Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Role of SIRT-1 as a Target for Treatment and Prevention of Diabetic Nephropathy: A Review

Author(s): Anita Kumari, Nalini Sodum, Velayutham Ravichandiran and Nitesh Kumar*

Volume 16, Issue 8, 2023

Published on: 17 April, 2023

Article ID: e090123212452 Pages: 21

DOI: 10.2174/1874467216666230109140134

Price: $65

Abstract

Type-2 diabetes mellitus is a prime factor for the development of Diabetic Nephropathy (DN) that affects the vital organ namely the kidneys, and further alters the functions of the nephron system. DN is nowadays becoming a challenge for scientists towards the world because of its high pervasiveness and complexity of medication. Various risk factors are involved in the initiation of pathogenic DN, which are associated with different pathways against drug activity. Due to this DN becomes an unpredictable query to the researchers. SIRT1 is a silent information regulator factor 2 related enzyme 1 (SIRT1) is nicotinamide adenine dinucleotide (NAD+) dependent deacetylase that functions as an intracellular regulator of transcriptional activity. An activated version of SIRT-1 improves the metabolic diseased conditions associated with other molecular pathways. SIRT1 attenuates diabetic nephropathy in in vitro and in vivo experimental models of diabetes containing Podocytes, Mesangial cells, and Renal proximal tubular cells. SIRT1 shows nephroprotective effects in DN in part through deacetylation of transcription factors i.e., imply in the disease like p53, PTP1B, FOXO, RelA, NF- kβ, STAT-3, and PGC-1α/ PPARγ. It has been shown that some natural products like resveratrol and synthetic compounds are activating the SIRT1, this further involved the cascade pathways to prevent the DN. This review will help regarding the effectiveness of SIRT1as target in the prevention and treatment of DN.

Keywords: Diabetic nephropathy, SIRT1, NAD+, insulin, Nrf2 pathway, NF-κB pathway, FoxO1, VEGF, regeneration, p53, oxidative stress, TAK-1, clinical relevance, transcription factors.

Graphical Abstract
[1]
Gheith, O.; Farouk, N.; Nampoory, N.; Halim, M.A.; Al-Otaibi, T. Diabetic kidney disease: world wide difference of prevalence and risk factors. J. Nephropharmacol., 2015, 5(1), 49-56.
[PMID: 28197499]
[2]
Sadoul, K.; Boyault, C.; Pabion, M.; Khochbin, S. Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie, 2008, 90(2), 306-312.
[http://dx.doi.org/10.1016/j.biochi.2007.06.009] [PMID: 17681659]
[3]
Trevisan, R.; Viberti, G. Genetic factors in the development of diabetic nephropathy. J. Lab. Clin. Med., 1995, 126(4), 342-349.
[PMID: 7561441]
[4]
Zhu, H.; Fang, Z.; Chen, J.; Yang, Y.; Gan, J.; Luo, L.; Zhan, X. PARP-1 and SIRT-1 are interacted in diabetic nephropathy by activating AMPK/PGC-1α signaling pathway. Diabetes Metab. Syndr. Obes., 2021, 14, 355-366.
[http://dx.doi.org/10.2147/DMSO.S291314] [PMID: 33531822]
[5]
Akhtar, S.; Siragy, H.M. Pro-renin receptor suppresses mitochondrial biogenesis and function via AMPK/SIRT-1/PGC-1α pathway in diabetic kidney. PLoS One, 2019, 14(12), e0225728.
[http://dx.doi.org/10.1371/journal.pone.0225728] [PMID: 31800607]
[6]
Zhang, F.; Lu, Z.; Wang, F. Advances in the pathogenesis and prevention of contrast-induced nephropathy. Life Sci., 2020, 259, 118379.
[http://dx.doi.org/10.1016/j.lfs.2020.118379] [PMID: 32890604]
[7]
Lu, Z.; Liu, N.; Wang, F. Epigenetic Regulations in Diabetic Nephropathy. J. Diabetes Res., 2017, 2017, 1-6.
[http://dx.doi.org/10.1155/2017/7805058] [PMID: 28401169]
[8]
Biswas, S.; Rao, C.M. Epigenetics in cancer: Fundamentals and Beyond. Pharmacol. Ther., 2017, 173, 118-134.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.011] [PMID: 28188812]
[9]
Liu, R.; Lee, K.; He, J.C. Genetics and epigenetics of diabetic nephropathy. Kidney Dis., 2015, 1(1), 42-51.
[http://dx.doi.org/10.1159/000381796] [PMID: 27536664]
[10]
Sodum, N.; Kumar, G.; Bojja, S.L.; Kumar, N.; Rao, C.M. Epigenetics in NAFLD/NASH: Targets and therapy. Pharmacol. Res., 2021, 167, 105484.
[http://dx.doi.org/10.1016/j.phrs.2021.105484] [PMID: 33771699]
[11]
Kato, M.; Natarajan, R. Diabetic nephropathy--emerging epigenetic mechanisms. Nat. Rev. Nephrol., 2014, 10(9), 517-530.
[http://dx.doi.org/10.1038/nrneph.2014.116] [PMID: 25003613]
[12]
Michishita, E.; Park, J.Y.; Burneskis, J.M.; Barrett, J.C.; Horikawa, I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell, 2005, 16(10), 4623-4635.
[http://dx.doi.org/10.1091/mbc.e05-01-0033] [PMID: 16079181]
[13]
Bordone, L.; Cohen, D.; Robinson, A.; Motta, M.C.; Van Veen, E.; Czopik, A.; Steele, A.D.; Crowe, H.; Marmor, S.; Luo, J.; Gu, W.; Guarente, L. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell, 2007, 6(6), 759-767.
[http://dx.doi.org/10.1111/j.1474-9726.2007.00335.x] [PMID: 17877786]
[14]
Kim, H-S.; Xiao, C.; Wang, R-H.; Lahusen, T.; Xu, X.; Vassilopoulos, A.; Vazquez-Ortiz, G.; Jeong, W-I.; Park, O.; Ki, S.H.; Gao, B.; Deng, C-X. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride syn-thesis. Cell Metab., 2010, 12(3), 224-236.
[http://dx.doi.org/10.1016/j.cmet.2010.06.009] [PMID: 20816089]
[15]
Jukarainen, S.; Heinonen, S.; Rämö, J.T.; Rinnankoski-Tuikka, R.; Rappou, E.; Tummers, M.; Muniandy, M.; Hakkarainen, A.; Lundbom, J.; Lundbom, N.; Kaprio, J.; Rissanen, A.; Pirinen, E.; Pietiläinen, K.H. Obesity is associated with low NAD(+)/SIRT pathway expression in adipose tissue of BMI-discordant monozygotic twins. J. Clin. Endocrinol. Metab., 2016, 101(1), 275-283.
[http://dx.doi.org/10.1210/jc.2015-3095] [PMID: 26574954]
[16]
Sun, C.; Zhang, F.; Ge, X.; Yan, T.; Chen, X.; Shi, X.; Zhai, Q. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab., 2007, 6(4), 307-319.
[http://dx.doi.org/10.1016/j.cmet.2007.08.014] [PMID: 17908559]
[17]
Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A.L.; Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C.C.; Ramachandran, C.; Gresser, M.J.; Tremblay, M.L.; Kennedy, B.P. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 1999, 283(5407), 1544-1548.
[http://dx.doi.org/10.1126/science.283.5407.1544] [PMID: 10066179]
[18]
Zhao, S.; Li, T.; Li, J.; Lu, Q.; Han, C.; Wang, N.; Qiu, Q.; Cao, H.; Xu, X.; Chen, H.; Zheng, Z. MiR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Diabetologia, 2016, 59(3), 644-654.
[http://dx.doi.org/10.1007/s00125-015-3832-0] [PMID: 26687158]
[19]
Wang, X-R.; Shi, G-X.; Yang, J-W.; Yan, C-Q.; Lin, L-T.; Du, S-Q.; Zhu, W.; He, T.; Zeng, X-H.; Xu, Q.; Liu, C-Z. Acupuncture ameliorates cognitive impairment and hippocampus neuronal loss in experimental vascular dementia through Nrf2-mediated antioxidant response. Free Radic. Biol. Med., 2015, 89, 1077-1084.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.10.426] [PMID: 26546103]
[20]
Wang, Z.; Ji, C.; Wu, L.; Qiu, J.; Li, Q.; Shao, Z.; Chen, G. Tert-butylhydroquinone alleviates early brain injury and cognitive dysfunction after experimental subarachnoid hemorrhage: role of Keap1/Nrf2/ARE pathway. PLoS One, 2014, 9(5), e97685.
[http://dx.doi.org/10.1371/journal.pone.0097685] [PMID: 24848277]
[21]
Kitada, M.; Kume, S.; Imaizumi, N.; Koya, D. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes, 2011, 60(2), 634-643.
[http://dx.doi.org/10.2337/db10-0386] [PMID: 21270273]
[22]
Zhong, Y.; Lee, K.; He, J.C. SIRT1 is a potential drug target for treatment of diabetic kidney disease. Front. Endocrinol. (Lausanne), 2018, 9, 624.
[http://dx.doi.org/10.3389/fendo.2018.00624] [PMID: 30386303]
[23]
Pan, W.; Miao, L.; Lin, Y.; Huang, X.; Ge, X.; Moosa, S.L.; Liu, B.; Ren, M.; Zhou, Q.; Liang, H. Regulation mechanism of oxidative stress induced by high glucose through PI3K/Akt/Nrf2 pathway in juvenile blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol., 2017, 70, 66-75.
[http://dx.doi.org/10.1016/j.fsi.2017.09.005] [PMID: 28882793]
[24]
Guo, Y.; Sun, J.; Li, T.; Zhang, Q.; Bu, S.; Wang, Q.; Lai, D. Melatonin ameliorates restraint stress-induced oxidative stress and apoptosis in testicular cells via NF-κB/iNOS and Nrf2/HO-1 signaling pathway. Sci. Rep., 2017, 7(1), 9599.
[http://dx.doi.org/10.1038/s41598-017-09943-2] [PMID: 28851995]
[25]
Wang, X.; Gao, Y.; Tian, N.; Wang, T.; Shi, Y.; Xu, J.; Wu, B. Astragaloside IV inhibits glucose-induced epithelial-mesenchymal transition of podocytes through autophagy enhancement via the SIRT–NF-κB p65 axis. Nature, 2019, 9, 323.
[http://dx.doi.org/10.1038/s41598-018-36911-1]
[26]
Ong, A.L.C.; Ramasamy, T.S. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res. Rev., 2018, 43, 64-80.
[http://dx.doi.org/10.1016/j.arr.2018.02.004] [PMID: 29476819]
[27]
Deshpande, S.D.; Putta, S.; Wang, M.; Lai, J.Y.; Bitzer, M.; Nelson, R.G.; Lanting, L.L.; Kato, M.; Natarajan, R.J.D. Transforming growth factor-β–induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes, 2013, 62(9), 3151-3162.
[http://dx.doi.org/10.2337/db13-0305]
[28]
Guo, W.; Tian, D.; Jia, Y.; Huang, W.; Jiang, M.; Wang, J.; Sun, W.; Wu, H. MDM2 controls NRF2 antioxidant activity in prevention of diabetic kidney disease. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(8), 1034-1045.
[http://dx.doi.org/10.1016/j.bbamcr.2018.04.011] [PMID: 29704532]
[29]
Higgins, S.P.; Tang, Y.; Higgins, C.E.; Mian, B.; Zhang, W.; Czekay, R.P.; Samarakoon, R.; Conti, D.J.; Higgins, P.J. TGF-β1/p53 signaling in renal fibrogenesis. Cell. Signal., 2018, 43, 1-10.
[http://dx.doi.org/10.1016/j.cellsig.2017.11.005] [PMID: 29191563]
[30]
Kaspar, J.W.; Niture, S.K.; Jaiswal, A.K. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med., 2009, 47(9), 1304-1309.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.07.035] [PMID: 19666107]
[31]
Faraonio, R.; Vergara, P.; Di Marzo, D.; Pierantoni, M.G.; Napolitano, M.; Russo, T.; Cimino, F. p53 suppresses the Nrf2-dependent tran-scription of antioxidant response genes. J. Biol. Chem., 2006, 281(52), 39776-39784.
[http://dx.doi.org/10.1074/jbc.M605707200] [PMID: 17077087]
[32]
Kume, S.; Uzu, T.; Kashiwagi, A.; Koya, D. SIRT1, a calorie restriction mimetic, in a new therapeutic approach for type 2 diabetes mellitus and diabetic vascular complications. Endocr. Metab. Immune Disord. Drug Targets, 2010, 10(1), 16-24.
[http://dx.doi.org/10.2174/187153010790827957] [PMID: 20044906]
[33]
Tan, S.M.; de Haan, J. Combating oxidative stress in diabetic complications with Nrf2 activators: how much is too much? Redox Rep., 2014, 19(3), 107-117.
[http://dx.doi.org/10.1179/1351000214Y.0000000087]
[34]
Mishra, M.; Duraisamy, A.J.; Bhattacharjee, S.; Kowluru, R.A. Adaptor protein p66Shc: A link between cytosolic and mitochondrial dys-function in the development of diabetic retinopathy. Antioxid. Redox Signal., 2019, 30(13), 1621-1634.
[http://dx.doi.org/10.1089/ars.2018.7542] [PMID: 30105917]
[35]
Raut, S.K.; Singh, G.B.; Rastogi, B.; Saikia, U.N.; Mittal, A.; Dogra, N.; Singh, S.; Prasad, R.; Khullar, M. miR-30c and miR-181a synergis-tically modulate p53–p21 pathway in diabetes induced cardiac hypertrophy. Mol. Cell. Biochem., 2016, 417(1-2), 191-203.
[http://dx.doi.org/10.1007/s11010-016-2729-7] [PMID: 27221738]
[36]
Morimoto, Y.; Kureishi Bando, Y.; Shigeta, T.; Monji, A.; Murohara, T. Atorvastatin prevents ischemic limb loss in type 2 diabetes: role of p53. J. Atheroscler. Thromb., 2011, 18(3), 200-208.
[http://dx.doi.org/10.5551/jat.6437] [PMID: 21123956]
[37]
Arenzana-Seisdedos, F.; Turpin, P.; Rodriguez, M.; Thomas, D.; Hay, R.T.; Virelizier, J.L.; Dargemont, C. Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm. J. Cell Sci., 1997, 110(Pt 3), 369-378.
[http://dx.doi.org/10.1242/jcs.110.3.369]
[38]
Baker, R.G.; Hayden, M.S.; Ghosh, S. NF-κB, inflammation, and metabolic disease. Cell Metab., 2011, 13(1), 11-22.
[http://dx.doi.org/10.1016/j.cmet.2010.12.008] [PMID: 21195345]
[39]
Yang, X-D.; Tajkhorshid, E.; Chen, L-F. Functional interplay between acetylation and methylation of the RelA subunit of NF-kappaB. Mol. Cell. Biol., 2010, 30(9), 2170-2180.
[http://dx.doi.org/10.1128/MCB.01343-09] [PMID: 20160011]
[40]
Ruderman, N.B.; Julia Xu, X. ; Nelson, L.; Cacicedo, J.M.; Saha, A.K.; Lan, F.; Ido, Y. AMPK and SIRT1: a long-standing partnership? Am. J. Physiol. Endocrinol. Metab., 2010, 298(4), E751-E760.
[http://dx.doi.org/10.1152/ajpendo.00745.2009] [PMID: 20103737]
[41]
Potenza, M.A.; Sgarra, L.; Nacci, C.; Leo, V.; De Salvia, M.A.; Montagnani, M. Activation of AMPK/SIRT1 axis is required for adiponec-tin-mediated preconditioning on myocardial ischemia-reperfusion (I/R) injury in rats. PLoS One, 2019, 14(1), e0210654.
[http://dx.doi.org/10.1371/journal.pone.0210654] [PMID: 30653603]
[42]
Canto, C.; Gerhart-Hines, Z.; Feige, J.N.; Lagouge, M.; Noriega, L.; Milne, J.C.; Elliott, P.J.; Puigserver, P.; Auwerx, J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 2009, 458(7241), 1056-1060.
[http://dx.doi.org/10.1038/nature07813] [PMID: 19262508]
[43]
Cantó, C.; Jiang, L.Q.; Deshmukh, A.S.; Mataki, C.; Coste, A.; Lagouge, M.; Zierath, J.R.; Auwerx, J. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab., 2010, 11(3), 213-219.
[http://dx.doi.org/10.1016/j.cmet.2010.02.006] [PMID: 20197054]
[44]
Eijkelenboom, A.; Burgering, B.M.T. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol., 2013, 14(2), 83-97.
[http://dx.doi.org/10.1038/nrm3507] [PMID: 23325358]
[45]
Lin, L.; Hron, J.D.; Peng, S.L. Regulation of NF-kappaB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity, 2004, 21(2), 203-213.
[http://dx.doi.org/10.1016/j.immuni.2004.06.016] [PMID: 15308101]
[46]
Ruderman, N.B.; Williamson, J.R.; Brownlee, M. Glucose and diabetic vascular disease. FASEB J., 1992, 6(11), 2905-2914.
[http://dx.doi.org/10.1096/fasebj.6.11.1644256] [PMID: 1644256]
[47]
Beckman, J.A.; Paneni, F.; Cosentino, F.; Creager, M.A. Diabetes and vascular disease: pathophysiology, clinical consequences, and medi-cal therapy: part II. Eur. Heart J., 2013, 34(31), 2444-2452.
[http://dx.doi.org/10.1093/eurheartj/eht142] [PMID: 23625211]
[48]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[49]
Lv, X.; Lv, G-H.; Dai, G-Y.; Sun, H-M.; Xu, H-Q. Food-advanced glycation end products aggravate the diabetic vascular complications via modulating the AGEs/RAGE pathway. Chin. J. Nat. Med., 2016, 14(11), 844-855.
[http://dx.doi.org/10.1016/S1875-5364(16)30101-7] [PMID: 27914528]
[50]
Lander, H.M.; Tauras, J.M.; Ogiste, J.S.; Hori, O.; Moss, R.A.; Schmidt, A.M. Activation of the receptor for advanced glycation end prod-ucts triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J. Biol. Chem., 1997, 272(28), 17810-17814.
[http://dx.doi.org/10.1074/jbc.272.28.17810] [PMID: 9211935]
[51]
He, Z.; King, G.L. Microvascular complications of diabetes. Endocrinol. Metab. Clin. North Am., 2004, 33(1), 215-238. [xi-xii.
[http://dx.doi.org/10.1016/j.ecl.2003.12.003] [PMID: 15053904]
[52]
Patel, S.; Santani, D.J.P.R. Role of NF-κB in the pathogenesis of diabetes and its associated complications. Pharmacol. Rep., 2009, 61(4), 595-603.
[http://dx.doi.org/10.1016/S1734-1140(09)70111-2]
[53]
Evans, J.L.; Goldfine, I.D. A new road for treating the vascular complications of diabetes: So let’s step on the gas. Diabetes, 2016, 65(2), 346-348.
[http://dx.doi.org/10.2337/dbi15-0029] [PMID: 26798120]
[54]
Zheng, C.; Yin, Q.; Wu, H. Structural studies of NF-κB signaling. Cell Res., 2011, 21(1), 183-195.
[http://dx.doi.org/10.1038/cr.2010.171] [PMID: 21135870]
[55]
Kitada, M.; Zhang, Z.; Mima, A.; King, G.L. Molecular mechanisms of diabetic vascular complications. J. Diabetes Investig., 2010, 1(3), 77-89.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00018.x] [PMID: 24843412]
[56]
Olefsky, J.M. Inflammation and Insulin Resistance; Wiley Online Library, 2012.
[http://dx.doi.org/10.1096/fasebj.26.1_supplement.465.3]
[57]
Mohamed, A.K.; Bierhaus, A.; Schiekofer, S.; Tritschler, H.; Ziegler, R.; Nawroth, P.P. The role of oxidative stress and NF-κB activation in late diabetic complications. Biofactors, 1999, 10(2-3), 157-167.
[http://dx.doi.org/10.1002/biof.5520100211] [PMID: 10609877]
[58]
Borgohain, M.P.; Lahkar, M.; Ahmed, S.; Chowdhury, L.; Kumar, S.; Pant, R.; Choubey, A. Small molecule inhibiting nuclear factor-kB ameliorates oxidative stress and suppresses renal inflammation in early stage of alloxan-induced diabetic nephropathy in rat. Basic Clin. Pharmacol. Toxicol., 2017, 120(5), 442-449.
[http://dx.doi.org/10.1111/bcpt.12718] [PMID: 27888584]
[59]
Suryavanshi, S.V.; Kulkarni, Y.A. NF-κβ: A potential target in the management of vascular complications of diabetes. Front. Pharmacol., 2017, 8, 798.
[http://dx.doi.org/10.3389/fphar.2017.00798] [PMID: 29163178]
[60]
Meng, X-M.; Tang, P.M-K.; Li, J.; Lan, H.Y. TGF-β/Smad signaling in renal fibrosis. Front. Physiol., 2015, 6, 82.
[http://dx.doi.org/10.3389/fphys.2015.00082] [PMID: 25852569]
[61]
Park, H.S.; Lim, J.H.; Kim, M.Y.; Kim, Y.; Hong, Y.A.; Choi, S.R.; Chung, S.; Kim, H.W.; Choi, B.S.; Kim, Y.S.; Chang, Y.S.; Park, C.W. Resveratrol increases AdipoR1 and AdipoR2 expression in type 2 diabetic nephropathy. J. Transl. Med., 2016, 14(1), 176.
[http://dx.doi.org/10.1186/s12967-016-0922-9] [PMID: 27286657]
[62]
Chuang, P.Y.; Yu, Q.; Fang, W.; Uribarri, J.; He, J.C. Advanced glycation endproducts induce podocyte apoptosis by activation of the FOXO4 transcription factor. Kidney Int., 2007, 72(8), 965-976.
[http://dx.doi.org/10.1038/sj.ki.5002456] [PMID: 17667983]
[63]
Chuang, P.Y.; Dai, Y.; Liu, R.; He, H.; Kretzler, M.; Jim, B.; Cohen, C.D.; He, J.C. Alteration of forkhead box O (foxo4) acetylation medi-ates apoptosis of podocytes in diabetes mellitus. PLoS One, 2011, 6(8), e23566.
[http://dx.doi.org/10.1371/journal.pone.0023566] [PMID: 21858169]
[64]
Yang, L.; Li, D.X.; Cao, B.Q.; Liu, S.J.; Xu, D.H.; Zhu, X.Y.; Liu, Y.J. Exercise training ameliorates early diabetic kidney injury by regu-lating the H 2 S/SIRT1/p53 pathway. FASEB J., 2021, 35(9), e21823.
[http://dx.doi.org/10.1096/fj.202100219R] [PMID: 34396581]
[65]
Wang, R.H.; Sengupta, K.; Li, C.; Kim, H.S.; Cao, L.; Xiao, C.; Kim, S.; Xu, X.; Zheng, Y.; Chilton, B.; Jia, R.; Zheng, Z.M.; Appella, E.; Wang, X.W.; Ried, T.; Deng, C.X. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell, 2008, 14(4), 312-323.
[http://dx.doi.org/10.1016/j.ccr.2008.09.001] [PMID: 18835033]
[66]
Jeong, J.; Juhn, K.; Lee, H.; Kim, S.H.; Min, B.H.; Lee, K.M.; Cho, M.H.; Park, G.H.; Lee, K.H. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp. Mol. Med., 2007, 39(1), 8-13.
[http://dx.doi.org/10.1038/emm.2007.2] [PMID: 17334224]
[67]
Yuan, Z.; Zhang, X.; Sengupta, N.; Lane, W.S.; Seto, E. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol. Cell, 2007, 27(1), 149-162.
[http://dx.doi.org/10.1016/j.molcel.2007.05.029] [PMID: 17612497]
[68]
Hughes, K.J.; Meares, G.P.; Hansen, P.A.; Corbett, J.A. FoxO1 and SIRT1 regulate beta-cell responses to nitric oxide. J. Biol. Chem., 2011, 286(10), 8338-8348.
[http://dx.doi.org/10.1074/jbc.M110.204768] [PMID: 21196578]
[69]
Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem., 2010, 79(1), 181-211.
[http://dx.doi.org/10.1146/annurev.biochem.052308.093131] [PMID: 20192759]
[70]
Nussenzweig, A.; Chen, C.; da Costa Soares, V.; Sanchez, M.; Sokol, K.; Nussenzweig, M.C.; Li, G.C. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature, 1996, 382(6591), 551-555.
[http://dx.doi.org/10.1038/382551a0] [PMID: 8700231]
[71]
Ouyang, H.; Nussenzweig, A.; Kurimasa, A.; Soares, V.C.; Li, X.; Cordon-Cardo, C.; Li, W.; Cheong, N.; Nussenzweig, M.; Iliakis, G.; Chen, D.J.; Li, G.C. Ku70 is required for DNA repair but not for T cell antigen receptor gene recombination In vivo. J. Exp. Med., 1997, 186(6), 921-929.
[http://dx.doi.org/10.1084/jem.186.6.921] [PMID: 9294146]
[72]
Shah, N.P.; Nicoll, J.M.; Nagar, B.; Gorre, M.E.; Paquette, R.L.; Kuriyan, J.; Sawyers, C.L. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell, 2002, 2(2), 117-125.
[http://dx.doi.org/10.1016/S1535-6108(02)00096-X] [PMID: 12204532]
[73]
Gorre, M.E.; Mohammed, M.; Ellwood, K.; Hsu, N.; Paquette, R.; Rao, P.N.; Sawyers, C.L. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 2001, 293(5531), 876-880.
[http://dx.doi.org/10.1126/science.1062538] [PMID: 11423618]
[74]
Wang, Z.; Yuan, H.; Roth, M.; Stark, J.M.; Bhatia, R.; Chen, W.Y. SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells. Oncogene, 2013, 32(5), 589-598.
[http://dx.doi.org/10.1038/onc.2012.83] [PMID: 22410779]
[75]
Roth, M.; Wang, Z.; Chen, W.Y. SIRT1 and LSD1 competitively regulate KU70 functions in DNA repair and mutation acquisition in can-cer cells. Oncotarget, 2016, 7(31), 50195-50214.
[http://dx.doi.org/10.18632/oncotarget.10328] [PMID: 27384990]
[76]
Schwab, M.; Alitalo, K.; Klempnauer, K.H.; Varmus, H.E.; Bishop, J.M.; Gilbert, F.; Brodeur, G.; Goldstein, M.; Trent, J. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature, 1983, 305(5931), 245-248.
[http://dx.doi.org/10.1038/305245a0] [PMID: 6888561]
[77]
Yu, W.; Li, L.; Wang, G.; Zhang, W.; Xu, J.; Liang, A. KU70 inhibition impairs both non-homologous end joining and homologous re-combination DNA damage repair through SHP-1 induced dephosphorylation of SIRT1 in T-cell acute lymphoblastic leukemia (T-ALL).corrected Cell. Physiol. Biochem., 2018, 49(6), 2111-2123.
[http://dx.doi.org/10.1159/000493815] [PMID: 30273928]
[78]
Feng, J.; Bao, L.; Wang, X.; Li, H.; Chen, Y.; Xiao, W.; Li, Z.; Xie, L.; Lu, W.; Jiang, H.; Lee, K.; He, J.C. Low expression of HIV genes in podocytes accelerates the progression of diabetic kidney disease in mice. Kidney Int., 2021, 99(4), 914-925.
[http://dx.doi.org/10.1016/j.kint.2020.12.012] [PMID: 33359498]
[79]
Darvishzadeh, M.F.; Khaksari, M.; Raji-amirhasani, A. Renoprotective effects of estrogen on acute kidney injury: the role of SIRT1. Int. Urol. Nephrol., 2021, 53(11), 2299-2310.
[http://dx.doi.org/10.1007/s11255-020-02761-y] [PMID: 33458788]
[80]
Ku, C.H.; White, K.E.; Dei Cas, A.; Hayward, A.; Webster, Z.; Bilous, R.; Marshall, S.; Viberti, G.; Gnudi, L. Inducible overexpression of sFlt-1 in podocytes ameliorates glomerulopathy in diabetic mice. Diabetes, 2008, 57(10), 2824-2833.
[http://dx.doi.org/10.2337/db08-0647] [PMID: 18647955]
[81]
Veron, D.; Reidy, K.; Marlier, A.; Bertuccio, C.; Villegas, G.; Jimenez, J.; Kashgarian, M.; Tufro, A. Induction of podocyte VEGF164 overexpression at different stages of development causes congenital nephrosis or steroid-resistant nephrotic syndrome. Am. J. Pathol., 2010, 177(5), 2225-2233.
[http://dx.doi.org/10.2353/ajpath.2010.091146] [PMID: 20829436]
[82]
Veron, D.; Reidy, K.J.; Bertuccio, C.; Teichman, J.; Villegas, G.; Jimenez, J.; Shen, W.; Kopp, J.B.; Thomas, D.B.; Tufro, A. Overexpres-sion of VEGF-A in podocytes of adult mice causes glomerular disease. Kidney Int., 2010, 77(11), 989-999.
[http://dx.doi.org/10.1038/ki.2010.64] [PMID: 20375978]
[83]
Cha, D.R.; Kang, Y.S.; Han, S.Y.; Jee, Y.H.; Han, K.H.; Han, J.Y.; Kim, Y.S.; Kim, N.H.J.J.o.E. Vascular endothelial growth factor is increased during early stage of diabetic nephropathy in type II diabetic rats. J. Endocrinol., 2004, 183(1), 183-194.
[http://dx.doi.org/10.1677/joe.1.05647]
[84]
Lindenmeyer, M.T.; Kretzler, M.; Boucherot, A.; Berra, S.; Yasuda, Y.; Henger, A.; Eichinger, F.; Gaiser, S.; Schmid, H.; Rastaldi, M.P.; Schrier, R.W.; Schlöndorff, D.; Cohen, C.D. Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropa-thy. J. Am. Soc. Nephrol., 2007, 18(6), 1765-1776.
[http://dx.doi.org/10.1681/ASN.2006121304] [PMID: 17475821]
[85]
Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochon-dria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1066-1077.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.010] [PMID: 27836629]
[86]
Qian, Q. Inflammation: A key contributor to the genesis and progression of chronic kidney disease. Contrib. Nephrol., 2017, 191, 72-83.
[http://dx.doi.org/10.1159/000479257] [PMID: 28910792]
[87]
Eddy, A.A.; Fogo, A.B. Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J. Am. Soc. Nephrol., 2006, 17(11), 2999-3012.
[http://dx.doi.org/10.1681/ASN.2006050503] [PMID: 17035608]
[88]
Mimura, I.; Nangaku, M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat. Rev. Nephrol., 2010, 6(11), 667-678.
[http://dx.doi.org/10.1038/nrneph.2010.124] [PMID: 20877304]
[89]
Ow, C.P.C.; Ngo, J.P.; Ullah, M.M.; Hilliard, L.M.; Evans, R.G. Renal hypoxia in kidney disease: Cause or consequence? Acta Physiol. (Oxf.), 2018, 222(4), e12999.
[http://dx.doi.org/10.1111/apha.12999] [PMID: 29159875]
[90]
Poulianiti, K.P.; Kaltsatou, A.; Mitrou, G.I.; Jamurtas, A.Z.; Koutedakis, Y.; Maridaki, M.; Stefanidis, I.; Sakkas, G.K.; Karatzaferi, C. Systemic redox imbalance in chronic kidney disease: A systematic review. Oxid. Med. Cell. Longev., 2016, 2016, 1-19.
[http://dx.doi.org/10.1155/2016/8598253] [PMID: 27563376]
[91]
Liakopoulos, V.; Roumeliotis, S.; Gorny, X.; Eleftheriadis, T.; Mertens, P.R. Oxidative stress in patients undergoing peritoneal dialysis: A current review of the literature. Oxid. Med. Cell. Longev., 2017, 2017, 1-14.
[http://dx.doi.org/10.1155/2017/3494867] [PMID: 29750088]
[92]
Kooman, J.P.; van der Sande, F.M.; Leunissen, K.M. Kidney disease and aging: A reciprocal relation. Exp. Gerontol., 2017, 87(Pt B), 156-159.
[http://dx.doi.org/10.1016/j.exger.2016.02.003]
[93]
Şener, T.E.; Çevik, Ö.; Çetinel, Ş.; Şener, G. Oxidative stress and urinary system damage in fructose-induced rat model of metabolic syn-drome: Effect of calorie restriction and exercise. J. Pharm. Res., 2020, 24(3), 318-325.
[http://dx.doi.org/10.35333/jrp.2020.153]
[94]
Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes. Res. Clin. Pract., 2013, 7(5), e330-e341.
[http://dx.doi.org/10.1016/j.orcp.2013.05.004] [PMID: 24455761]
[95]
Jha, J.C.; Banal, C.; Chow, B.S.M.; Cooper, M.E.; Jandeleit-Dahm, K. Diabetes and kidney disease: role of oxidative stress. Antioxid. Redox Signal., 2016, 25(12), 657-684.
[http://dx.doi.org/10.1089/ars.2016.6664] [PMID: 26906673]
[96]
Yu, J.; Auwerx, J. Protein deacetylation by SIRT1: An emerging key post-translational modification in metabolic regulation. Pharmacol. Res., 2010, 62(1), 35-41.
[http://dx.doi.org/10.1016/j.phrs.2009.12.006] [PMID: 20026274]
[97]
Imai, S-I.; Armstrong, C.M.; Kaeberlein, M.; Guarente, L.J.N. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 2000, 403(6771), 795-800.
[http://dx.doi.org/10.1038/35001622]
[98]
Zhang, T.; Chi, Y.; Ren, Y.; Du, C.; Shi, Y.; Li, Y. Resveratrol reduces oxidative stress and apoptosis in podocytes via Sir2-related en-zymes, sirtuins1 (SIRT1)/peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) axis. Med. Sci. Monit., 2019, 25, 1220-1231.
[http://dx.doi.org/10.12659/MSM.911714] [PMID: 30765684]
[99]
Kitada, M.; Koya, D. Renal protective effects of resveratrol. Oxid. Med. Cell. Longev., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/568093] [PMID: 24379901]
[100]
Ding, D.F.; You, N.; Wu, X.M.; Xu, J.R.; Hu, A.P.; Ye, X.L.; Zhu, Q.; Jiang, X.Q.; Miao, H.; Liu, C.; Lu, Y.B. Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK. Am. J. Nephrol., 2010, 31(4), 363-374.
[http://dx.doi.org/10.1159/000300388] [PMID: 20332614]
[101]
Gan, Y.; Tao, S.; Cao, D.; Xie, H.; Zeng, Q. Protection of resveratrol on acute kidney injury in septic rats. Hum. Exp. Toxicol., 2017, 36(10), 1015-1022.
[http://dx.doi.org/10.1177/0960327116678298] [PMID: 27837177]
[102]
Pan, W.; Yu, H.; Huang, S.; Zhu, P. Resveratrol protects against TNF-α-induced injury in human umbilical endothelial cells through pro-moting sirtuin-1-induced repression of NF-KB and p38 MAPK. PLoS One, 2016, 11(1), e0147034.
[http://dx.doi.org/10.1371/journal.pone.0147034] [PMID: 26799794]
[103]
Xia, N.; Strand, S.; Schlufter, F.; Siuda, D.; Reifenberg, G.; Kleinert, H.; Förstermann, U.; Li, H. Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol. Nitric Oxide, 2013, 32, 29-35.
[http://dx.doi.org/10.1016/j.niox.2013.04.001] [PMID: 23583951]
[104]
Wang, X.; Gao, Y.; Tian, N.; Zou, D.; Shi, Y.; Zhang, N. Astragaloside IV improves renal function and fibrosis via inhibition of miR-21-induced podocyte dedifferentiation and mesangial cell activation in diabetic mice. Drug Des. Devel. Ther., 2018, 12, 2431-2442.
[http://dx.doi.org/10.2147/DDDT.S170840] [PMID: 30122901]
[105]
Hou, S.; Zheng, F.; Li, Y.; Gao, L.; Zhang, J. The protective effect of glycyrrhizic acid on renal tubular epithelial cell injury induced by high glucose. Int. J. Mol. Sci., 2014, 15(9), 15026-15043.
[http://dx.doi.org/10.3390/ijms150915026] [PMID: 25162824]
[106]
Xu, X.; Zheng, N.; Chen, Z.; Huang, W.; Liang, T.; Kuang, H. Puerarin, isolated from Pueraria lobata (Willd.), protects against diabetic nephropathy by attenuating oxidative stress. Gene, 2016, 591(2), 411-416.
[http://dx.doi.org/10.1016/j.gene.2016.06.032] [PMID: 27317894]
[107]
Alzahrani, S.; Zaitone, S.A.; Said, E.; El-Sherbiny, M.; Ajwah, S.; Alsharif, S.Y.; Elsherbiny, N.M. Protective effect of isoliquiritigenin on experimental diabetic nephropathy in rats: Impact on Sirt-1/NFκB balance and NLRP3 expression. Int. Immunopharmacol., 2020, 87, 106813.
[http://dx.doi.org/10.1016/j.intimp.2020.106813] [PMID: 32707499]
[108]
Papadimitriou, A.; Silva, K.C.; Peixoto, E.B.M.I.; Borges, C.M.; Lopes de Faria, J.M.; Lopes de Faria, J.B. Theobromine increases NAD +/Sirt-1 activity and protects the kidney under diabetic conditions. Am. J. Physiol. Renal Physiol., 2015, 308(3), F209-F225.
[http://dx.doi.org/10.1152/ajprenal.00252.2014] [PMID: 25411384]
[109]
Scuto, M.; Trovato Salinaro, A.; Modafferi, S.; Polimeni, A.; Pfeffer, T.; Weigand, T.; Calabrese, V.; Schmitt, C.P.; Peters, V. Carnosine activates cellular stress response in podocytes and reduces glycative and lipoperoxidative stress. Biomedicines, 2020, 8(6), 177.
[http://dx.doi.org/10.3390/biomedicines8060177] [PMID: 32604897]
[110]
Wen, D.; Huang, X.; Zhang, M.; Zhang, L.; Chen, J.; Gu, Y.; Hao, C.M. Resveratrol attenuates diabetic nephropathy via modulating angio-genesis. PLoS One, 2013, 8(12), e82336.
[http://dx.doi.org/10.1371/journal.pone.0082336] [PMID: 24312656]
[111]
Qiao, Y.; Gao, K.; Wang, Y.; Wang, X.; Cui, B. Resveratrol ameliorates diabetic nephropathy in rats through negative regulation of the p38 MAPK/TGF-β1 pathway. Exp. Ther. Med., 2017, 13(6), 3223-3230.
[http://dx.doi.org/10.3892/etm.2017.4420] [PMID: 28588674]
[112]
Hong, Q.; Zhang, L.; Das, B.; Li, Z.; Liu, B.; Cai, G.; Chen, X.; Chuang, P.Y.; He, J.C.; Lee, K. Increased podocyte Sirtuin-1 function at-tenuates diabetic kidney injury. Kidney Int., 2018, 93(6), 1330-1343.
[http://dx.doi.org/10.1016/j.kint.2017.12.008] [PMID: 29477240]
[113]
Yasuda, I.; Hasegawa, K.; Sakamaki, Y.; Muraoka, H.; Kawaguchi, T.; Kusahana, E.; Ono, T.; Kanda, T.; Tokuyama, H.; Wakino, S.; Itoh, H. Pre-emptive short-term nicotinamide mononucleotide treatment in a mouse model of diabetic nephropathy. J. Am. Soc. Nephrol., 2021, 32(6), 1355-1370.
[http://dx.doi.org/10.1681/ASN.2020081188] [PMID: 33795425]
[114]
Wang, Y.; Zhao, H.; Wang, Q.; Zhou, X.; Lu, X.; Liu, T.; Zhan, Y.; Li, P. Chinese herbal medicine in ameliorating diabetic kidney disease via activating autophagy. J. Diabetes Res., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/9030893] [PMID: 31828168]
[115]
Chen, Y.; Liang, Y.; Hu, T.; Wei, R.; Cai, C.; Wang, P.; Wang, L.; Qiao, W.; Feng, L. Endogenous Nampt upregulation is associated with diabetic nephropathy inflammatory-fibrosis through the NF-κB p65 and Sirt1 pathway; NMN alleviates diabetic nephropathy inflammato-ry-fibrosis by inhibiting endogenous Nampt. Exp. Ther. Med., 2017, 14(5), 4181-4193.
[http://dx.doi.org/10.3892/etm.2017.5098] [PMID: 29104634]
[116]
Syed, A.A.; Reza, M.I.; Garg, R.; Goand, U.K.; Gayen, J.R. Cissus quadrangularis extract attenuates diabetic nephropathy by altering SIRT1/DNMT1 axis. J. Pharm. Pharmacol., 2021, 73(11), 1442-1450.
[http://dx.doi.org/10.1093/jpp/rgab078] [PMID: 34128987]
[117]
Shang, G.; Gao, P.; Zhao, Z.; Chen, Q.; Jiang, T.; Zhang, N.; Li, H. 3,5-Diiodo-l-thyronine ameliorates diabetic nephropathy in strepto-zotocin-induced diabetic rats. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(5), 674-684.
[http://dx.doi.org/10.1016/j.bbadis.2013.01.023] [PMID: 23416120]
[118]
Packer, M. Mechanisms leading to differential hypoxia-inducible factor signaling in the diabetic kidney: modulation by SGLT2 inhibitors and hypoxia mimetics. Am. J. Kidney Dis., 2021, 77(2), 280-286.
[http://dx.doi.org/10.1053/j.ajkd.2020.04.016] [PMID: 32711072]
[119]
Ni, W-J.; Ding, H-H.; Tang, L-Q. Berberine as a promising anti-diabetic nephropathy drug: An analysis of its effects and mechanisms. Eur. J. Pharmacol., 2015, 760, 103-112.
[http://dx.doi.org/10.1016/j.ejphar.2015.04.017] [PMID: 25912800]
[120]
Lu, M.; Yin, N.; Liu, W.; Cui, X.; Chen, S.; Wang, E. Curcumin Ameliorates Diabetic Nephropathy by Suppressing NLRP3 Inflammasome Signaling. BioMed Res. Int., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/1516985] [PMID: 28194406]
[121]
Hussein, M.M.A.; Mahfouz, M.K. Effect of resveratrol and rosuvastatin on experimental diabetic nephropathy in rats. Biomed. Pharmacother., 2016, 82, 685-692.
[http://dx.doi.org/10.1016/j.biopha.2016.06.004] [PMID: 27470412]
[122]
Ren, H.; Shao, Y.; Wu, C.; Ma, X.; Lv, C.; Wang, Q. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney dis-ease via AMPK/SIRT1-FoxO1 pathway. Mol. Cell. Endocrinol., 2020, 500, 110628.
[http://dx.doi.org/10.1016/j.mce.2019.110628] [PMID: 31647955]
[123]
Yang, Y.; Wang, Y.; He, Z.; Liu, Y.; Chen, C.; Wang, Y.; Wang, D.W.; Wang, H. Trimetazidine inhibits renal tubular epithelial cells to mes-enchymal transition in diabetic rats via upregulation of sirt1. Front. Pharmacol., 2020, 11, 1136.
[http://dx.doi.org/10.3389/fphar.2020.01136] [PMID: 32848753]
[124]
Li, F.; Chen, Y.; Li, Y.; Huang, M.; Zhao, W. Geniposide alleviates diabetic nephropathy of mice through AMPK/SIRT1/NF-κB pathway. Eur. J. Pharmacol., 2020, 886, 173449.
[http://dx.doi.org/10.1016/j.ejphar.2020.173449] [PMID: 32758570]
[125]
Liao, Z.; Zhang, J.; Wang, J.; Yan, T.; Xu, F.; Wu, B.; Xiao, F.; Bi, K.; Niu, J.; Jia, Y. The anti-nephritic activity of a polysaccharide from okra (Abelmoschus esculentus (L.) Moench) via modulation of AMPK-Sirt1-PGC-1α signaling axis mediated anti-oxidative in type 2 diabe-tes model mice. Int. J. Biol. Macromol., 2019, 140, 568-576.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.149] [PMID: 31442509]
[126]
Wang, S.; Huang, Y.; Luo, G.; Yang, X.; Huang, W. Cyanidin-3-O-glucoside attenuates high glucose–induced podocyte dysfunction by inhibiting apoptosis and promoting autophagy via activation of SIRT1/AMPK pathway. Can. J. Physiol. Pharmacol., 2021, 99(6), 589-598.
[http://dx.doi.org/10.1139/cjpp-2020-0341] [PMID: 33049148]
[127]
Kundu, A.; Richa, S.; Dey, P.; Kim, K.S.; Son, J.Y.; Kim, H.R.; Lee, S-Y.; Lee, B-H.; Lee, K.Y.; Kacew, S.; Lee, B.M.; Kim, H.S. Protec-tive effect of EX-527 against high-fat diet-induced diabetic nephropathy in Zucker rats. Toxicol. Appl. Pharmacol., 2020, 390, 114899.
[http://dx.doi.org/10.1016/j.taap.2020.114899] [PMID: 31981641]
[128]
Lu, J.; Xia, Q.; Zhou, Q. How to make insulin-producing pancreatic β cells for diabetes treatment. Sci. China Life Sci., 2017, 60(3), 239-248.
[http://dx.doi.org/10.1007/s11427-016-0211-3] [PMID: 27796637]
[129]
Aditya, R.; Kiran, A.R.; Varma, D.S.; Vemuri, R.; Gundamaraju, R. A Review on SIRtuins in Diabetes. Curr. Pharm. Des., 2017, 23(16), 2299-2307.
[PMID: 28128062]
[130]
Liang, J.; Wu, S.Y.; Zhang, D.; Wang, L.; Leung, K.K.; Leung, P.S.J.A.; Signaling, R. NADPH oxidase-dependent reactive oxygen spe-cies stimulate β-cell regeneration through differentiation of endocrine progenitors in murine pancreas. Antioxid. Redox Signal., 2016, 24(8), 419-433.
[http://dx.doi.org/10.1089/ars.2014.6135]
[131]
Wang, L.; Wang, Y.; Li, X.Y.; Leung, P.S.; Angiotensin, I.I. Angiotensin II type 2 receptor activation with compound 21 augments islet function and regeneration in streptozotocin-induced neonatal rats and human pancreatic progenitor cells. Pancreas, 2017, 46(3), 395-404.
[http://dx.doi.org/10.1097/MPA.0000000000000754] [PMID: 28099262]
[132]
Buteau, J.; Roduit, R.; Susini, S.; Prentki, M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia, 1999, 42(7), 856-864.
[http://dx.doi.org/10.1007/s001250051238] [PMID: 10440129]
[133]
Buteau, J.; Spatz, M.L.; Accili, D. Transcription factor FoxO1 mediates glucagon-like peptide-1 effects on pancreatic beta-cell mass. Diabetes, 2006, 55(5), 1190-1196.
[http://dx.doi.org/10.2337/db05-0825] [PMID: 16644672]
[134]
Buteau, J.; Foisy, S.; Rhodes, C.J.; Carpenter, L.; Biden, T.J.; Prentki, M. Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes, 2001, 50(10), 2237-2243.
[http://dx.doi.org/10.2337/diabetes.50.10.2237] [PMID: 11574404]
[135]
Joly, E.; Prentki, M.; Buteau, J.; El-Assaad, W.; Rhodes, C.J.; Rosenberg, L. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia, 2004, 47(5), 806-815.
[http://dx.doi.org/10.1007/s00125-004-1379-6] [PMID: 15095038]
[136]
Wang, Q.; Li, L.; Xu, E.; Wong, V.; Rhodes, C.; Brubaker, P.L. Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 beta cells. Diabetologia, 2004, 47(3), 478-487.
[http://dx.doi.org/10.1007/s00125-004-1327-5] [PMID: 14762654]
[137]
Buteau, J.; Shlien, A.; Foisy, S.; Accili, D. Metabolic diapause in pancreatic beta-cells expressing a gain-of-function mutant of the forkhead protein Foxo1. J. Biol. Chem., 2007, 282(1), 287-293.
[http://dx.doi.org/10.1074/jbc.M606118200] [PMID: 17107961]
[138]
Kim, S-J.; Winter, K.; Nian, C.; Tsuneoka, M.; Koda, Y.; McIntosh, C.H.S. Glucose-dependent insulinotropic polypeptide (GIP) stimula-tion of pancreatic β-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J. Biol. Chem., 2005, 280(23), 22297-22307.
[http://dx.doi.org/10.1074/jbc.M500540200] [PMID: 15817464]
[139]
Nakae, J.; Biggs, W.H., III; Kitamura, T.; Cavenee, W.K.; Wright, C.V.E.; Arden, K.C.; Accili, D. Regulation of insulin action and pancreat-ic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat. Genet., 2002, 32(2), 245-253.
[http://dx.doi.org/10.1038/ng890] [PMID: 12219087]
[140]
Accili, D.; Arden, K.C.J.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell, 2004, 117(4), 421-426.
[http://dx.doi.org/10.1016/S0092-8674(04)00452-0]
[141]
Matsuzaki, H.; Daitoku, H.; Hatta, M.; Aoyama, H.; Yoshimochi, K.; Fukamizu, A. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc. Natl. Acad. Sci. USA, 2005, 102(32), 11278-11283.
[http://dx.doi.org/10.1073/pnas.0502738102] [PMID: 16076959]
[142]
van der Horst, A.; Tertoolen, L.G.; de Vries-Smits, L.M.; Frye, R.A.; Medema, R.H.; Burgering, B.M.T. FOXO4 is acetylated upon perox-ide stress and deacetylated by the longevity protein hSir2(SIRT1). J. Biol. Chem., 2004, 279(28), 28873-28879.
[http://dx.doi.org/10.1074/jbc.M401138200] [PMID: 15126506]
[143]
Daitoku, H.; Hatta, M.; Matsuzaki, H.; Aratani, S.; Ohshima, T.; Miyagishi, M.; Nakajima, T.; Fukamizu, A. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl. Acad. Sci. U.S.A, 2004, 101(27), 10042-10047.
[http://dx.doi.org/10.1073/pnas.0400593101] [PMID: 15220471]
[144]
Brunet, A.; Sweeney, L.B.; Sturgill, J.F.; Chua, K.F.; Greer, P.L.; Lin, Y.; Tran, H.; Ross, S.E.; Mostoslavsky, R.; Cohen, H.Y.; Hu, L.S.; Cheng, H.L.; Jedrychowski, M.P.; Gygi, S.P.; Sinclair, D.A.; Alt, F.W.; Greenberg, M.E. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 2004, 303(5666), 2011-2015.
[http://dx.doi.org/10.1126/science.1094637] [PMID: 14976264]
[145]
Shats, I.; Gatza, M.L.; Liu, B.; Angus, S.P.; You, L.; Nevins, J.R. FOXO transcription factors control E2F1 transcriptional specificity and apoptotic function. Cancer Res., 2013, 73(19), 6056-6067.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0453] [PMID: 23966291]
[146]
Fu, H.; Song, W.; Chen, X.; Guo, T.; Duan, B.; Wang, X.; Tang, Y.; Huang, L.; Zhang, C. MiRNA-200a induce cell apoptosis in renal cell carcinoma by directly targeting SIRT1. Mol. Cell. Biochem., 2018, 437(1-2), 143-152.
[http://dx.doi.org/10.1007/s11010-017-3102-1] [PMID: 28717923]
[147]
Kahn, B.B.; Alquier, T.; Carling, D.; Hardie, D.G. AMP-activated protein kinase: ancient energy gauge provides clues to modern under-standing of metabolism. Cell Metab., 2005, 1(1), 15-25.
[http://dx.doi.org/10.1016/j.cmet.2004.12.003] [PMID: 16054041]
[148]
Chen, Y.; Zhu, Y.; Sheng, Y.; Xiao, J.; Xiao, Y.; Cheng, N.; Chai, Y.; Wu, X.; Zhang, S.; Xiang, T. SIRT1 downregulated FGB expression to inhibit RCC tumorigenesis by destabilizing STAT3. Exp. Cell Res., 2019, 382(2), 111466.
[http://dx.doi.org/10.1016/j.yexcr.2019.06.011] [PMID: 31201813]
[149]
Wang, X.; Lu, Y.; Tuo, Z.; Zhou, H.; Zhang, Y.; Cao, Z.; Peng, L.; Yu, D.; Bi, L. Role of SIRT1/AMPK signaling in the proliferation, mi-gration and invasion of renal cell carcinoma cells. Oncol. Rep., 2021, 45(6), 109.
[http://dx.doi.org/10.3892/or.2021.8060] [PMID: 33907836]
[150]
Ravindran, S.; Munusamy, S. Renoprotective mechanisms of sodium‐glucose co‐transporter 2 (SGLT2) inhibitors against the progres-sion of diabetic kidney disease. J. Cell. Physiol., 2022, 237(2), 1182-1205.
[http://dx.doi.org/10.1002/jcp.30621] [PMID: 34713897]
[151]
Sun, Z.; Ma, Y.; Chen, F.; Wang, S.; Chen, B.; Shi, J. Artesunate ameliorates high glucose-induced rat glomerular mesangial cell injury by suppressing the TLR4/NF-κB/NLRP3 inflammasome pathway. Chem. Biol. Interact., 2018, 293, 11-19.
[http://dx.doi.org/10.1016/j.cbi.2018.07.011] [PMID: 30031708]
[152]
Ookawara, M.; Nio, Y. Phosphodiesterase 4 inhibitors in diabetic nephropathy. Cell. Signal., 2022, 90, 110185.
[http://dx.doi.org/10.1016/j.cellsig.2021.110185] [PMID: 34785349]
[153]
Wen, Y.; Liu, Y.; Huang, Q.; Liu, R.; Liu, J.; Zhang, F.; Liu, S.; Jiang, Y. Moringa oleifera Lam. seed extract protects kidney function in rats with diabetic nephropathy by increasing GSK-3β activity and activating the Nrf2/HO-1 pathway. Phytomedicine, 2022, 95, 153856.
[http://dx.doi.org/10.1016/j.phymed.2021.153856] [PMID: 34856477]
[154]
Dai, X.; Liao, R.; Liu, C.; Liu, S.; Huang, H.; Liu, J.; Jin, T.; Guo, H.; Zheng, Z.; Xia, M.; Ling, W.; Xiao, Y. Epigenetic regulation of TXNIP-mediated oxidative stress and NLRP3 inflammasome activation contributes to SAHH inhibition-aggravated diabetic nephropathy. Redox Biol., 2021, 45, 102033.
[http://dx.doi.org/10.1016/j.redox.2021.102033] [PMID: 34119876]
[155]
Zhou, J.; Zhang, S.; Sun, X.; Lou, Y.; Bao, J.; Yu, J. Hyperoside ameliorates diabetic nephropathy induced by STZ via targeting the miR-499–5p/APC axis. J. Pharmacol. Sci., 2021, 146(1), 10-20.
[http://dx.doi.org/10.1016/j.jphs.2021.02.005] [PMID: 33858650]
[156]
Li, J.; Zhang, J.; Lu, Y.; Zhang, C. Effect of neutrophil-like melanin biomimic photothermal nanoparticles on glomerular mesangial cells in rats with gestational diabetic nephropathy. Colloid Interface Sci. Commun., 2021, 43, 100458.
[http://dx.doi.org/10.1016/j.colcom.2021.100458]
[157]
Xie, H.; Tong, Q.; Xiang, Z.; Zhou, C.; Wan, L-S.; Chen, J. Demethylbellidifolin, a potential aldose reductase inhibitor ameliorates diabetic nephropathy by regulating the polyol pathway. Phytomedicine Plus, 2021, 2(1), 100152.
[http://dx.doi.org/10.1016/j.phyplu.2021.100152]
[158]
Tang, D.; He, W-J.; Zhang, Z-T.; Shi, J-J.; Wang, X.; Gu, W-T.; Chen, Z-Q.; Xu, Y-H.; Chen, Y-B.; Wang, S-M. Protective effects of Huang-Lian-Jie-Du Decoction on diabetic nephropathy through regulating AGEs/RAGE/Akt/Nrf2 pathway and metabolic profiling in db/db mice. Phytomedicine, 2021, 95, 153777.
[http://dx.doi.org/10.1016/j.phymed.2021.153777]
[159]
Ezzat, S.M.; Abdallah, H.M.I.; Yassen, N.N.; Radwan, R.A.; Mostafa, E.S.; Salama, M.M.; Salem, M.A. Phenolics from Physalis peruviana fruits ameliorate streptozotocin-induced diabetes and diabetic nephropathy in rats via induction of autophagy and apoptosis regression. Biomed. Pharmacother., 2021, 142, 111948.
[http://dx.doi.org/10.1016/j.biopha.2021.111948] [PMID: 34385108]
[160]
Keelo, R.M.A.H.; Elbe, H.; Bicer, Y.; Yigitturk, G.; Koca, O.; Karayakali, M.; Acar, D.; Altinoz, E. Treatment with crocin suppresses dia-betic nephropathy progression via modulating TGF-β1 and oxidative stress in an experimental model of pinealectomized diabetic rats. Chem. Biol. Interact., 2022, 351, 109733.
[http://dx.doi.org/10.1016/j.cbi.2021.109733] [PMID: 34743986]
[161]
Elkazzaz, S.K.; Khodeer, D.M.; El Fayoumi, H.M.; Moustafa, Y.M. Role of sodium glucose cotransporter type 2 inhibitors dapagliflozin on diabetic nephropathy in rats; Inflammation, angiogenesis and apoptosis. Life Sci., 2021, 280, 119018.
[http://dx.doi.org/10.1016/j.lfs.2021.119018] [PMID: 33549594]
[162]
Gao, K.; Zheng, P.; Yang, T.; Zhang, X.; Zhao, Z. Tangshenping granule inhibits pyroptosis in a rat model of streptozotocin-induced dia-betic nephropathy via the NLRP3/caspase-1/GSDMD pathway. J. Tradit. Chin. Med. Sci., 2021, 8(4), 317-326.
[http://dx.doi.org/10.1016/j.jtcms.2021.10.004]
[163]
Liu, C.; Zhao, S.; Zhu, C.; Gao, Q.; Bai, J.; Si, J.; Chen, Y. Ergosterol ameliorates renal inflammatory responses in mice model of diabetic nephropathy. Biomed. Pharmacother., 2020, 128, 110252.
[http://dx.doi.org/10.1016/j.biopha.2020.110252] [PMID: 32446112]
[164]
Habib, H.A.; Heeba, G.H.; Khalifa, M.M.A. Comparative effects of incretin-based therapy on early-onset diabetic nephropathy in rats: Role of TNF-α, TGF-β and c-caspase-3. Life Sci., 2021, 278, 119624.
[http://dx.doi.org/10.1016/j.lfs.2021.119624] [PMID: 34004254]
[165]
Jiang, R.; Ge, J.; Zhao, J.; Yan, X. The protective effects of calycosin against diabetic nephropathy through Sirt3/SOD2/caspase-3 signaling pathway: In vitro. Arab. J. Chem., 2021, 14(3), 102988.
[http://dx.doi.org/10.1016/j.arabjc.2021.102988]
[166]
Zhang, X.; Chen, H.; Lei, Y.; Zhang, X.; Xu, L.; Liu, W.; Fan, Z.; Ma, Z.; Yin, Z.; Li, L.; Zhu, C.; Ma, B. Multifunctional agents based on benzoxazolone as promising therapeutic drugs for diabetic nephropathy. Eur. J. Med. Chem., 2021, 215, 113269.
[http://dx.doi.org/10.1016/j.ejmech.2021.113269] [PMID: 33588177]
[167]
Singla, K.; Singh, R. Nephroprotective effect of Curculigo orchiodies in streptozotocin–nicotinamide induced diabetic nephropathy in wistar rats. J. Ayurveda Integr. Med., 2020, 11(4), 399-404.
[http://dx.doi.org/10.1016/j.jaim.2020.05.006] [PMID: 32782114]
[168]
Tan, M.; Fan, C.; Wang, M.; Li, X.; Yuan, R.; Yang, J.; Dongzhi, Z.; Huang, S.; Wang, Y.; Li, B. Improvement of E Se tea extracts on renal mesangial cell apoptosis and high-fat-diet/streptozotocin-induced diabetic nephropathy. JFF, 2021, 84, 104578.
[http://dx.doi.org/10.1016/j.jff.2021.104578]
[169]
Singh, T.G.; Sharma, R.; Kaur, A.; Dhiman, S.; Singh, R. Evaluation of renoprotective potential of Ficus religiosa in attenuation of diabetic nephropathy in rats. Obes. Med., 2020, 19, 100268.
[http://dx.doi.org/10.1016/j.obmed.2020.100268]
[170]
Eisa, N.H.; Khodir, A.E.; El-Sherbiny, M.; Elsherbiny, N.M.; Said, E. Phenethyl isothiocyanate attenuates diabetic nephropathy via modu-lation of glycative/oxidative/inflammatory signaling in diabetic rats. Biomed. Pharmacother., 2021, 142, 111666.
[http://dx.doi.org/10.1016/j.biopha.2021.111666] [PMID: 34215478]
[171]
Chen, Z.; Li, W.; Shi, L.; Jiang, L.; Li, M.; Zhang, C.; Peng, H. Kidney-targeted astaxanthin natural antioxidant nanosystem for diabetic nephropathy therapy. Eur. J. Pharm. Biopharm., , 2020, 156, 143-154.
[http://dx.doi.org/10.1016/j.ejpb.2020.09.005] [PMID: 32937179]
[172]
Arthur, D.E.; Uzairu, A. Molecular docking studies on the interaction of NCI anticancer analogues with human Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit. J. King Saud Univ. Sci., 2019, 31(4), 1151-1166.
[http://dx.doi.org/10.1016/j.jksus.2019.01.011]
[173]
Lone, A.; Behl, T.; Kumar, A.; Makkar, R.; Nijhawan, P.; Redhu, S.; Sharma, H.; Jaglan, D.; Goyal, A. Renoprotective potential of dimethyl fumarate in streptozotocin induced diabetic nephropathy in Wistar rats. Obes. Med., 2020, 18, 100237.
[http://dx.doi.org/10.1016/j.obmed.2020.100237]
[174]
Rao, V.; Rao, L.V.; Tan, S.H.; Candasamy, M.; Bhattamisra, S.K. Diabetic nephropathy: An update on pathogenesis and drug develop-ment. Diabetes Metab. Syndr., 2019, 13(1), 754-762.
[http://dx.doi.org/10.1016/j.dsx.2018.11.054] [PMID: 30641802]
[175]
Hasegawa, K.; Wakino, S.; Simic, P.; Sakamaki, Y.; Minakuchi, H.; Fujimura, K.; Hosoya, K.; Komatsu, M.; Kaneko, Y.; Kanda, T.; Kubo-ta, E.; Tokuyama, H.; Hayashi, K.; Guarente, L.; Itoh, H. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med., 2013, 19(11), 1496-1504.
[http://dx.doi.org/10.1038/nm.3363] [PMID: 24141423]
[176]
Kume, S.; Haneda, M.; Kanasaki, K.; Sugimoto, T.; Araki, S.; Isshiki, K.; Isono, M.; Uzu, T.; Guarente, L.; Kashiwagi, A.; Koya, D. SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J. Biol. Chem., 2007, 282(1), 151-158.
[http://dx.doi.org/10.1074/jbc.M605904200] [PMID: 17098745]
[177]
Zhuo, L.; Fu, B.; Bai, X.; Zhang, B.; Wu, L.; Cui, J.; Cui, S.; Wei, R.; Chen, X.; Cai, G. NAD blocks high glucose induced mesangial hyper-trophy via activation of the sirtuins-AMPK-mTOR pathway. Cell. Physiol. Biochem., 2011, 27(6), 681-690.
[http://dx.doi.org/10.1159/000330077] [PMID: 21691086]
[178]
Kume, S.; Haneda, M.; Kanasaki, K.; Sugimoto, T.; Araki, S.; Isono, M.; Isshiki, K.; Uzu, T.; Kashiwagi, A.; Koya, D. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation. Free Radic. Biol. Med., 2006, 40(12), 2175-2182.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.02.014] [PMID: 16785031]
[179]
Zhang, D.; Li, S.; Cruz, P.; Kone, B.C. Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate alpha-ENaC transcription in collecting duct. J. Biol. Chem., 2009, 284(31), 20917-20926.
[http://dx.doi.org/10.1074/jbc.M109.020073] [PMID: 19491102]
[180]
Kume, S.; Uzu, T.; Horiike, K.; Chin-Kanasaki, M.; Isshiki, K.; Araki, S.; Sugimoto, T.; Haneda, M.; Kashiwagi, A.; Koya, D. Calorie re-striction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest., 2010, 120(4), 1043-1055.
[http://dx.doi.org/10.1172/JCI41376] [PMID: 20335657]
[181]
Li, J.; Qu, X.; Ricardo, S.D.; Bertram, J.F.; Nikolic-Paterson, D.J. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am. J. Pathol., 2010, 177(3), 1065-1071.
[http://dx.doi.org/10.2353/ajpath.2010.090923] [PMID: 20651248]
[182]
He, W.; Wang, Y.; Zhang, M.Z.; You, L.; Davis, L.S.; Fan, H.; Yang, H.C.; Fogo, A.B.; Zent, R.; Harris, R.C.; Breyer, M.D.; Hao, C.M. Sirt1 activation protects the mouse renal medulla from oxidative injury. J. Clin. Invest., 2010, 120(4), 1056-1068.
[http://dx.doi.org/10.1172/JCI41563] [PMID: 20335659]
[183]
Vasko, R.; Xavier, S.; Chen, J.; Lin, C.H.S.; Ratliff, B.; Rabadi, M.; Maizel, J.; Tanokuchi, R.; Zhang, F.; Cao, J.; Goligorsky, M.S. Endo-thelial sirtuin 1 deficiency perpetrates nephrosclerosis through downregulation of matrix metalloproteinase-14: relevance to fibrosis of vascular senescence. J. Am. Soc. Nephrol., 2014, 25(2), 276-291.
[http://dx.doi.org/10.1681/ASN.2013010069] [PMID: 24136919]
[184]
Miyazaki, R.; Ichiki, T.; Hashimoto, T.; Inanaga, K.; Imayama, I.; Sadoshima, J.; Sunagawa, K. SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 2008, 28(7), 1263-1269.
[http://dx.doi.org/10.1161/ATVBAHA.108.166991] [PMID: 18420994]
[185]
Kitada, M.; Takeda, A.; Nagai, T.; Ito, H.; Kanasaki, K.; Koya, D. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabe-tes. Exp. Diabetes Res., 2011, 2011, 1-11.
[http://dx.doi.org/10.1155/2011/908185] [PMID: 21949662]
[186]
Vashistha, H.; Meggs, L. Diabetic nephropathy: lessons from the mouse. Ochsner J., 2013, 13(1), 140-146.
[PMID: 23531985]
[187]
Satirapoj, B.; Adler, S.G. Comprehensive approach to diabetic nephropathy. Kidney Res. Clin. Pract., 2014, 33(3), 121-131.
[http://dx.doi.org/10.1016/j.krcp.2014.08.001] [PMID: 26894033]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy