Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Inhibition of p62-Keap1-Nrf2 Pathway Activation by Realgar Promotes the Inhibition of Esophageal Cancer Cell Proliferation, Migration, and Ferroptosis

Author(s): Xiaolan Zhang, Ruyi Yang*, Hongbin Wang, Changxia Cao, Wenling Zhao, Lingyan Duan and Fazhang Chen

Volume 21, Issue 2, 2024

Published on: 18 January, 2023

Page: [236 - 248] Pages: 13

DOI: 10.2174/1567201820666221226105655

Price: $65

Abstract

Background: Realgar, a Chinese herbal decoction, has been used to treat various types of tumors with positive outcomes; however, there is a lack of convincing evidence on its use for the treatment of esophageal cancer (EC). In this study, the role of the p62-Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the regulation of EC cell proliferation, migration, and ferroptosis in response to realgar was assessed.

Methods: Different concentrations of realgar (0, 10, 20, 40, 60, 80, and 100 μmol/L) were applied to the EC cell lines Eca109 and KYSE150. The inhibition rate and half-inhibitory concentration (IC50) were determined using the Cell Counting Kit-8 (CCK-8) method. Subsequently, the cells were treated with realgar (1/2IC50, IC50, 2IC50). Cell migration was measured using the scratch assay, and cell invasion was measured using the transwell assay. The mRNA expression of p62, Keap1, and Nrf2 was measured by quantitative real-time polymerase chain reaction (qRT-PCR), and the protein expression of p62, Keap1, Nrf2, matrix metalloproteinase (MMP)-2, MMP-9, E-cadherin, Slug, N-cadherin, and vimentin was measured by Western blot. The control, 2IC50, shRNA-NC, shRNA-p62, 2IC50 + shRNA-NC, 2IC50 + shRNA-p62, shRNA-Keap1, 2IC50 + shRNA-Keap1, and 2IC50 + shRNA-p62 + shRNA-Keap1 groups were defined. The CCK-8 method was used to measure the cell inhibition rate, and the clone formation assay was used to measure the clone formation ability. Moreover, the scratch assay was used to detect the cell migration ability, and the transwell assay was used to detect the cell invasion ability. Transmission electron microscopy was used to observe the mitochondrial morphology, Prussian blue staining was used to observe the intracellular iron particle distribution, and flow cytometry was used to detect changes in intracellular reactive oxygen species. In addition, qRT-PCR was performed to detect p62, Keap1, Nrf2, and glutathione peroxidase 4 (GPX4) mRNA expression, and Western blot was performed to detect p62, Keap1, Nrf2, E-cadherin, Slug, N-cadherin, and GPX4 protein expression.

Results: Realgar inhibited Eca109 and KYSE150 cell proliferation in a time- and concentrationdependent manner. It also significantly inhibited the migration and invasion of Eca109 and KYSE150 cells and affected the mRNA and protein expression of p62, Keap1, and Nrf2. In response to realgar, low p62 expression inhibited the proliferation, migration, and invasion of Eca109 and KYSE150 cells, as well as ferroptosis induction.

Conclusion: The findings demonstrate that inhibiting the p62-Keap1-Nrf2 signaling pathway promotes the inhibitory effects of realgar on EC cells.

Keywords: Esophageal cancer, realgar, ferroptosis, cell migration, p62-Keap1-Nrf2 pathway, qRT-PCR.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Zhao, C.; Zhou, J.; Gu, Y.; Pan, E.; Sun, Z.; Zhang, H.; Lu, Q.; Zhang, Y.; Yu, X.; Liu, R.; Pu, Y.; Yin, L. Urinary exposure of N-nitrosamines and associated risk of esophageal cancer in a high incidence area in China. Sci. Total Environ., 2020, 738, 139713.
[http://dx.doi.org/10.1016/j.scitotenv.2020.139713] [PMID: 32526409]
[3]
Huang, F.L.; Yu, S.J. Esophageal cancer: Risk factors, genetic association, and treatment. Asian J. Surg., 2018, 41(3), 210-215.
[http://dx.doi.org/10.1016/j.asjsur.2016.10.005] [PMID: 27986415]
[4]
Baláž, P.; Sedlák, J. Arsenic in cancer treatment: Challenges for application of realgar nanoparticles (a minireview). Toxins (Basel), 2010, 2(6), 1568-1581.
[http://dx.doi.org/10.3390/toxins2061568] [PMID: 22069650]
[5]
Liu, Z.; Xu, K.; Xu, Y.; Zhang, W.; Jiang, N.; Wang, S.; Luo, G.; Liu, J.; Wu, J.; Wang, H. Involvement of autophagy in realgar quantum dots (RQDs) inhibition of human endometrial cancer JEC cells. PeerJ, 2020, 8, e9754.
[http://dx.doi.org/10.7717/peerj.9754] [PMID: 33150055]
[6]
Ding, W.; Ji, T.; Xiong, W.; Li, T.; Pu, D.; Liu, R. Realgar, a traditional Chinese medicine, induces apoptosis of HPV16-positive cervical cells through a HPV16 E7-related pathway. Drug Des. Devel. Ther., 2018, 12, 3459-3469.
[http://dx.doi.org/10.2147/DDDT.S172525] [PMID: 30410307]
[7]
Torka, P.; Al Ustwani, O.; Wetzler, M.; Wang, E.S.; Griffiths, E.A. Swallowing a bitter pill-oral arsenic trioxide for acute promyelocytic leukemia. Blood Rev., 2016, 30(3), 201-211.
[http://dx.doi.org/10.1016/j.blre.2015.11.004] [PMID: 26709030]
[8]
Xiaoxia, X.; Jing, S.; Dongbin, X.; Yonggang, T.; Jingke, Z. yanying, Z.; Hulai, W. Realgar nanoparticles inhibit migration, invasion and metastasis in a mouse model of breast cancer by suppressing matrix metalloproteinases and angiogenesis. Curr. Drug Deliv., 2020, 17(2), 148-158.
[http://dx.doi.org/10.2174/1567201817666200115105633] [PMID: 31939730]
[9]
Tarangelo, A.; Magtanong, L.; Bieging-Rolett, K.T.; Li, Y.; Ye, J.; Attardi, L.D.; Dixon, S.J. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep., 2018, 22(3), 569-575.
[http://dx.doi.org/10.1016/j.celrep.2017.12.077] [PMID: 29346757]
[10]
Ingold, I.; Berndt, C.; Schmitt, S.; Doll, S.; Poschmann, G.; Buday, K.; Roveri, A.; Peng, X.; Porto Freitas, F.; Seibt, T.; Mehr, L.; Aichler, M.; Walch, A.; Lamp, D.; Jastroch, M.; Miyamoto, S.; Wurst, W.; Ursini, F.; Arnér, E.S.J.; Fradejas-Villar, N.; Schweizer, U.; Zischka, H.; Friedmann Angeli, J.P.; Conrad, M. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell, 2018, 172(3), 409-422.e21.
[http://dx.doi.org/10.1016/j.cell.2017.11.048] [PMID: 29290465]
[11]
Baird, L.; Yamamoto, M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol. Cell. Biol., 2020, 40(13), e00099-e20.
[http://dx.doi.org/10.1128/MCB.00099-20] [PMID: 32284348]
[12]
Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(5), 721-733.
[http://dx.doi.org/10.1016/j.bbamcr.2018.02.010] [PMID: 29499228]
[13]
Sun, X.; Ou, Z.; Chen, R.; Niu, X.; Chen, D.; Kang, R.; Tang, D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 2016, 63(1), 173-184.
[http://dx.doi.org/10.1002/hep.28251] [PMID: 26403645]
[14]
Mierke, C.T. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. Rep. Prog. Phys., 2019, 82(6), 064602.
[http://dx.doi.org/10.1088/1361-6633/ab1628] [PMID: 30947151]
[15]
Cheng, Y.; Liu, R.; Wang, Q.; Li, B.; Xu, X.; Hu, M.; Chen, L.; Fu, Q.; Pu, D.; Hong, L. Realgar-induced apoptosis of cervical cancer cell line Siha via cytochrome c release and caspase-3 and caspase-9 activation. Chin. J. Integr. Med., 2012, 18(5), 359-365.
[http://dx.doi.org/10.1007/s11655-011-0697-z] [PMID: 21526368]
[16]
Zhang, L.; Tian, W.; Kim, S.; Ding, W.; Tong, Y.; Chen, S. Arsenic sulfide, the main component of realgar, a traditional Chinese medicine, induces apoptosis of gastric cancer cells in vitro and in vivo. Drug Des. Devel. Ther., 2014, 9, 79-92.
[PMID: 25565771]
[17]
Zhang, X.; Kang, T.; Zhang, L.; Tong, Y.; Ding, W.; Chen, S. NFATc3 mediates the sensitivity of gastric cancer cells to arsenic sulfide. Oncotarget, 2017, 8(32), 52735-52745.
[http://dx.doi.org/10.18632/oncotarget.17175] [PMID: 28881766]
[18]
Pastorek, M.; Gronesova, P.; Cholujova, D.; Hunakova, L.; Bujnakova, Z.; Balaz, P.; Duraj, J.; Lee, T.C.; Sedlak, J. Realgar (As4S4) nanoparticles and arsenic trioxide (As2O3) induced autophagy and apoptosis in human melanoma cells in vitro. Neoplasma, 2014, 61(6), 700-709.
[http://dx.doi.org/10.4149/neo_2014_085] [PMID: 25150315]
[19]
Antony, J.; Huang, R.Y.J. AXL-Driven EMT State as a Targetable Conduit in Cancer. Cancer Res., 2017, 77(14), 3725-3732.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0392] [PMID: 28667075]
[20]
Babaei, G.; Aziz, S.G.; Jaghi, N.Z.Z. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed. Pharmacother., 2021, 133, 110909.
[http://dx.doi.org/10.1016/j.biopha.2020.110909]
[21]
Deng, S.; Essandoh, K.; Wang, X.; Li, Y.; Huang, W.; Chen, J.; Peng, J.; Jiang, D.S.; Mu, X.; Wang, C.; Peng, T.; Guan, J.L.; Wang, Y.; Jegga, A.; Huang, K.; Fan, G.C. Tsg101 positively regulates P62-Keap1-Nrf2 pathway to protect hearts against oxidative damage. Redox Biol., 2020, 32, 101453.
[http://dx.doi.org/10.1016/j.redox.2020.101453] [PMID: 32057709]
[22]
Wang, F.; Zhang, Y.; Shen, J.; Yang, B.; Dai, W.; Yan, J.; Maimouni, S.; Daguplo, H.Q.; Coppola, S.; Gao, Y.; Wang, Y.; Du, Z.; Peng, K.; Liu, H.; Zhang, Q.; Tang, F.; Wang, P.; Gao, S.; Wang, Y.; Ding, W.X.; Guo, G.; Wang, F.; Zong, W.X. The ubiquitin E3 ligase TRIM21 promotes hepatocarcinogenesis by suppressing the p62-Keap1-Nrf2 antioxidant pathway. Cell. Mol. Gastroenterol. Hepatol., 2021, 11(5), 1369-1385.
[http://dx.doi.org/10.1016/j.jcmgh.2021.01.007] [PMID: 33482392]
[23]
Mizunoe, Y.; Kobayashi, M.; Sudo, Y.; Watanabe, S.; Yasukawa, H.; Natori, D.; Hoshino, A.; Negishi, A.; Okita, N.; Komatsu, M.; Higami, Y. Trehalose protects against oxidative stress by regulating the Keap1-Nrf2 and autophagy pathways. Redox Biol., 2018, 15, 115-124.
[http://dx.doi.org/10.1016/j.redox.2017.09.007] [PMID: 29241092]
[24]
Zheng, D.; Liu, Z.; Zhou, Y.; Hou, N.; Yan, W.; Qin, Y.; Ye, Q.; Cheng, X.; Xiao, Q.; Bao, Y.; Luo, J.; Wu, X. Urolithin B, a gut microbiota metabolite, protects against myocardial ischemia/reperfusion injury via p62/Keap1/Nrf2 signaling pathway. Pharmacol. Res., 2020, 153, 104655.
[http://dx.doi.org/10.1016/j.phrs.2020.104655] [PMID: 31996327]
[25]
Zhang, J.; Jiao, Q.; Kong, L.; Yu, J.; Fang, A.; Li, M.; Yu, J. Nrf2 and Keap1 abnormalities in esophageal squamous cell carcinoma and association with the effect of chemoradiotherapy. Thorac. Cancer, 2018, 9(6), 726-735.
[http://dx.doi.org/10.1111/1759-7714.12640] [PMID: 29675925]
[26]
Wang, Z.; Zhang, J.; Li, M.; Kong, L.; Yu, J. The expression of p-p62 and nuclear Nrf2 in esophageal squamous cell carcinoma and association with radioresistance. Thorac. Cancer, 2020, 11(1), 130-139.
[http://dx.doi.org/10.1111/1759-7714.13252] [PMID: 31755241]
[27]
Hirschhorn, T.; Stockwell, B.R. The development of the concept of ferroptosis. Free Radic. Biol. Med., 2019, 133, 130-143.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.043] [PMID: 30268886]
[28]
Badgley, M.A.; Kremer, D.M. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science, 2020, 368(6486), 85-89.
[http://dx.doi.org/10.1126/science.aaw9872] [PMID: 32241947]
[29]
Weiland, A.; Wang, Y.; Wu, W.; Lan, X.; Han, X.; Li, Q. Ferroptosis and its role in diverse brain diseases. Mol. Neurobiol., 2019, 56(7), 4880-4893.
[30]
Seibt, T.M.; Proneth, B.; Conrad, M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med., 2019, 133, 144-152.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.014] [PMID: 30219704]
[31]
Zhang, J.; Wang, N.; Zhou, Y.; Wang, K.; Sun, Y.; Yan, H.; Han, W.; Wang, X.; Wei, B.; Ke, Y.; Xu, X. Oridonin induces ferroptosis by inhibiting gamma-glutamyl cycle in TE1 cells. Phytother. Res., 2021, 35(1), 494-503.
[http://dx.doi.org/10.1002/ptr.6829] [PMID: 32869425]
[32]
Xu, T.; Ding, W.; Ji, X.; Ao, X.; Liu, Y.; Yu, W.; Wang, J. Molecular mechanisms of ferroptosis and its role in cancer therapy. J. Cell. Mol. Med., 2019, 23(8), 4900-4912.
[http://dx.doi.org/10.1111/jcmm.14511] [PMID: 31232522]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy