Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Fish Protein Hydrolysates: Bioactive Properties, Encapsulation and New Technologies for Enhancing Peptides Bioavailability

Author(s): Thaysa Fernandes Moya Moreira*, Odinei Hess Gonçalves, Fernanda Vitória Leimann* and Ricardo Pereira Ribeiro*

Volume 29, Issue 11, 2023

Published on: 20 January, 2023

Page: [824 - 836] Pages: 13

DOI: 10.2174/1381612829666230110141811

Price: $65

Abstract

Fish protein hydrolysates (FPHs) can be obtained from substrates such as fish muscle, skin, and wastes and assign value to these fish by-products. Proteolytic enzymes catalyze the hydrolysis of these fish substrates' peptide bonds resulting in smaller peptides that present several bioactive properties. Hydrolysates' bioactive properties are a function of the fish species used as the substrate, the enzyme selectivity or specificity, pH and temperature applied in the reaction, etc. Furthermore, many pre-treatment methods are being applied to fish protein substrates to improve their enzyme susceptibility and increase the number of smaller bioactive peptides. This review addresses the production of FPHs and the main bioactive properties evaluated recently in the literature and emphasizes the substrate treatments by high-pressure processing, microwave, ultrasound, and thermal treatments to achieve better bioactivity making essential amino acids more available in peptides. The bioactive properties most found in FPHs were antioxidants, antimicrobials, anticancer, and antihypertensive. These bioactivities may vary depending on the conditions of hydrolysis, fish species, and fractionation and isolation of specific peptides.New technologies for the treatment of by-products can reduce process losses and achieve better results by cleavage of proteins. Conversely, encapsulation and film utilization can improve bioactivity, bioavailability, and controlled release when applied to foods, resulting in improved health.

Keywords: Protein hydrolysates, bioactive compounds, bioactive peptides, hydrophobic amino acids, encapsulation, new technologies.

[1]
FAO. Food and Agriculture Organization. Globefish highlights. 2020. Available from: http://www.fao.org/documents/card/en/c/ ca7968en
[2]
de Boer J, Schösler H, Aiking H. Fish as an alternative protein- A consumer-oriented perspective on its role in a transition towards more healthy and sustainable diets. Appetite 2019; 152: 104721.
[http://dx.doi.org/10.1016/j.appet.2020.104721]
[3]
Rittenschober D, Nowak V, Charrondiere UR. Review of availability of food composition data for fish and shellfish. Food Chem 2013; 141(4): 4303-10.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.007] [PMID: 23993619]
[4]
Skaara T, Regenstein JM. The structure and properties of myofibrillar proteins in beef, poultry, and fish. J Muscle Foods 1990; 1(4): 269-91.
[http://dx.doi.org/10.1111/j.1745-4573.1990.tb00370.x]
[5]
Halim NRA, Yusof HM, Sarbon NM. Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends Food Sci Technol 2017; 51: 24-33.
[http://dx.doi.org/10.1016/j.jff.2018.04.066]
[6]
Chalamaiah M, Dinesh kumar B, Hemalatha R, Jyothirmayi T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem 2012; 135(4): 3020-38.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.100] [PMID: 22980905]
[7]
Zamora-Sillero J, Gharsallaoui A, Prentice C. Peptides from fish by-product protein hydrolysates and its functional properties: An overview. Mar Biotechnol 2018; 20(2): 118-30.
[http://dx.doi.org/10.1007/s10126-018-9799-3] [PMID: 29532335]
[8]
Camargo TR, Ramos P, Monserrat JM, Prentice C, Fernandes CJC, Zambuzzi WF, et al. Biological activities of the protein hydrolysate obtained from two fishes common in the fisheries bycatch. Food Chem 2021; 342: 128361.
[http://dx.doi.org/10.1016/j.foodchem.2020.128361]
[9]
Vázquez JA, Rodríguez-Amado I, Sotelo CG, Sanz N, Pérez- Martín RI, Valcárcel J. Production, characterization, and bioactivity of fish protein hydrolysates from aquaculture turbot (Scophthalmus maximus) wastes. Biomolecules 2020; 10(2): 310.https://www.mdpi.com/2218-273X/10/2/310
[http://dx.doi.org/10.3390/biom10020310] [PMID: 32075329]
[10]
Cheng IC, Liao JX, Ciou JY, Huang LT, Chen YW, Hou CY. Characterization of protein hydrolysates from eel (Anguilla marmorata) and their application in herbal eel extracts. Catalysts 2020; 10(2): 205.
[http://dx.doi.org/10.3390/catal10020205]
[11]
Halim NRA, Azlan A, Yusof HM, Sarbon NM. Antioxidant and anticancer activities of enzymatic eel (Monopterus sp.) protein hydrolysate as influenced by different molecular weight. Biocatal Agric Biotechnol 2018; 16(May): 10-6.
[http://dx.doi.org/10.1016/j.bcab.2018.06.006]
[12]
Gómez LJ, Gómez NA, Zapata JE, López-García G, Cilla A, Alegría A. In-vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates. Food Res Int 2019; 120(120): 52-61.
[http://dx.doi.org/10.1016/j.foodres.2019.02.029] [PMID: 31000267]
[13]
Offret C, Fliss I, Bazinet L, Marette A, Beaulieu L. Identification of a novel antibacterial peptide from atlantic mackerel belonging to the gapdh-related antimicrobial family and its in vitro digestibility. Mar Drugs 2019; 17(7): 413.
[http://dx.doi.org/10.3390/md17070413] [PMID: 31336895]
[14]
Rocha M, Alemán A, Baccan GC, et al. Anti-inflammatory, antioxidant, and antimicrobial effects of underutilized fish protein hydrolysate. J Aquat Food Prod Technol 2018; 27(5): 592-608.
[http://dx.doi.org/10.1080/10498850.2018.1461160]
[15]
Lima KO, da Costa de Quadros C, Rocha M, et al. Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of stripped weakfish (Cynoscion guatucupa). Lebensm Wiss Technol 2019; 111(May): 408-13.
[http://dx.doi.org/10.1016/j.lwt.2019.05.043]
[16]
Chen J, Ryu B, Zhang Y, et al. Comparison of an angiotensin-I- converting enzyme inhibitory peptide from tilapia (Oreochromis niloticus) with captopril: inhibition kinetics, in vivo effect, simulated gastrointestinal digestion and a molecular docking study. J Sci Food Agric 2020; 100(1): 315-24.
[http://dx.doi.org/10.1002/jsfa.10041] [PMID: 31525262]
[17]
Zhang Y, Tu D, Shen Q, Dai Z. Fish scale valorization by hydrothermal pretreatment followed by enzymatic hydrolysis for gelatin hydrolysate production. Molecules 2019; 24(16): 2998.
[http://dx.doi.org/10.3390/molecules24162998] [PMID: 31430869]
[18]
Nasir SNAM, Sarbon NM. Angiotensin converting enzyme (ACE), antioxidant activity and functional properties of shortfin scad (Decapterus macrosoma) muscle protein hydrolysate at different molecular weight variations. Biocatal Agric Biotechnol 2019; 20(July): 101254.
[http://dx.doi.org/10.1016/j.bcab.2019.101254]
[19]
Chalamaiah M, Keskin Ulug S, Hong H, Wu J. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. J Funct Foods 2019; 58(April): 123-9.
[http://dx.doi.org/10.1016/j.jff.2019.04.050]
[20]
Hosseini SF, Nahvi Z, Zandi M. Antioxidant peptide-loaded electrospun chitosan/poly(vinyl alcohol) nanofibrous mat intended for food biopackaging purposes. Food Hydrocoll 2018; 89: 637-48.
[http://dx.doi.org/10.1016/j.foodhyd.2018.11.033]
[21]
Jamshidi A, Antequera T, Solomando JC, Perez-Palacios T. Microencapsulation of oil and protein hydrolysate from fish within a high-pressure homogenized double emulsion. J Food Sci Technol 2020; 57(1): 60-9.
[http://dx.doi.org/10.1007/s13197-019-04029-5] [PMID: 31975708]
[22]
Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Bioactive fish hydrolysates resistance to food processing. LWT 2019; 117: 108670.
[http://dx.doi.org/10.1016/j.lwt.2019.108670]
[23]
SCOPUS. 2021. Available from: https://www.scopus.com/
[24]
Nawaz A, Li E, Irshad S, et al. Valorization of fisheries by-products: Challenges and technical concerns to food industry. Trends Food Sci Technol 2020; 99(February): 34-43.
[http://dx.doi.org/10.1016/j.tifs.2020.02.022]
[25]
Harnedy PA, Parthsarathy V, McLaughlin CM, O’Keeffe MB, Allsopp PJ, McSorley EM, et al. Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides. Food Research International. 2017; 106: pp. 598-606. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S0963996918300255
[26]
Nasri M. Protein hydrolysates and biopeptides. In: Advances in Food and Nutrition Research. 1st ed. Elsevier Inc. Amsterdam, 2017; 109-59.
[http://dx.doi.org/10.1016/bs.afnr.2016.10.003]
[27]
Onuh JO, Aluko RE. Metabolomics as a tool to study the mechanism of action of bioactive protein hydrolysates and peptides: A review of current literature. Trends Food Sci Technol 2019; 91(91): 625-33.
[http://dx.doi.org/10.1016/j.tifs.2019.08.002]
[28]
Zhao WH, Luo QB, Pan X, Chi CF, Sun KL, Wang B. Preparation, identification, and activity evaluation of ten antioxidant peptides from protein hydrolysate of swim bladders of miiuy croaker (Miichthys miiuy). J Funct Foods 2018; 47(March): 503-11.
[http://dx.doi.org/10.1016/j.jff.2018.06.014]
[29]
Gao R, Yu Q, Shen Y, et al. Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends Food Sci Technol 2021; 110(February): 687-99.
[http://dx.doi.org/10.1016/j.tifs.2021.02.031]
[30]
Guo Y, Michael N, Fonseca Madrigal J, Sosa Aguirre C, Jauregi P. Protein hydrolysate from Pterygoplichthys disjunctivus, armoured catfish, with high antioxidant activity. Molecules 2019; 24(8): 1628.
[http://dx.doi.org/10.3390/molecules24081628] [PMID: 31027188]
[31]
Noman A, Xu Y. Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochemistry 2017; 67: 19-28.
[http://dx.doi.org/10.1016/j.procbio.2018.01.009]
[32]
Auwal SM, Zainal Abidin N, Zarei M, Tan CP, Saari N. Identification, structure-activity relationship and in silico molecular docking analyses of five novel angiotensin I-converting enzyme (ACE)-inhibitory peptides from stone fish (Actinopyga lecanora) hydrolysates. PLoS One 2019; 14(5): e0197644.
[http://dx.doi.org/10.1371/journal.pone.0197644] [PMID: 31145747]
[33]
Elavarasan K, Shamasundar BA. Antioxidant and emulsion properties of freshwater carps (Catla catla, Labeo rohita, Cirrhinus mrigala) protein hydrolysates prepared using flavorzyme. Food Sci Biotechnol 2017; 26(5): 1169-76.
[http://dx.doi.org/10.1007/s10068-017-0154-7] [PMID: 30263649]
[34]
Tan Y, Chang SKC, Meng S. Comparing the kinetics of the hydrolysis of by-product from channel catfish (Ictalurus punctatus) fillet processing by eight proteases. Lebensm Wiss Technol 2019; 111(February): 809-20.
[http://dx.doi.org/10.1016/j.lwt.2019.05.053]
[35]
Tkaczewska J, Borawska-Dziadkiewicz J, Kulawik P, Duda I, Morawska M, Mickowska B. The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus carpio skin gelatin. LWT. 2019; 117: p. 108616. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0023643819309582
[36]
Neves AC, Harnedy PA, O’Keeffe MB, FitzGerald RJ. Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chem 2017; 218: 396-405.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.053] [PMID: 27719926]
[37]
Lin J, Hong H, Zhang L, Zhang C, Luo Y. Antioxidant and cryoprotective effects of hydrolysate from gill protein of bighead carp (Hypophthalmichthys nobilis) in preventing denaturation of frozen surimi. Food Chem 2019; 298(May): 124868.
[http://dx.doi.org/10.1016/j.foodchem.2019.05.142] [PMID: 31260976]
[38]
Tkaczewska J, Borczak B, Piątkowska E, Kapusta-Duch J, Morawska M, Czech T. Effect of protein hydrolysates from carp (Cyprinus carpio) skin gelatine on oxidative stress biomarkers and other blood parameters in healthy rats. J Funct Foods 2019; 60(June): 103411.
[http://dx.doi.org/10.1016/j.jff.2019.06.013]
[39]
Harnedy PA, Parthsarathy V, McLaughlin CM, O’Keeffe MB, Allsopp PJ, McSorley EM, et al. Blue whiting (Micromesistius poutassou) muscle protein hydrolysate with in vitro and in vivo antidiabetic properties. J Funct Foods 2017; 2018(40): 137-45.
[40]
He W, Su G, Sun-Waterhouse D, Waterhouse GIN, Zhao M, Liu Y. In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions. Food Chem 2018; 272: 453-61.https://linkinghub.elsevier.com/retrieve/pii/S0308814618314596
[41]
Ketnawa S, Wickramathilaka M, Liceaga AM. Changes on antioxidant activity of microwave-treated protein hydrolysates after simulated gastrointestinal digestion: Purification and identification. Food Chem 2018; 254(January): 36-46.https://linkinghub.elsevier.com/retrieve/pii/S0308814618301493
[http://dx.doi.org/10.1016/j.foodchem.2018.01.133] [PMID: 29548465]
[42]
Ktari N, Ben Slama-Ben Salem R, Bkhairia I, et al. Functional properties and biological activities of peptides from zebra blenny protein hydrolysates fractionated using ultrafiltration. Food Biosci 2020; 34(February): 100539.
[http://dx.doi.org/10.1016/j.fbio.2020.100539]
[43]
Hemker AK, Nguyen LT, Karwe M, Salvi D. Effects of pressure-assisted enzymatic hydrolysis on functional and bioactive properties of tilapia (Oreochromis niloticus) by-product protein hydrolysates. LWT. 2019; 122: p. 109003.
[http://dx.doi.org/10.1016/j.lwt.2019.109003]
[44]
Ling Y, Liping S, Yongliang Z. Preparation and identification of novel inhibitory angiotensin-I-converting enzyme peptides from tilapia skin gelatin hydrolysates: Inhibition kinetics and molecular docking. Food Funct 2018; 9(10): 5251-9.
[http://dx.doi.org/10.1039/C8FO00569A] [PMID: 30229250]
[45]
Jenkelunas PJ, Li-Chan ECY. Production and assessment of Pacific hake (Merluccius productus) hydrolysates as cryoprotectants for frozen fish mince. Food Chem 2018; 239: 535-43.
[http://dx.doi.org/10.1016/j.foodchem.2017.06.148] [PMID: 28873601]
[46]
Abdelhedi O, Nasri R, Jridi M, et al. In silico analysis and antihypertensive effect of ACE-inhibitory peptides from smooth-hound viscera protein hydrolysate: Enzyme-peptide interaction study using molecular docking simulation. Process Biochem 2017; 58(April): 145-59.
[http://dx.doi.org/10.1016/j.procbio.2017.04.032]
[47]
Li J, Liu Z, Zhao Y, et al. Novel natural angiotensin converting enzyme (ACE)-inhibitory peptides derived from sea cucumber-modified hydrolysates by adding exogenous proline and a study of their structure-activity relationship. Mar Drugs 2018; 16(8): 271.
[http://dx.doi.org/10.3390/md16080271] [PMID: 30081563]
[48]
Lin YH, Chen CA, Tsai JS, Chen GW. Preparation and identification of novel antihypertensive peptides from the in vitro gastrointestinal digestion of marine cobia skin hydrolysates. Nutrients 2019; 11(6): 1351.
[http://dx.doi.org/10.3390/nu11061351] [PMID: 31208053]
[49]
Taheri A, Bakhshizadeh G A. Antioxidant and ACE inhibitory activities of Kawakawa (Euthynnus affinis) protein hydrolysate produced by skipjack tuna pepsin. J Aquat Food Prod Technol 2020; 29(2): 148-66.
[http://dx.doi.org/10.1080/10498850.2019.1707924]
[50]
Wong FC, Xiao J, Ong MGL, Pang MJ, Wong SJ, Teh LK, et al. Identification and characterization of antioxidant peptides from hydrolysate of blue-spotted stingray and their stability against thermal, pH and simulated gastrointestinal digestion treatments. Food Chem 2018; 271: 614-22.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.206]
[51]
Nurdiani R, Vasiljevic T, Yeager T, Singh TK, Donkor ON. Bioactive peptides with radical scavenging and cancer cell cytotoxic activities derived from Flathead (Platycephalus fuscus) by-products. Eur Food Res Technol 2017; 243(4): 627-37.
[http://dx.doi.org/10.1007/s00217-016-2776-z]
[52]
Yaghoubzadeh Z, Peyravii Ghadikolaii F, Kaboosi H, Safari R, Fattahi E. Antioxidant activity and anticancer effect of bioactive peptides from rainbow trout (Oncorhynchus mykiss) skin hydrolysate. Int J Pept Res Ther 2020; 26(1): 625-32.
[http://dx.doi.org/10.1007/s10989-019-09869-5]
[53]
Pezeshk S, Ojagh SM, Rezaei M, Shabanpour B. Fractionation of protein hydrolysates of fish waste using membrane ultrafiltration: Investigation of antibacterial and antioxidant activities. Probiotics Antimicrob Proteins 2019; 11(3): 1015-22.
[http://dx.doi.org/10.1007/s12602-018-9483-y] [PMID: 30415461]
[54]
Moreira TFM, Pessoa LGA, Seixas FAV, Ineu RP, Gonçalves OH, Leimann FV, et al. Chemometric evaluation of enzymatic hydrolysis in the production of fish protein hydrolysates with acetylcholinesterase inhibitory activity. Food Chem 2021; 2022: 367.
[PMID: 34380107]
[55]
Coscueta ER, Brassesco ME, Pintado M. Collagen-based bioactive bromelain hydrolysate from salt-cured cod skin. Appl Sci (Basel) 2021; 11(18): 8538.
[http://dx.doi.org/10.3390/app11188538]
[56]
Rodrigues DP, Calado R, Ameixa OMCC, Valcarcel J, Vázquez JA. Valorisation of Atlantic codfish (Gadus morhua) frames from the cure-salting industry as fish protein hydrolysates with in vitro bioactive properties. Lebensm Wiss Technol 2021; 149(June): 111840.
[http://dx.doi.org/10.1016/j.lwt.2021.111840]
[57]
Henriques A, Vázquez JA, Valcarcel J, Mendes R, Bandarra NM, Pires C. Characterization of protein hydrolysates from fish discards and by-products from the north-west spain fishing fleet as potential sources of bioactive peptides. Mar Drugs 2021; 19(6): 338.
[http://dx.doi.org/10.3390/md19060338] [PMID: 34199233]
[58]
Naik AS, Whitaker RD, Albrektsen S, Solstad RG, Thoresen L, Hayes M. Mesopelagic fish protein hydrolysates and extracts: A source of novel anti-hypertensive and anti-diabetic peptides. Front Mar Sci 2021; 8(September): 719608.
[http://dx.doi.org/10.3389/fmars.2021.719608]
[59]
Jamil NH, Halim NRA, Sarbon NM. Optimization of enzymatic hydrolysis condition and functional properties of eel (Monopterus sp.) protein using response surface methodology (RSM). Int Food Res J 2016; 23(1): 1-9.
[60]
van ’t Hof W, Veerman EC, Helmerhorst EJ, Amerongen AV. Antimicrobial peptides: Properties and applicability. Biol Chem 2001; 382(4): 597-619.
[PMID: 11405223]
[61]
Rios AC, Moutinho CG, Pinto FC, et al. Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiol Res 2016; 191: 51-80.
[http://dx.doi.org/10.1016/j.micres.2016.04.008] [PMID: 27524653]
[62]
Sierra JM, Fusté E, Rabanal F, Vinuesa T, Viñas M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther 2017; 17(6): 663-76.
[http://dx.doi.org/10.1080/14712598.2017.1315402] [PMID: 28368216]
[63]
Chalamaiah M, Yu W, Wu J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem 2018; 245(245): 205-22.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.087] [PMID: 29287362]
[64]
Aaghaz S, Gohel V, Kamal A. Peptides as potential anticancer agents. Curr Top Med Chem 2019; 19(17): 1491-511.http://www.eurekaselect.com/169376/article
[http://dx.doi.org/10.2174/1568026619666190125161517] [PMID: 30686254]
[65]
Chakraborty S, Mandal J, Yang T, Cheng X. Metabolites and hypertension: Insights into hypertension as a metabolic disorder. Hypertension 2020; 75(6): 1386-96. Available from: https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.120.13896
[66]
Abdelhedi O, Nasri M. Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends Food Sci Technol 2019; 88(March): 543-57.
[http://dx.doi.org/10.1016/j.tifs.2019.04.002]
[67]
Abachi S, Bazinet L, Beaulieu L. Antihypertensive and angiotensin-i-converting enzyme (ACE)-inhibitory peptides from fish as potential cardioprotective compounds. Mar Drugs 2019; 17(11): 613.
[http://dx.doi.org/10.3390/md17110613] [PMID: 31671730]
[68]
U G Y, Bhat I, Karunasagar I, B S M. Antihypertensive activity of fish protein hydrolysates and its peptides. Crit Rev Food Sci Nutr 2019; 59(15): 2363-74.
[http://dx.doi.org/10.1080/10408398.2018.1452182] [PMID: 29533693]
[69]
Borges-Contreras B, Martínez-Sánchez CE, Herman-Lara E, et al. Angiotensin-converting enzyme inhibition in vitro by protein hydrolysates and peptide fractions from mojarra of nile tilapia (Oreochromis niloticus) Skeleton. J Med Food 2019; 22(3): 286-93.
[http://dx.doi.org/10.1089/jmf.2018.0163] [PMID: 30835154]
[70]
Darewicz M, Borawska-Dziadkiewicz J, Vegarud G, Minkiewicz P. European Carp (Cyprinus carpio L.) protein-derived ex vivo digests and in vitro hydrolysates differ in the ACE I inhibitory activity and composition of released ACE inhibitory peptides. Protein Pept Lett 2017; 24(2): 156-64.
[http://dx.doi.org/10.2174/0929866524666161117115441] [PMID: 27855606]
[71]
Huang CY, Tsai YH, Hong YH, Hsieh SL, Huang RH. Characterization and antioxidant and angiotensin I-converting enzyme (ACE)-inhibitory activities of gelatin hydrolysates prepared from extrusion-pretreated milkfish (Chanos chanos) scale. Mar Drugs 2018; 16(10): 346.
[http://dx.doi.org/10.3390/md16100346] [PMID: 30248998]
[72]
Aluko RE. Structure and function of plant protein-derived antihypertensive peptides. Curr Opin Food Sci 2015; 4: 44-50.
[http://dx.doi.org/10.1016/j.cofs.2015.05.002]
[73]
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015; 97: 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[74]
Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Redox Biol 2013; 1(1): 244-57.
[http://dx.doi.org/10.1016/j.redox.2013.01.014] [PMID: 24024158]
[75]
Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr 2008; 48(5): 430-41.
[http://dx.doi.org/10.1080/10408390701425615] [PMID: 18464032]
[76]
Wiriyaphan C, Chitsomboon B, Yongsawadigul J. Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts. Food Chem 2012; 132(1): 104-11.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.040] [PMID: 26434269]
[77]
Sila A, Bougatef A. Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review. J Funct Foods 2016; 21: 10-26.
[http://dx.doi.org/10.1016/j.jff.2015.11.007]
[78]
Lees M, Carson B. The potential role of fish-derived protein hydrolysates on metabolic health, skeletal muscle mass and function in ageing. Nutrients 2020; 12(8): 2434.
[http://dx.doi.org/10.3390/nu12082434] [PMID: 32823615]
[79]
Nobile V, Duclos E, Michelotti A, Bizzaro G, Negro M, Soisson F. Supplementation with a fish protein hydrolysate (Micromesistius poutassou): Effects on body weight, body composition, and CCK/GLP-1 secretion. Food Nutr Res 2016; 60(1): 29857.
[http://dx.doi.org/10.3402/fnr.v60.29857] [PMID: 26829186]
[80]
Benomar S, Yahia S, Dehiba F, et al. Differential antioxidative and hypocholesterolemic responses to two fish protein hydrolysates (Sardina pilchardus and Boops boops) in cholesterolfed rats. Nutr Food Sci 2015; 45(3): 448-66.
[http://dx.doi.org/10.1108/NFS-11-2014-0096]
[81]
Nasri R, Abdelhedi O, Jemil I, et al. Preventive effect of goby fish protein hydrolysates on hyperlipidemia and cardiovascular disease in Wistar rats fed a high-fat/fructose diet. RSC Advances 2018; 8(17): 9383-93.
[http://dx.doi.org/10.1039/C7RA13102J] [PMID: 35541829]
[82]
Oliveira GV, Volino-Souza M, Cordeiro EM, Alvares TS. Fish protein hydrolysate supplementation improves vascular reactivity in individuals at high risk factors for cardiovascular disease: A pilot study. PharmaNutrition 2020; 12(February): 100186.
[http://dx.doi.org/10.1016/j.phanu.2020.100186]
[83]
Zeng Q, Dai M, Yang Y, et al. Significant fat reduction in deep-fried kamaboko by fish protein hydrolysates derived from common carp (Cyprinus carpio). J Sci Food Agric 2019; 99(7): 3255-63.
[http://dx.doi.org/10.1002/jsfa.9538] [PMID: 30549052]
[84]
Hau EH, Amiza MA, Mohd Zin Z, Shaharudin NA, Zainol MK. Effect of yellowstripe scad (Selaroides leptolepis) protein hydrolysate in the reduction of oil uptake in deep-fried squid. Food Res 2020; 4(6): 1929-36.
[http://dx.doi.org/10.26656/fr.2017.4(6).200]
[85]
Zainol MK, Tan RC, Mohd Zin Z, Danish-Daniel M, Ahmad A. Effectiveness of toothpony (Gazza minuta) protein hydrolysate on reducing oil uptake upon deep- frying. Food Res 2020; 4(3): 805-13.
[http://dx.doi.org/10.26656/fr.2017.4(3).392]
[86]
Unnikrishnan P, Puthenveetil Kizhakkethil B, Anant Jadhav M, et al. Protein hydrolysate from yellowfin tuna red meat as fortifying and stabilizing agent in mayonnaise. J Food Sci Technol 2020; 57(2): 413-25.
[http://dx.doi.org/10.1007/s13197-019-04069-x] [PMID: 32116351]
[87]
Sinthusamran S, Benjakul S, Kijroongrojana K, Prodpran T. Chemical, physical, rheological and sensory properties of biscuit fortified with protein hydrolysate from cephalothorax of pacific white shrimp. J Food Sci Technol 2019; 56(3): 1145-54.
[http://dx.doi.org/10.1007/s13197-019-03575-2] [PMID: 30956294]
[88]
Wangtueai S, Phimolsiripol Y, Vichasilp C, Regenstein JM, Schöenlechner R. Optimization of gluten-free functional noodles formulation enriched with fish gelatin hydrolysates. Lebensm Wiss Technol 2020; 133(July): 109977.
[http://dx.doi.org/10.1016/j.lwt.2020.109977]
[89]
Wang P, Zhang J, Tang Y, Zhang Z, Zhang Y, Hu J. Purification and characterization of antioxidant peptides from hairtail surimi hydrolysates and their effects on beef color stability. J Food Sci 2021; 86(7): 2898-909.
[http://dx.doi.org/10.1111/1750-3841.15804] [PMID: 34146412]
[90]
Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Evaluation of the bioactive potential of foods fortified with fish protein hydrolysates. Food Res Int 2020; 137(July): 109572.
[http://dx.doi.org/10.1016/j.foodres.2020.109572] [PMID: 33233184]
[91]
Zhang Y, Ma L, Cai L, Liu Y, Li J. Effect of combined ultrasonic and alkali pretreatment on enzymatic preparation of angiotensin converting enzyme (ACE) inhibitory peptides from native collagenous materials. Ultrason Sonochem 2017; 36: 88-94.
[http://dx.doi.org/10.1016/j.ultsonch.2016.11.008] [PMID: 28069243]
[92]
Li Z, Wang J, Zheng B, Guo Z. Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates. Ultrason Sonochem 2019; 65: 105063.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105063]
[93]
Korczek KR, Tkaczewska J, Duda I, Migdał W. Effect of heat treatment on the antioxidant and antihypertensive activity as well as in vitro digestion stability of Mackerel (Scomber scombrus) protein hydrolysates. J Aquat Food Prod Technol 2020; 29(1): 73-89.
[http://dx.doi.org/10.1080/10498850.2019.1695033]
[94]
Sarabandi K, Gharehbeglou P, Jafari SM. Spray-drying encapsulation of protein hydrolysates and bioactive peptides: Opportunities and challenges. Dry Technol 2020; 38(5-6): 577-95.
[http://dx.doi.org/10.1080/07373937.2019.1689399]
[95]
Latorres JM, Aquino S, da Rocha M, Wasielesky W Jr, Martins VG, Prentice C. Nanoencapsulation of white shrimp peptides in liposomes : Characterization, stability, and influence on bioactive properties. J Food Process Preserv 2020; 2021: 1-11.
[96]
Ramezanzade L, Hosseini SF, Akbari-Adergani B, Yaghmur A. Cross-linked chitosan-coated liposomes for encapsulation of fish-derived peptide. Lebensm Wiss Technol 2021; 150(June): 112057.
[http://dx.doi.org/10.1016/j.lwt.2021.112057]
[97]
Mohan A, Rajendran SRCK, He QS, Bazinet L, Udenigwe CC. Encapsulation of food protein hydrolysates and peptides: A review. RSC Advances 2015; 5(97): 79270-8.
[http://dx.doi.org/10.1039/C5RA13419F]
[98]
Alinejad M, Motamedzadegan A, Rezaei M, Regenstein JM. The impact of drying method on the functional and antioxidant properties of whitecheek shark (Carcharhinus dussumieri) protein hydrolysates. J Food Process Preserv 2017; 41(1): e12972.
[http://dx.doi.org/10.1111/jfpp.12972]
[99]
Jamshidi A, Shabanpour B, Pourashouri P, Raeisi M. Using WPC-inulin-fucoidan complexes for encapsulation of fish protein hydrolysate and fish oil in W1/O/W2 emulsion: Characterization and nutritional quality. Food Res Int 2018; 114(July): 240-50.
[http://dx.doi.org/10.1016/j.foodres.2018.07.066] [PMID: 30361022]
[100]
Zhou T, Sui B, Mo X, Sun J. Multifunctional and biomimetic fish collagen/bioactive glass nanofibers: Fabrication, antibacterial activity and inducing skin regeneration in vitro and in vivo. Int J Nanomedicine 2017; 12: 3495-507.
[http://dx.doi.org/10.2147/IJN.S132459] [PMID: 28496325]
[101]
Song R, Shi Q, Abdrabboh GAA, Wei R. Characterization and antibacterial activity of the nanocomposite of half-fin anchovy (Setipinna taty) hydrolysates/zinc oxide nanoparticles. Process Biochem 2017; 62(July): 223-30.
[http://dx.doi.org/10.1016/j.procbio.2017.07.002]
[102]
Hosseini SF, Ramezanzade L, Nikkhah M. Nano-liposomal entrapment of bioactive peptidic fraction from fish gelatin hydrolysate. Int J Biol Macromol 2017; 105(Pt 2): 1455-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.141] [PMID: 28552724]
[103]
Ramezanzade L, Hosseini SF, Nikkhah M. Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chem 2017; 234: 220-9.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.177] [PMID: 28551229]
[104]
Tkaczewska J, Jamróz E, Piątkowska E, Borczak B, Kapusta- Duch J, Morawska M. Furcellaran-coated microcapsules as carriers of Cyprinus carpio skin-derived antioxidant hydrolysate: An in vitro and in vivo study. Nutrients 2019; 11(10): 2502. https://www.mdpi.com/2072-6643/11/10/2502
[http://dx.doi.org/10.3390/nu11102502] [PMID: 31627407]
[105]
Marín D, Alemán A, Sánchez-Faure A, Montero P, Gómez-Guillén MC. Freeze-dried phosphatidylcholine liposomes encapsulating various antioxidant extracts from natural waste as functional ingredients in surimi gels. Food Chem 2017; 245: 525-35.
[106]
Breternitz NR, Fidelis CH de V, Silva VM, Eberlin MN, Hubinger MD. Volatile composition and physicochemical characteristics of mussel (Perna perna) protein hydrolysate microencapsulated with maltodextrin and n-OSA modified starch. Food and Bioproducts Processing 2009; 105: 12-25.
[107]
Nasri R, Hamdi M, Touir S, Li S, Karra-Chaâbouni M, Nasri M. Development of delivery system based on marine chitosan: Encapsulationand release kinetic study of antioxidant peptides from chitosan microparticle. Int J Biol Macromol 2021; 167: 1445-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.098] [PMID: 33212105]
[108]
Lajmi K, Gómez-Estaca J, Hammami M, Martínez-Alvarez O. Upgrading collagenous smooth hound by-products: Effect of hydrolysis conditions, in vitro gastrointestinal digestion and encapsulation on bioactive properties. Food Biosci 2019; 28: 99-108.
[http://dx.doi.org/10.1016/j.fbio.2019.01.014]
[109]
Grigore-Gurgu L, Crăciunescu O, Aprodu I, et al. Tailoring the health-promoting potential of protein hydrolysate derived from fish wastes and flavonoids from yellow onion skins: From binding mechanisms to microencapsulated functional ingredients. Biomolecules 2020; 10(10): 1416.
[http://dx.doi.org/10.3390/biom10101416] [PMID: 33036339]
[110]
Unnikrishnan P, Puthenveetil Kizhakkethil B, Annamalai J, Ninan G, Aliyamveetil Abubacker Z, Chandragiri Nagarajarao R. Tuna red meat hydrolysate as core and wall polymer for fish oil encapsulation: A comparative analysis. J Food Sci Technol 2019; 56(4): 2134-46.
[http://dx.doi.org/10.1007/s13197-019-03694-w] [PMID: 30996447]
[111]
Sepúlveda CT, Zapata JE, Martínez-Álvarez O, Alemán A, Montero MP, Gómez-Guillén MC. The preferential use of a soy-rapeseed lecithin blend for the liposomal encapsulation of a tilapia viscera hydrolysate. Lebensm Wiss Technol 2021; 139(110530): 110530.
[http://dx.doi.org/10.1016/j.lwt.2020.110530]
[112]
Montero P, Mosquera M, Marín-Peñalver D, Alemán A, Martínez-Álvarez Ó, Gómez-Guillén MC. Changes in structural integrity of sodium caseinate films by the addition of nanoliposomes encapsulating an active shrimp peptide fraction. J Food Eng 2019; 244: 47-54.
[http://dx.doi.org/10.1016/j.jfoodeng.2018.09.024]
[113]
Camargo TR, Khelissa S, Chihib NE, et al. Preparation and characterization of microcapsules containing antioxidant fish protein hydrolysates: A new use of bycatch in Brazil. Mar Biotechnol (NY) 2021; 23(2): 321-30.
[http://dx.doi.org/10.1007/s10126-021-10026-7] [PMID: 33763809]
[114]
Cao W, Shi L, Hao G, Chen J, Weng W. Effect of molecular weight on the emulsion properties of microfluidized gelatin hydrolysates. Food Hydrocoll 2021; 111: 106267.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106267]
[115]
Oliveira Lima K, Alemán A, López-Caballero ME, et al. Characterization, stability, and in vivo effects in Caenorhabditis elegans of microencapsulated protein hydrolysates from stripped weakfish (Cynoscion guatucupa) industrial byproducts. Food Chem 2021; 364(June): 130380.
[http://dx.doi.org/10.1016/j.foodchem.2021.130380] [PMID: 34167008]
[116]
Rashidian G, Abedian Kenari A, Nikkhah M. Dietary effects of a low-molecular weight fraction (<10 kDa) from shrimp waste hydrolysate on growth performance and immunity of rainbow trout (Oncorhynchus mykiss): Employing nanodelivery systems. Fish Shellfish Immunol 2021; 118(July): 294-302.
[http://dx.doi.org/10.1016/j.fsi.2021.09.014] [PMID: 34537336]
[117]
Chotphruethipong L, Battino M, Benjakul S. Effect of stabilizing agents on characteristics, antioxidant activities and stability of liposome loaded with hydrolyzed collagen from defatted Asian sea bass skin. Food Chem 2020; 328(May): 127127.
[http://dx.doi.org/10.1016/j.foodchem.2020.127127] [PMID: 32473492]
[118]
Annamalai J, Aliyamveetil Abubacker Z, Lakshmi NM, Unnikrishnan P. Microencapsulation of fish oil using fish protein hydrolysate, maltodextrin, and gum arabic: Effect on structural and oxidative stability. J Aquat Food Prod Technol 2020; 29(3): 293-306.
[http://dx.doi.org/10.1080/10498850.2020.1723765]
[119]
Nasri R, Taktak W, Hamdi M, et al. Sardinelle protein isolate as a novel material for oil microencapsulation: Novel alternative for fish by-products valorisation. Mater Sci Eng C 2020; 116(May): 111164.
[http://dx.doi.org/10.1016/j.msec.2020.111164] [PMID: 32806248]
[120]
Özyurt G, Durmuş M, Uçar Y, Özoğul Y. The potential use of recovered fi sh protein as wall material for microencapsulated anchovy oil. Lebensm Wiss Technol 2020; 129(May)
[121]
Zhao Q, Wu C, Yu C, Bi A, Xu X, Du M. High stability of bilayer nano-emulsions fabricated by Tween 20 and specific interfacial peptides. Food Chem 2021; 340: 127877.
[http://dx.doi.org/10.1016/j.foodchem.2020.127877]
[122]
Lima KO, da Rocha M, Alemán A, et al. Yogurt fortification by the addition of microencapsulated stripped weakfish (Cynoscion guatucupa) protein hydrolysate. Antioxidants 2021; 10(10): 1567.
[http://dx.doi.org/10.3390/antiox10101567] [PMID: 34679702]
[123]
Etxabide A, Uranga J, Guerrero P, de la Caba K. Development of active gelatin films by means of valorisation of food processing waste: A review. Food Hydrocoll 2017; 68: 192-8.
[http://dx.doi.org/10.1016/j.foodhyd.2016.08.021]
[124]
Lima M de M, Bianchini D, Dias AG, Zavareze E da R, Prentice C. Angelita da Silveira Moreira. Biodegradable films based on chitosan, xanthan gum, and fish protein hydrolysate. J Appl Polym Sci 2017; 134(23): 1-9.
[125]
Kchaou H, Jridi M, Benbettaieb N, Debeaufort F, Nasri M. Bioactive films based on cuttlefish (Sepia officinalis) skin gelatin incorporated with cuttlefish protein hydrolysates: Physicochemical characterization and antioxidant properties. Food Packag Shelf Life 2019; 2020: 24.
[126]
Hasanzati Rostami A, Motamedzadegan A, Hosseini SE, Rezaei M, Kamali A. Evaluation of plasticizing and antioxidant properties of silver carp protein hydrolysates in fish gelatin film. J Aquat Food Prod Technol 2017; 26(4): 457-67.
[http://dx.doi.org/10.1080/10498850.2016.1213345]
[127]
Rocha M, Alemán A, Romani VP, et al. Effects of agar films incorporated with fish protein hydrolysate or clove essential oil on flounder (Paralichthys orbignyanus) fillets shelf-life. Food Hydrocoll 2018; 81: 351-63. https://linkinghub.elsevier.com/retrieve/pii/S0268005X17314911
[http://dx.doi.org/10.1016/j.foodhyd.2018.03.017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy