.doi.org/10.1016/j.ijrobp.2007.06.074] [PMID: 17931798]
[96]
Tosoni A, Ermani M, Brandes AA. The pathogenesis and treatment of brain metastases: A comprehensive review. Crit Rev Oncol Hematol 2004; 52(3): 199-215.
[http://dx.doi.org/10.1016/j.critrevonc.2004.08.006] [PMID: 15582786]
[97]
Al-Shamy G, Sawaya R. Management of brain metastases: The indispensable role of surgery. J Neurooncol 2009; 92(3): 275-82.
[http://dx.doi.org/10.1007/s11060-009-9839-y] [PMID: 19357955]
[98]
Gavrilovic IT, Posner JB. Brain metastases: epidemiology and pathophysiology. J Neurooncol 2005; 75(1): 5-14.
[http://dx.doi.org/10.1007/s11060-004-8093-6] [PMID: 16215811]
[99]
Gerrard GE, Franks KN. Overview of the diagnosis and management of brain, spine, and meningeal metastases. J Neurol Neurosurg Psychiatry 2004; 75 (Suppl. 2): ii37-42.
[http://dx.doi.org/10.1136/jnnp.2004.040493] [PMID: 15146038]
[100]
Nguyen T, Deangelis LM. Treatment of brain metastases. J Support Oncol 2004; 2(5): 405-10.
[PMID: 15524068]
[101]
Posner JB. Brain metastases: 1995. A brief review. J Neurooncol 1996; 27(3): 287-93.
[http://dx.doi.org/10.1007/BF00165486] [PMID: 8847563]
[102]
Sawaya R, Ligon BL, Bindal AK, Bindal RK, Hess KR. Surgical treatment of metastatic brain tumors. J Neurooncol 1996; 27(3): 269-77.
[http://dx.doi.org/10.1007/BF00165484] [PMID: 8847561]
[103]
Ewend MG, Brem S, Gilbert M, et al. Treatment of single brain metastasis with resection, intracavity carmustine polymer wafers, and radiation therapy is safe and provides excellent local control. Clin Cancer Res 2007; 13(12): 3637-41.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2095] [PMID: 17575228]
[104]
Keskar V, Mohanty PS, Gemeinhart EJ, Gemeinhart RA. Cervical cancer treatment with a locally insertable controlled release delivery system. J Control Release 2006; 115(3): 280-8.
[http://dx.doi.org/10.1016/j.jconrel.2006.08.014] [PMID: 17034891]
[105]
Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55(2): 74-108.
[http://dx.doi.org/10.3322/canjclin.55.2.74] [PMID: 15761078]
[106]
Wolinsky JB, Liu R, Walpole J, Chirieac LR, Colson YL, Grinstaff MW. Prevention of in vivo lung tumor growth by prolonged local delivery of hydroxycamptothecin using poly(ester-carbonate)-collagen composites. J Control Release 2010; 144(3): 280-7.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.022] [PMID: 20184934]
[107]
Liu R, Wolinsky JB, Walpole J, et al. Prevention of local tumor recurrence following surgery using low-dose chemotherapeutic polymer films. Ann Surg Oncol 2010; 17(4): 1203-13.
[http://dx.doi.org/10.1245/s10434-009-0856-z] [PMID: 19957041]
[108]
Langer R, Peppas N. Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 1981; 2(4): 201-14.
[http://dx.doi.org/10.1016/0142-9612(81)90059-4] [PMID: 7034798]
[109]
Langer R, Brem H, Tapper D. Biocompatibility of polymeric delivery systems for macromolecules. J Biomed Mater Res 1981; 15(2): 267-77.
[http://dx.doi.org/10.1002/jbm.820150212] [PMID: 7348718]
[110]
Yang MB, Tamargo RJ, Brem H. Controlled delivery of 1,3-bis(2-chloroethyl)-1-nitrosourea from ethylene-vinyl acetate copolymer. Cancer Res 1989; 49(18): 5103-7.
[PMID: 2766281]
[111]
Loo TL, Dion RL, Dixon RL, Rall DP. The Antitumor Agent, 1,3-bis(2-chloroethyl)-1-nitrosourea. J Pharm Sci 1966; 55(5): 492-7.
[http://dx.doi.org/10.1002/jps.2600550509]
[112]
Esther Gil-Alegre M, González-Álvarez I, Gutiérrez-Paúls L, Torres-Suárez AI. Three weeks release BCNU loaded hydrophilic-PLGA microspheres for interstitial chemotherapy: Development and activity against human glioblastoma cells. J Microencapsul 2008; 25(8): 561-8.
[http://dx.doi.org/10.1080/02652040802075799] [PMID: 18608792]
[113]
Ren T, Ren J, Jia X, Pan K. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds. J Biomed Mater Res A 2005; 74A(4): 562-9.
[http://dx.doi.org/10.1002/jbm.a.30324] [PMID: 16025492]
[114]
Karp JM, Shoichet MS, Davies JE. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. J Biomed Mater Res 2003; 64A(2): 388-96.
[http://dx.doi.org/10.1002/jbm.a.10420] [PMID: 12522827]
[115]
Wu Y, Shaw S, Lin H, Lee T, Yang C. Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds. Biomaterials 2006; 27(6): 896-904.
[http://dx.doi.org/10.1016/j.biomaterials.2005.07.002] [PMID: 16125224]
[116]
Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997; 28(1): 5-24.
[http://dx.doi.org/10.1016/S0169-409X(97)00048-3] [PMID: 10837562]
[117]
Hedberg EL, Shih CK, Lemoine JJ, et al. In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds. Biomaterials 2005; 26(16): 3215-25.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.012] [PMID: 15603816]
[118]
Jones D, Corris S, McDonald S, Clegg JC, Farrar GH. Poly(?-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine 1997; 15(8): 814-7.
[http://dx.doi.org/10.1016/S0264-410X(96)00266-6] [PMID: 9234522]
[119]
Kasper FK, Mikos AG. Biomaterials and gene therapy. Adv Chem Eng 2004; 29: 131-68.
[http://dx.doi.org/10.1016/S0065-2377(03)29005-0]
[120]
Akbari H, D’Emanuele A, Attwood D. Effect of geometry on the erosion characteristics of polyanhydride matrices. Int J Pharm 1998; 160(1): 83-9.
[http://dx.doi.org/10.1016/S0378-5173(97)00298-6]
[121]
Dang W, Daviau T, Ying P, et al. Effects of GLIADEL® wafer initial molecular weight on the erosion of wafer and release of BCNU. J Control Release 1996; 42(1): 83-92.
[http://dx.doi.org/10.1016/0168-3659(96)01371-5]
[122]
Domb AJ, Israel ZH, Elmalak O, Teomim D, Bentolila A. Preparation and characterization of carmustine loaded polyanhydride wafers for treating brain tumors. Pharm Res 1999; 16(5): 762-5.
[http://dx.doi.org/10.1023/A:1011995728760] [PMID: 10350022]
[123]
Sipos EP, Tyler B, Piantadosi S, Burger PC, Brem H. Optimizing interstitial delivery of BCNU from controlled release polymers for the treatment of brain tumors. Cancer Chemother Pharmacol 1997; 39(5): 383-9.
[http://dx.doi.org/10.1007/s002800050588] [PMID: 9054951]
[124]
Seong H, An TK, Khang G, Choi SU, Lee CO, Lee HB. BCNU-loaded poly(d, l-lactide-co-glycolide) wafer and antitumor activity against XF-498 human CNS tumor cells in vitro. Int J Pharm 2003; 251(1-2): 1-12.
[http://dx.doi.org/10.1016/S0378-5173(02)00543-4] [PMID: 12527170]
[125]
Chae GS, Lee JS, Kim SH, et al. Enhancement of the stability of BCNU using self-emulsifying drug delivery systems (SEDDS) and in vitro antitumor activity of self-emulsified BCNU-loaded PLGA wafer. Int J Pharm 2005; 301(1-2): 6-14.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.034] [PMID: 16024190]
[126]
Mairs RJ, Wideman CL, Angerson WJ, et al. Comparison of different methods of intracerebral administration of radioiododeoxyuridine for glioma therapy using a rat model. Br J Cancer 2000; 82(1): 74-80.
[http://dx.doi.org/10.1054/bjoc.1999.0879] [PMID: 10638969]
[127]
Wolinsky JB, Ray WC, Colson YL, Grinstaff MW. Poly (carbonate ester) s based on units of 6-hydroxyhexanoic acid and glycerol. Macromolecules 2007; 40(20): 7065-8.
[http://dx.doi.org/10.1021/ma071276v]
[128]
Liu R, Wolinsky JB, Catalano PJ, et al. Paclitaxel-eluting polymer film reduces locoregional recurrence and improves survival in a recurrent sarcoma model: a novel investigational therapy. Ann Surg Oncol 2012; 19(1): 199-206.
[http://dx.doi.org/10.1245/s10434-011-1871-4] [PMID: 21769471]
[129]
DeVita VT, Hellman S, Rosenberg SA. In: Biologic therapy of cancer. (2nd ed.). Philadelphia, PA: Lippincott Williams & Wilkins 1991; pp. 743-53.
[130]
Pinto AC, Moreira JN, Simões S. Combination chemotherapy in cancer: principles, evaluation and drug delivery strategies. In: Ozdemir O, Ed. Current cancer treatment-novel beyond conventional approaches. London: IntechOpen 2011.
[131]
Cartier R, Reszka R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Ther 2002; 9(3): 157-67.
[http://dx.doi.org/10.1038/sj.gt.3301635] [PMID: 11859418]
[132]
Hosseinkhani H, Azzam T, Kobayashi H, et al. Combination of 3D tissue engineered scaffold and non-viral gene carrier enhance in vitro DNA expression of mesenchymal stem cells. Biomaterials 2006; 27(23): 4269-78.
[http://dx.doi.org/10.1016/j.biomaterials.2006.02.033] [PMID: 16620957]
[133]
Niyibizi C, Baltzer A, Lattermann C, et al. Potential role for gene therapy in the enhancement of fracture healing. Clin Orthop Relat Res 1998; (355S): S148-53.
[http://dx.doi.org/10.1097/00003086-199810001-00016] [PMID: 9917635]
[134]
Chen Y. Orthopedic applications of gene therapy. J Orthop Sci 2001; 6(2): 199-207.
[http://dx.doi.org/10.1007/s007760100072] [PMID: 11484110]
[135]
Hicks MJ, Funato K, Wang L, et al. Genetic modification of neurons to express bevacizumab for local anti-angiogenesis treatment of glioblastoma. Cancer Gene Ther 2015; 22(1): 1-8.
[http://dx.doi.org/10.1038/cgt.2014.58] [PMID: 25501993]
[136]
Eggermont A, Finn O. Advances in immuno-oncology. Ann Oncol 2012; 23(Suppl. 8): viii5.
[http://dx.doi.org/10.1093/annonc/mds255] [PMID: 22918929]
[137]
Rini B. Future approaches in immunotherapy. Semin Oncol 2014; 41(1) (Suppl. 5): S30-40.
[http://dx.doi.org/10.1053/j.seminoncol.2014.09.005] [PMID: 25438998]
[138]
Weber JS, Mulé JJ. Cancer immunotherapy meets biomaterials. Nat Biotechnol 2015; 33(1): 44-5.
[http://dx.doi.org/10.1038/nbt.3119] [PMID: 25574635]
[139]
Stephan SB, Taber AM, Jileaeva I, Pegues EP, Sentman CL, Stephan MT. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat Biotechnol 2015; 33(1): 97-101.
[http://dx.doi.org/10.1038/nbt.3104] [PMID: 25503382]
[140]
Bencherif SA, Warren Sands R, Ali OA, et al. Injectable cryogel-based whole-cell cancer vaccines. Nat Commun 2015; 6(1): 7556.
[http://dx.doi.org/10.1038/ncomms8556] [PMID: 26265369]
[141]
Tayalia P, Mazur E, Mooney DJ. Controlled architectural and chemotactic studies of 3D cell migration. Biomaterials 2011; 32(10): 2634-41.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.019] [PMID: 21237507]
[142]
Kim J, Li WA, Choi Y, et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat Biotechnol 2015; 33(1): 64-72.
[http://dx.doi.org/10.1038/nbt.3071] [PMID: 25485616]
[143]
Hori Y, Stern PJ, Hynes RO, Irvine DJ. Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy. Biomaterials 2009; 30(35): 6757-67.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.037] [PMID: 19766305]
[144]
Hsu W, Lesniak MS, Tyler B, Brem H. Local delivery of interleukin-2 and adriamycin is synergistic in the treatment of experimental malignant glioma. J Neurooncol 2005; 74(2): 135-40.
[http://dx.doi.org/10.1007/s11060-004-6597-8] [PMID: 16193383]
[145]
Rhines LD, Sampath P, DiMeco F, et al. Local immunotherapy with interleukin-2 delivered from biodegradable polymer microspheres combined with interstitial chemotherapy: a novel treatment for experimental malignant glioma. Neurosurgery 2003; 52(4): 872-80.
[http://dx.doi.org/10.1227/01.NEU.0000053211.39087.D1] [PMID: 12657184]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy