Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Exploring the Multitarget Potential of Iridoids: Advances and Applications

Author(s): Parul Grover, Lovekesh Mehta, Anjleena Malhotra, Garima Kapoor, Kandasamy Nagarajan, Parvin Kumar, Viney Chawla and Pooja A. Chawla*

Volume 23, Issue 5, 2023

Published on: 13 January, 2023

Page: [371 - 388] Pages: 18

DOI: 10.2174/1568026623666221222142217

Price: $65

Open Access Journals Promotions 2
Abstract

Iridoids are secondary plant metabolites that are multitarget compounds active against various diseases. Iridoids are structurally classified into iridoid glycosides and non-glycosidic iridoids according to the presence or absence of intramolecular glycosidic bonds; additionally, iridoid glycosides can be further subdivided into carbocyclic iridoids and secoiridoids. These monoterpenoids belong to the cyclopentan[c]-pyran system, which has a wide range of biological activities, including antiviral, anticancer, antiplasmodial, neuroprotective, anti-thrombolytic, antitrypanosomal, antidiabetic, hepatoprotective, anti-oxidant, antihyperlipidemic and anti-inflammatory properties. The basic chemical structure of iridoids in plants (the iridoid ring scaffold) is biosynthesized in plants by the enzyme iridoid synthase using 8-oxogeranial as a substrate. With advances in phytochemical research, many iridoid compounds with novel structure and outstanding activity have been identified in recent years. Biologically active iridoid derivatives have been found in a variety of plant families, including Plantaginaceae, Rubiaceae, Verbenaceae, and Scrophulariaceae. Iridoids have the potential of modulating many biological events in various diseases. This review highlights the multitarget potential of iridoids and includes a compilation of recent publications on the pharmacology of iridoids. Several in vitro and in vivo models used, along with the results, are also included in the paper. This paper's systematic summary was created by searching for relevant iridoid material on websites such as Google Scholar, PubMed, SciFinder Scholar, Science Direct, and others. The compilation will provide the researchers with a thorough understanding of iridoid and its congeners, which will further help in designing a large number of potential compounds with a strong impact on curing various diseases.

Keywords: Iridoids, Multitarget applications, Secondary metabolites, Pharmacology, Polypharmacology, Monoterpenoids.

Graphical Abstract
[1]
Wang, C.; Gong, X.; Bo, A.; Zhang, L.; Zhang, M.; Zang, E.; Zhang, C.; Li, M. Iridoids: research advances in their phytochemistry, biological activities, and pharmacokinetics. Molecules, 2020, 25(2), 287.
[http://dx.doi.org/10.3390/molecules25020287] [PMID: 31936853]
[2]
El-Naggar, L.J.; Beal, J.L. Iridoids. A review. J. Nat. Prod., 1980, 43(6), 649-707.
[http://dx.doi.org/10.1021/np50012a001] [PMID: 20707392]
[3]
Ren, Z.J.; Zhang, L.M.; He, K.Z. extraction technology and pharmacological research progress of main components of Gardenia jasminoides Ellis. Res. Dev. Nat. Prod., 2005, 17, 831-836.
[4]
Picerno, P.; Autore, G.; Marzocco, S.; Meloni, M.; Sanogo, R.; Aquino, R.P. Anti-inflammatory activity of verminoside from Kigelia africana and evaluation of cutaneous irritation in cell cultures and reconstituted human epidermis. J. Nat. Prod., 2005, 68(11), 1610-1614.
[http://dx.doi.org/10.1021/np058046z] [PMID: 16309308]
[5]
Akihisa, T.; Matsumoto, K.; Tokuda, H.; Yasukawa, K.; Seino, K.; Nakamoto, K.; Kuninaga, H.; Suzuki, T.; Kimura, Y. Anti-inflammatory and potential cancer chemopreventive constituents of the fruits of Morinda citrifolia (Noni). J. Nat. Prod., 2007, 70(5), 754-757.
[http://dx.doi.org/10.1021/np068065o] [PMID: 17480098]
[6]
Hussain, H.; Green, I.R.; Saleem, M.; Raza, M.L.; Nazir, M. Therapeutic potential of iridoid derivatives: Patent review. Inventions (Basel), 2019, 4(2), 29.
[http://dx.doi.org/10.3390/inventions4020029]
[7]
Sampaio-Santos, M.I.; Kaplan, M.A.C. Biosynthesis significance of iridoids in chemosystematics. J. Braz. Chem. Soc., 2010, 12(2), 144-153.
[8]
Franzyk, H. Synthetic aspects of iridoid chemistry. Fortschr. Chem. Org. Naturst., 2000, 79, 1-114.
[http://dx.doi.org/10.1007/978-3-7091-6341-2_1] [PMID: 10838782]
[9]
Bowers, M.D.; Rosenthal, G.A.; Berenbaum, M. Iridoid glycosides. Herbivores: Their interactions with secondary plant metabolites, 2nd ed; Berenbaum, M.R., Ed.; Rosenthal, GA, 1991, pp. 297-325.
[http://dx.doi.org/10.1016/B978-0-12-597183-6.50013-9]
[10]
Tundis, R.; Loizzo, M.; Menichini, F.; Statti, G.; Menichini, F. Biological and pharmacological activities of iridoids: recent developments. Mini Rev. Med. Chem., 2008, 8(4), 399-420.
[http://dx.doi.org/10.2174/138955708783955926] [PMID: 18473930]
[11]
Dinda, B. Applications of iridoids in pharmaceutical, cosmetic, and insecticide industries. In: Pharmacology and Applications of Naturally Occurring Iridoids; Springer International Publishing, 2019; pp. 271-278.
[http://dx.doi.org/10.1007/978-3-030-05575-2_7]
[12]
Kwak, W.J.; Han, C.K.; Chang, H.W.; Kim, H.P.; Kang, S.S.; Son, K.H. Loniceroside C, an antiinflammatory saponin from Lonicera japonica. Chem. Pharm. Bull. (Tokyo), 2003, 51(3), 333-335.
[http://dx.doi.org/10.1248/cpb.51.333] [PMID: 12612424]
[13]
Rahman, A.; Kang, S.C. In vitro control of food-borne and food spoilage bacteria by essential oil and ethanol extracts of Lonicera japonica Thunb. Food Chem., 2009, 116(3), 670-675.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.014]
[14]
Urbán, P.; Ranucci, E.; Fernàndez-Busquets, X. Polyamidoamine nanoparticles as nanocarriers for the drug delivery to malaria parasite stages in the mosquito vector. Nanomedicine (Lond.), 2015, 10(22), 3401-3414.
[http://dx.doi.org/10.2217/nnm.15.174] [PMID: 26582279]
[15]
Buskes, M.J.; Harvey, K.L.; Prinz, B.; Crabb, B.S.; Gilson, P.R.; Wilson, D.J.D.; Abbott, B.M. Exploration of 3-methylisoquinoline-4-carbonitriles as protein kinase A inhibitors of Plasmodium falciparum. Bioorg. Med. Chem., 2016, 24(11), 2389-2396.
[http://dx.doi.org/10.1016/j.bmc.2016.03.048] [PMID: 27112453]
[16]
Umereweneza, D.; Molel, J.T.; Said, J.; Atilaw, Y.; Muhizi, T.; Trybala, E.; Bergström, T.; Gogoll, A.; Erdélyi, M. Antiviral iridoid glycosides from Clerodendrum myricoides. Fitoterapia, 2021, 155, 105055.
[http://dx.doi.org/10.1016/j.fitote.2021.105055] [PMID: 34626739]
[17]
Guzzo, F.; Russo, R.; Sanna, C.; Celaj, O.; Caredda, A.; Corona, A.; Tramontano, E.; Fiorentino, A.; Esposito, F.; D’Abrosca, B. Chemical characterization and anti-HIV-1 activity assessment of iridoids and flavonols from Scrophularia trifoliata. Molecules, 2021, 26(16), 4777.
[http://dx.doi.org/10.3390/molecules26164777] [PMID: 34443358]
[18]
West, B.J.; Deng, S. Morinda citrifolia (Noni) fruit juice inhibits SARS-CoV-2 spike protein binding of angiotensin-converting enzyme 2 (ACE2). J. Biosci. Med. (Irvine), 2021, 9(11), 42-51.
[http://dx.doi.org/10.4236/jbm.2021.911005]
[19]
Guo, S.; Bao, L.; Li, C.; Sun, J.; Zhao, R.; Cui, X. Antiviral activity of iridoid glycosides extracted from Fructus Gardeniae against influenza A virus by PACT-dependent suppression of viral RNA replication. Sci. Rep., 2020, 10(1), 1897.
[http://dx.doi.org/10.1038/s41598-020-58443-3] [PMID: 32024921]
[20]
Venu, L.N.; Austin, A. Antiviral efficacy of medicinal plants against respiratory viruses: Respiratory syncytial virus (RSV) and coronavirus (CoV)/COVID 19. Journal of Phytopharmacology, 2020, 9(4), 281-290.
[http://dx.doi.org/10.31254/phyto.2020.9412]
[21]
Wei, Q.; Zhang, R.; Wang, Q.; Yan, X.J.; Yu, Q.W.; Yan, F.X.; Li, C.; Pei, Y.H. Iridoid, phenylethanoid and flavonoid glycosides from Forsythia suspensa. Nat. Prod. Res., 2020, 34(9), 1320-1325.
[http://dx.doi.org/10.1080/14786419.2018.1560288] [PMID: 30676780]
[22]
Phuong Thao, T.T.; Bui, T.Q.; Quy, P.T.; Bao, N.C.; Van Loc, T.; Van Chien, T.; Chi, N.L.; Van Tuan, N.; Van Sung, T.; Ai Nhung, N.T. Isolation, semi-synthesis, docking-based prediction, and bioassay-based activity of Dolichandrone spathacea iridoids: new catalpol derivatives as glucosidase inhibitors. RSC Advances, 2021, 11(20), 11959-11975.
[http://dx.doi.org/10.1039/D1RA00441G] [PMID: 35423771]
[23]
Oh, Y.; Lee, D.; Park, S.; Kim, S.H.; Kang, K.S. The chemical constituents from fruits of Catalpa bignonioides Walt. and their α-glucosidase inhibitory activity and insulin secretion effect. Molecules, 2021, 26(2), 362.
[http://dx.doi.org/10.3390/molecules26020362] [PMID: 33445612]
[24]
Liu, S.; Cheng, X.; Li, X.; Kong, Y.; Jiang, S.; Dong, C.; Wang, G. Design, microwave synthesis, and molecular docking studies of catalpol crotonates as potential neuroprotective agent of diabetic encephalopathy. Sci. Rep., 2020, 10(1), 20415.
[http://dx.doi.org/10.1038/s41598-020-77399-y] [PMID: 33230173]
[25]
Lei, S.; Zhang, D.; Qi, Y.; Chowdhury, S.R.; Sun, R.; Wang, J.; Du, Y.; Fu, L.; Jiang, F. Synthesis and biological evaluation of geniposide derivatives as potent and selective PTPlB inhibitors. Eur. J. Med. Chem., 2020, 205, 112508.
[http://dx.doi.org/10.1016/j.ejmech.2020.112508] [PMID: 32738350]
[26]
Guo, L.; Xia, Z.; Gao, X.; Yin, F.; Liu, J. Glucagon-like peptide 1 receptor plays a critical role in geniposide-regulated insulin secretion in INS-1 cells. Acta Pharmacol. Sin., 2012, 33(2), 237-241.
[http://dx.doi.org/10.1038/aps.2011.146] [PMID: 22101168]
[27]
Gao, S.; Feng, Q. The beneficial effects of geniposide on glucose and lipid metabolism: A review. Drug Des. Devel. Ther., 2022, 16, 3365-3383.
[http://dx.doi.org/10.2147/DDDT.S378976] [PMID: 36213380]
[28]
Ma, W.; Wang, K.J.; Cheng, C.S.; Yan, G.; Lu, W.L.; Ge, J.F.; Cheng, Y.X.; Li, N. Bioactive compounds from Cornus officinalis fruits and their effects on diabetic nephropathy. J. Ethnopharmacol., 2014, 153(3), 840-845.
[http://dx.doi.org/10.1016/j.jep.2014.03.051] [PMID: 24694395]
[29]
Adom, M.B.; Taher, M.; Mutalabisin, M.F.; Amri, M.S.; Abdul Kudos, M.B.; Wan Sulaiman, M.W.A.; Sengupta, P.; Susanti, D. Chemical constituents and medical benefits of Plantago major. Biomed. Pharmacother., 2017, 96, 348-360.
[http://dx.doi.org/10.1016/j.biopha.2017.09.152] [PMID: 29028587]
[30]
Wang, Y.L.; Xiao, Z.Q.; Liu, S.; Wan, L.S.; Yue, Y.D.; Zhang, Y.T.; Liu, Z.X.; Chen, J.C. Antidiabetic effects of Swertia macrosperma extracts in diabetic rats. J. Ethnopharmacol., 2013, 150(2), 536-544.
[http://dx.doi.org/10.1016/j.jep.2013.08.053] [PMID: 24055468]
[31]
Kwofie, K.D.; Tung, N.H.; Suzuki-Ohashi, M.; Amoa-Bosompem, M.; Adegle, R.; Sakyiamah, M.M.; Ayertey, F.; Owusu, K.B.A.; Tuffour, I.; Atchoglo, P.; Frempong, K.K.; Anyan, W.K.; Uto, T.; Morinaga, O.; Yamashita, T.; Aboagye, F.; Appiah, A.A.; Appiah-Opong, R.; Nyarko, A.K.; Yamaguchi, Y.; Edoh, D.; Koram, K.A.; Yamaoka, S.; Boakye, D.A.; Ohta, N.; Shoyama, Y.; Ayi, I. Antitrypanosomal activities and mechanisms of action of novel tetracyclic iridoids from Morinda lucida Bnth. Antimicrob. Agents Chemother., 2016, 60(6), 3283-3290.
[http://dx.doi.org/10.1128/AAC.01916-15] [PMID: 26953191]
[32]
Wang, P.; Wang, Q.; Luo, C.; Tan, C.; Yuan, X. Iridoid glycosides extracted from Zhizi (Fructus Gardeniae) decrease collagen-induced platelet aggregation and reduce carotid artery thrombosis in an in vivo rat model. J. Tradit. Chin. Med., 2013, 33(4), 531-534.
[http://dx.doi.org/10.1016/S0254-6272(13)60160-0] [PMID: 24187877]
[33]
Murata, K.; Abe, Y.; Futamura-Masuda, M.; Uwaya, A.; Isami, F.; Deng, S.; Matsuda, H. Effect of Morinda citrifolia fruit extract and its iridoid glycosides on blood fluidity. J. Nat. Med., 2014, 68(3), 498-504.
[http://dx.doi.org/10.1007/s11418-014-0826-z] [PMID: 24604344]
[34]
Zhang, H.; Liu, H.; Yang, M.; Wei, S. Antithrombotic activities of aqueous extract from Gardenia jasminoides and its main constituent. Pharm. Biol., 2013, 51(2), 221-225.
[http://dx.doi.org/10.3109/13880209.2012.717088] [PMID: 23116215]
[35]
Suzuki, Y.; Kondo, K.; Ikeda, Y.; Umemura, K. Antithrombotic effect of geniposide and genipin in the mouse thrombosis model. Planta Med., 2001, 67(9), 807-810.
[http://dx.doi.org/10.1055/s-2001-18842] [PMID: 11745015]
[36]
Toktas, U.; Sarikahya, N.B.; Parlak, C.; Ozturk, I.; Kayalar, H. A new iridoid skeleton from Galium asparagifolium and biological activity studies. J. Mol. Struct., 2022, 1250(1), 131693.
[http://dx.doi.org/10.1016/j.molstruc.2021.131693]
[37]
Shu, P.; Yu, M.; Zhu, H.; Luo, Y.; Li, Y.; Li, N.; Zhang, H.; Zhang, J.; Liu, G.; Wei, X.; Yi, W. Two new iridoid glycosides from gardeniae fructus. Carbohydr. Res., 2021, 501, 108259.
[http://dx.doi.org/10.1016/j.carres.2021.108259] [PMID: 33610932]
[38]
Peng, Z.; Wang, Y.; He, J.; Zhang, J.; Pan, X.; Ye, X.; Zhang, W.; Xu, J. Chemical constituents and their antioxidant and anti-inflammatory activities from edible Cornus officinalis fruits. Eur. Food Res. Technol., 2022, 248(4), 1003-1010.
[http://dx.doi.org/10.1007/s00217-021-03940-6]
[39]
Zhao, H.; Wang, R.; Ye, M.; Zhang, L. Genipin protects against H2O2-induced oxidative damage in retinal pigment epithelial cells by promoting Nrf2 signaling. Int. J. Mol. Med., 2019, 43(2), 936-944.
[PMID: 30569096]
[40]
Erukainure, O.L.; Ebuehi, O.A.T.; Choudhary, I.M.; Adhikari, A.; Hafizur, R.M.; Perveen, S.; Muhammad, A.; Elemo, G.N. Iridoid glycoside from the leaves of Clerodendrum volubile beauv. shows potent antioxidant activity against oxidative stress in rat brain and hepatic tissues. J. Diet. Suppl., 2014, 11(1), 19-29.
[http://dx.doi.org/10.3109/19390211.2013.859213] [PMID: 24409978]
[41]
Vidyalakshmi, K.S.; Nagarajan, S.; Vasanthi, H.R. Venkappaya; Rajamanickam, V. Hepatoprotective and antioxidant activity of two iridoids from Mussaenda ‘dona aurora’. Z. Naturforsch. C J. Biosci., 2009, 64(5-6), 329-334.
[http://dx.doi.org/10.1515/znc-2009-5-604] [PMID: 19678533]
[42]
Ji, L.; Wang, X.; Li, J.; Zhong, X.; Zhang, B.; Juan, J.; Shang, X. New iridoid derivatives from the fruits of Cornus officinalis and their neuroprotective activities. Molecules, 2019, 24(3), 625.
[http://dx.doi.org/10.3390/molecules24030625] [PMID: 30754635]
[43]
Li, J.; Ding, X.; Zhang, R.; Jiang, W.; Sun, X.; Xia, Z.; Wang, X.; Wu, E.; Zhang, Y.; Hu, Y. Harpagoside ameliorates the amyloid-β-induced cognitive impairment in rats via up-regulating BDNF expression and MAPK/PI3K pathways. Neuroscience, 2015, 303, 103-114.
[http://dx.doi.org/10.1016/j.neuroscience.2015.06.042] [PMID: 26135675]
[44]
Liu, W.; Li, G.; Hölscher, C.; Li, L. Neuroprotective effects of geniposide on Alzheimer’s disease pathology. Rev. Neurosci., 2015, 26(4), 371-383.
[http://dx.doi.org/10.1515/revneuro-2015-0005] [PMID: 25879319]
[45]
Chen, Y.; Zhang, Y.; Li, L.; Hölscher, C. Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson’s disease. Eur. J. Pharmacol., 2015, 768, 21-27.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.029] [PMID: 26409043]
[46]
Xu, J.; Guo, P.; Guo, Y.; Fang, L.; Li, Y.; Sun, Z.; Gui, L. Iridoids from the roots of Valeriana jatamansi and their biological activities. Nat. Prod. Res., 2012, 26(21), 1996-2001.
[http://dx.doi.org/10.1080/14786419.2011.636747] [PMID: 22115452]
[47]
Xu, J.; Guo, Y.; Xie, C.; Jin, D.Q.; Gao, J.; Gui, L. Isolation and neuroprotective activities of acylated iridoids from Valeriana jatamansi. Chem. Biodivers., 2012, 9(7), 1382-1388.
[http://dx.doi.org/10.1002/cbdv.201100238] [PMID: 22782884]
[48]
Esakkimuthu, S.; Nagulkumar, S.; Darvin, S.S.; Buvanesvaragurunathan, K.; Sathya, T.N.; Navaneethakrishnan, K.R.; Kumaravel, T.S.; Murugan, S.S.; Shirota, O.; Balakrishna, K.; Pandikumar, P.; Ignacimuthu, S. Antihyperlipidemic effect of iridoid glycoside deacetylasperulosidic acid isolated from the seeds of Spermacoce hispida L. - A traditional antiobesity herb. J. Ethnopharmacol., 2019, 245, 112170.
[http://dx.doi.org/10.1016/j.jep.2019.112170] [PMID: 31434002]
[49]
Kang, J.; Guo, C.; Thome, R.; Yang, N.; Zhang, Y.; Li, X.; Cao, X. Hypoglycemic, hypolipidemic and antioxidant effects of iridoid glycosides extracted from Corni fructus: possible involvement of the PI3K-Akt/PKB signaling pathway. RSC Advances, 2018, 8(53), 30539-30549.
[http://dx.doi.org/10.1039/C8RA06045B] [PMID: 35546813]
[50]
Lin, X.; Li, J.; Xing, Y.Q. Geniposide, a sonic hedgehog signaling inhibitor, inhibits the activation of hepatic stellate cell. Int. Immunopharmacol., 2019, 72, 330-338.
[http://dx.doi.org/10.1016/j.intimp.2019.04.016] [PMID: 31005778]
[51]
Zhu, J.; Xu, K.; Zhang, X.; Cao, J.; Jia, Z.; Yang, R.; Ma, C.; Chen, C.; Zhang, T.; Yan, Z. Studies on the regulation of lipid metabolism and its mechanism of the iridoids rich fraction in Valeriana jatamansi Jones. Biomed. Pharmacother., 2016, 84, 1891-1898.
[http://dx.doi.org/10.1016/j.biopha.2016.10.099] [PMID: 27832992]
[52]
Chiu, M.H.; Hou, T.Y.; Fan, C.K.; Chang, J.H.; Lin, C.L.; Huang, S.C.; Lee, Y.L. Catalpol exerts antiallergic effects in IgE/ovalbumin-activated mast cells and a murine model of ovalbumin-induced allergic asthma. Int. Immunopharmacol., 2021, 96, 107782.
[http://dx.doi.org/10.1016/j.intimp.2021.107782] [PMID: 34022666]
[53]
Sato, A.; Shinozaki, N.; Tamura, H. Secoiridoid type of antiallergic substances in olive waste materials of three Japanese varieties of Olea europaea. J. Agric. Food Chem., 2014, 62(31), 7787-7795.
[http://dx.doi.org/10.1021/jf502151b] [PMID: 25029390]
[54]
Oku, H.; Ogawa, Y.; Iwaoka, E.; Ishiguro, K. Allergy-preventive effects of chlorogenic acid and iridoid derivatives from flower buds of Lonicera japonica. Biol. Pharm. Bull., 2011, 34(8), 1330-1333.
[http://dx.doi.org/10.1248/bpb.34.1330] [PMID: 21804227]
[55]
Tang, J.J.; Zhao, N.; Gao, Y.Q.; Han, R.; Wang, X.Y.; Tian, J.M.; Gao, J.M. Phytosterol profiles and iridoids of the edible Eucommia ulmoides Oliver seeds and their anti-inflammatory potential. Food Biosci., 2021, 43, 101295.
[http://dx.doi.org/10.1016/j.fbio.2021.101295]
[56]
Cai, M.; Liu, M.; Chen, P.; Liu, H.; Wang, Y.; Yang, D.; Zhao, Z.; Ding, P. Iridoids with anti-inflammatory effect from the aerial parts of Morinda officinalis How. Fitoterapia, 2021, 153, 104991.
[http://dx.doi.org/10.1016/j.fitote.2021.104991] [PMID: 34265404]
[57]
Sun, S.; Fu, J.; Liu, K.; Dai, M.; Li, Y.; Liu, Y.; Ma, S.; Qu, J. Two new iridoid glucosides from the whole plant of Patrinia scabiosifolia Link. Molecules, 2021, 26(14), 4201.
[http://dx.doi.org/10.3390/molecules26144201] [PMID: 34299477]
[58]
Berger, A.; Valant-Vetschera, K.; Schinnerl, J.; Brecker, L. A revised classification of the sister tribes Palicoureeae and Psychotrieae (Rubiaceae) indicates genus-specific alkaloid accumulation. Phytochem. Rev., 2021, 1-46.
[59]
Liu, P.; Zhou, M.N.; Zhu, L.L.; Chen, X.H.; Jiang, Y.Y.; Zhang, W.; Liu, B. New iridoid and phenylethanoid glycosides from the roots of Scrophularia ningpoensis. Tetrahedron, 2021, 94, 132325.
[http://dx.doi.org/10.1016/j.tet.2021.132325]
[60]
Zhang, L.; Zhu, T.; Qian, F.; Xu, J.; Dorje, G.; Zhao, Z.; Guo, F.; Li, Y. Iridoid glycosides isolated from Scrophularia dentata Royle ex Benth. and their anti-inflammatory activity. Fitoterapia, 2014, 98, 84-90.
[http://dx.doi.org/10.1016/j.fitote.2014.07.005] [PMID: 25016952]
[61]
Luo, D.; Or, T.C.T.; Yang, C.L.H.; Lau, A.S.Y. Anti-inflammatory activity of iridoid and catechol derivatives from Eucommia ulmoides Oliver. ACS Chem. Neurosci., 2014, 5(9), 855-866.
[http://dx.doi.org/10.1021/cn5001205] [PMID: 25065689]
[62]
Abdel-Kader, M.S.; Alqasoumi, S.I. in vivo hepatoprotective and nephroprotective activity of acylated iridoid glycosides from Scrophularia hepericifolia. Biology (Basel), 2021, 10(2), 145.
[http://dx.doi.org/10.3390/biology10020145] [PMID: 33673028]
[63]
Tan, S.; Lu, Q.; Shu, Y.; Sun, Y.; Chen, F.; Tang, L. Iridoid glycosides fraction isolated from Veronica ciliate fisch. protects against acetaminophen-induced liver injury in mice. Evid., 2017, 2017, 1-11.
[64]
Wang, J.; Fu, H.Z.; Luo, Y.H.; Ma, Y.Y.; Huang, B.; Ma, S.C. Two new iridoid glycosides from the leaves of Callicarpa nudiflora. J. Asian Nat. Prod. Res., 2018, 20(3), 242-248.
[http://dx.doi.org/10.1080/10286020.2017.1323884] [PMID: 28537085]
[65]
Luo, Y.H.; Fu, H.Z.; Huang, B.; Chen, W.K.; Ma, S.C. Hepatoprotective iridoid glucosides from Callicarpa nudiflora. J. Asian Nat. Prod. Res., 2016, 18(3), 274-279.
[http://dx.doi.org/10.1080/10286020.2015.1074572] [PMID: 26507813]
[66]
Chang, F.P.; Chao, W.; Wang, S.Y.; Huang, H.C.; Sung, P.J.; Chen, J.J.; Cheng, M.J.; Huang, G.J.; Kuo, Y.H. Three new iridoid derivatives have been isolated from the stems of Neonauclea reticulata (Havil.) Merr. with cytotoxic activity on hepatocellular carcinoma cells. Molecules, 2018, 23(9), 2297.
[http://dx.doi.org/10.3390/molecules23092297] [PMID: 30205569]
[67]
Garro, H.A.; García, C.; Martín, V.S.; Tonn, C.E.; Pungitore, C.R. A new iridoid, verbascoside and derivatives with inhibitory activity against Taq DNA polymerase. Bioorg. Med. Chem. Lett., 2015, 25(4), 914-918.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.052] [PMID: 25582597]
[68]
Jin, D.; Cao, M.; Mu, X.; Yang, G.; Xue, W.; Huang, Y.; Chen, H. Catalpol inhibited the proliferation of T24 human bladder cancer cells by inducing apoptosis through the blockade of Akt-mediated anti-apoptotic signaling. Cell Biochem. Biophys., 2015, 71(3), 1349-1356.
[http://dx.doi.org/10.1007/s12013-014-0355-0] [PMID: 25388838]
[69]
Gorantla, J.N.; Vellekkatt, J.; Nath, L.R.; Anto, R.J.; Lankalapalli, R.S. Cytotoxicity studies of semi-synthetic derivatives of theveside derived from the aqueous extract of leaves of ‘suicide tree’ Cerbera odollam. Nat. Prod. Res., 2014, 28(18), 1507-1512.
[http://dx.doi.org/10.1080/14786419.2014.913242] [PMID: 24805359]
[70]
Pandeti, S.; Sharma, K.; Bathula, S.R.; Tadigoppula, N. Synthesis of novel anticancer iridoid derivatives and their cell cycle arrest and caspase dependent apoptosis. Phytomedicine, 2014, 21(3), 333-339.
[http://dx.doi.org/10.1016/j.phymed.2013.08.023] [PMID: 24075214]
[71]
Celano, M.; Maggisano, V.; Lepore, S.M.; Russo, D.; Bulotta, S. Secoiridoids of olive and derivatives as potential coadjuvant drugs in cancer: A critical analysis of experimental studies. Pharmacol. Res., 2019, 142, 77-86.
[http://dx.doi.org/10.1016/j.phrs.2019.01.045] [PMID: 30772463]
[72]
Liu, L.F.; Yao, M.J.; Li, M.Y.; Wu, X.Z.; Yuan, C.S. Iridoid derivatives with cytotoxic activity from Pedicularis uliginosa Bunge. Chem. Biodivers., 2019, 16(2), e1800524.
[http://dx.doi.org/10.1002/cbdv.201800524] [PMID: 30468024]
[73]
Hashim, Y.; Toume, K.; Mizukami, S.; Ge, Y.W.; Taniguchi, M.; Teklemichael, A.A.; Huy, N.T.; Bodi, J.M.; Hirayama, K.; Komatsu, K. Phenylpropanoid conjugated iridoids with anti-malarial activity from the leaves of Morinda morindoides. J. Nat. Med., 2021, 75(4), 915-925.
[http://dx.doi.org/10.1007/s11418-021-01541-x] [PMID: 34189715]
[74]
Zandi, L.; Makungu, M.; Munissi, J.J.E.; Duffy, S.; Puttreddy, R.; von der Heiden, D.; Rissanen, K.; Avery, V.M.; Nyandoro, S.S.; Erdélyi, M. Secoiridoids and Iridoids from Morinda asteroscepa. J. Nat. Prod., 2020, 83(9), 2641-2646.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00447] [PMID: 32852949]
[75]
Tajuddeen, N.; Van Heerden, F.R. Antiplasmodial natural products: An update. Malar. J., 2019, 18(1), 404.
[http://dx.doi.org/10.1186/s12936-019-3026-1] [PMID: 31805944]
[76]
Refaey, M.S.; Hassanein, A.M.M.; Mostafa, M.A.H.; Wanas, A.S.; Ali, A.A. Two new iridoid glycosides from Odontonema cuspidatum and their bioactivities. Phytochem. Lett., 2017, 22, 27-32.
[http://dx.doi.org/10.1016/j.phytol.2017.08.009]
[77]
Tshisekedi Tshibangu, P.; Mutwale Kapepula, P.; Kabongo Kapinga, M.J.; Tujibikila Mukuta, A.; Kalenda, D.T.; Tchinda, A.T.; Mouithys-Mickalad, A.A.; Jansen, O.; Cieckiewicz, E.; Tits, M.; Angenot, L.; Frédérich, M. Antiplasmodial activity of Heinsia crinita (Rubiaceae) and identification of new iridoids. J. Ethnopharmacol., 2017, 196, 261-266.
[http://dx.doi.org/10.1016/j.jep.2016.11.041] [PMID: 27890637]
[78]
Tan, S.; Lu, Q.; Shu, Y.; Sun, Y.; Chen, F.; Tang, L. Iridoid glycosides fraction isolated from Veronica ciliata Fisch. Protects against acetaminophen-induced liver injury in mice. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/6106572] [PMID: 28293265]
[79]
Shoda, J.; Miura, T.; Utsunomiya, H.; Oda, K.; Yamamoto, M.; Kano, M.; Ikegami, T.; Tanaka, N.; Akita, H.; Ito, K.; Suzuki, H.; Sugiyama, Y. Genipin enhances Mrp2 (Abcc2)-mediated bile formation and organic anion transport in rat liver. Hepatology, 2004, 39(1), 167-178.
[http://dx.doi.org/10.1002/hep.20003] [PMID: 14752835]
[80]
Lee, J.H.; Lee, D.U.; Jeong, C.S. Gardenia jasminoides Ellis ethanol extract and its constituents reduce the risks of gastritis and reverse gastric lesions in rats. Food Chem. Toxicol., 2009, 47(6), 1127-1131.
[http://dx.doi.org/10.1016/j.fct.2009.01.037] [PMID: 19425231]
[81]
Shi, R.R.; Wang, J.; Yan, X.L.; Hu, J.H.; Gao, Z.P.; Jia, M.X.; Yu, X.; Wang, J. Study on the mechanism of arachnoid iridoids and terpenes on rats with irritable bowel syndrome. J. Beijing Univ. Tradit. Chin. Med., 2014, 37, 304-308.
[82]
Villasenor, I. Bioactivities of iridoids. Antiinflamm. Antiallergy Agents Med. Chem., 2007, 6(4), 307-314.
[http://dx.doi.org/10.2174/187152307783220040]
[83]
Lian, M.; Sun, Y.; Lin, Y.; Wen, J.; Almoiliqy, M.; Xu, B.; Li, Y.; Xu, M.; Chen, D.; Tang, Z.; Wang, L. p-JAK2 plays a key role in catalpol-induced protection against rat intestinal ischemia/reperfusion injury. RSC Advances, 2017, 7(86), 54369-54378.
[http://dx.doi.org/10.1039/C7RA10506A]
[84]
Gutierrez, R.M.P.; Solis, R.V.; Baez, E.G.; Martinez, F.M. Effect on capillary permeability in rabbits of iridoids from Buddleia scordioides. Phytother. Res., 2006, 20(7), 542-545.
[http://dx.doi.org/10.1002/ptr.1893] [PMID: 16619344]
[85]
Zhong, H.; Chen, K.; Feng, M.; Shao, W.; Wu, J.; Chen, K.; Liang, T.; Liu, C. Genipin alleviates high‐fat diet‐induced hyperlipidemia and hepatic lipid accumulation in mice via miR‐142a‐5p/SREBP ‐1c axis. FEBS J., 2018, 285(3), 501-517.
[http://dx.doi.org/10.1111/febs.14349] [PMID: 29197188]
[86]
Li, Y.; Hu, W.; Han, G.; Lu, W.; Jia, D.; Hu, M.; Wang, D. Involvement of bone morphogenetic protein-related pathways in the effect of aucubin on the promotion of osteoblast differentiation in MG63 cells. Chem. Biol. Interact., 2018, 283, 51-58.
[http://dx.doi.org/10.1016/j.cbi.2018.02.005] [PMID: 29408431]
[87]
Wang, F.F.; Zhang, Y.M.; Zheng, X.W.; Dai, Z.; Liu, B.; Ma, S.C. Research Progress of the Structure and Biological Activities of Iridoids Compounds. China Acad. J. Electron. Publ. House, 2019, 33, 91-98.
[88]
Peng, J. Central Inhibition of Arachnoid Ether Terpenoids; Southwest Jiaotong University: Xi’an, China, 2009.
[89]
Modaressi, M.; Delazar, A.; Nazemiyeh, H.; Fathi-Azad, F.; Smith, E.; Rahman, M.M.; Gibbons, S.; Nahar, L.; Sarker, S.D. Antibacterial iridoid glucosides from Eremostachys laciniata. Phytother. Res., 2009, 23(1), 99-103.
[http://dx.doi.org/10.1002/ptr.2568] [PMID: 18693303]
[90]
Grover, P.; Bhardwaj, M.; Kapoor, G.; Mehta, L.; Ghai, R.; Nagarajan, K. Advances on quinazoline based congeners for anticancer potential. Curr. Org. Chem., 2021, 25(6), 695-723.
[http://dx.doi.org/10.2174/1385272825666210212121056]
[91]
Nagarajan, K.; Ghai, R.; Varshney, G.; Grover, P.; Genovese, C.; D’Angeli, F.; Goel, R.; Prasad, T.; Kalaivani, M. Identification of potent bioassay guided terpenoid and glycoside root fractions of astragalus candolleanus against clinically significant bacterial strains. Int. J. Microbiol., 2022.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy