Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Research Progress of Nanocarriers for the Treatment of Alzheimer's Disease

Author(s): Lili Li, Jiajia Zhang, Xiaoyue Huang, Jingguo Du, Zhiqiang Tu, Haotian Wu, Xu Liu* and Mingqing Yuan*

Volume 29, Issue 2, 2023

Published on: 16 January, 2023

Page: [95 - 115] Pages: 21

DOI: 10.2174/1381612829666221216114912

Price: $65

Open Access Journals Promotions 2
Abstract

Currently, many therapeutic drugs are difficult to cross the blood-brain barrier (BBB), making it difficult to reach the site of action and thus fail to achieve the desired efficacy. In recent years, researchers and drug designers have increasingly focused on nanotechnology to break through the difficulty of small molecule inhibitors to cross the blood-brain barrier (BBB) and improve the success rate of drug delivery to the central nervous system. Among the common central neurological diseases, such as encephalitis, Parkinson's, Alzheimer's disease, and epilepsy, Alzheimer's disease has attracted much attention from researchers. Alzheimer's disease is a specific neurodegenerative disease, which causes irreversible degeneration of neurons as well as synapses in the brain, resulting in memory and cognitive dysfunction, along with other psychiatric symptoms and behavioral disorders, which seriously affects people's everyday life. Moreover, nanotechnology has excellent potential for application in AD treatment. Studies have shown that nanocarriers can target the delivery of chemotherapeutic drugs, antioxidants, and other therapeutic substances to brain tissue using existing physiological mechanisms, thus effectively alleviating the disease progression of AD. Therefore, various nanoparticles and nanomedicine have been developed and constructed for diagnosing and treating AD in the past decades, such as nanoparticles, bionanoparticles, liposomes, nano-gel, dendrimers, and self-assembled nanoparticles. This study aims to review the applications and results of nanotechnology in the treatment of Alzheimer's disease in recent years and provide some ideas and clues for future research and development of more effective drug delivery systems.

Keywords: Alzheimer’s disease, blood-brain barrier, mechanism, nanoparticles, nano gel, dendritic polymer.

[1]
Vardi G, Merrick J. Neurological disorders: Public health challenges. J Policy Pract Intell Disabil 2008; 5(1): 75.
[http://dx.doi.org/10.1111/j.1741-1130.2007.00143.x]
[2]
Freude K, Krauss S. Dementia, brain disorders and molecular mechanisms. J Mol Biol 2019; 431(9): 1709-10.
[http://dx.doi.org/10.1016/j.jmb.2019.03.025] [PMID: 30930050]
[3]
Pardridge WM. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005; 2(1): 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[4]
Brzica H, Abdullahi W, Ibbotson K, Ronaldson PT. Role of transporters in central nervous system drug delivery and blood-brain barrier protection: relevance to treatment of stroke. J Cent Nerv Syst Dis 2017; 9
[http://dx.doi.org/10.1177/1179573517693802] [PMID: 28469523]
[5]
Tiwari G, Tiwari R, Bannerjee SK, et al. Drug delivery systems: An updated review. Int J Pharm Investig 2012; 2(1): 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[6]
Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[7]
Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: An engineering perspective. Front Neuroeng 2013; 6: 7.
[http://dx.doi.org/10.3389/fneng.2013.00007] [PMID: 24009582]
[8]
Serlin Y, Shelef I, Knyazer B, Friedman A. Anatomy and physiology of the blood–brain barrier. Semin Cell Dev Biol 2015; 38: 2-6.
[http://dx.doi.org/10.1016/j.semcdb.2015.01.002] [PMID: 25681530]
[9]
Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 2005; 6(8): 626-40.
[http://dx.doi.org/10.1038/nrn1722] [PMID: 16025096]
[10]
Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature 2006; 443(7112): 700-4.
[http://dx.doi.org/10.1038/nature05193] [PMID: 17036005]
[11]
Sharif Y, Jumah F, Coplan L, Krosser A, Sharif K, Tubbs RS. Blood brain barrier: A review of its anatomy and physiology in health and disease. Clin Anat 2018; 31(6): 812-23.
[http://dx.doi.org/10.1002/ca.23083] [PMID: 29637627]
[12]
Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 2016; 6(4): 268-86.
[http://dx.doi.org/10.1016/j.apsb.2016.05.013] [PMID: 27471668]
[13]
Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Adv Drug Deliv Rev 2014; 71: 2-14.
[http://dx.doi.org/10.1016/j.addr.2013.08.008] [PMID: 23981489]
[14]
Jain KK. Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine (Lond) 2012; 7(8): 1225-33.
[http://dx.doi.org/10.2217/nnm.12.86] [PMID: 22931448]
[15]
Fischer NO, Weilhammer DR, Dunkle A, et al. Evaluation of nanolipoprotein particles (NLPs) as an in vivo delivery platform. PLoS One 2014; 9(3): e93342.
[http://dx.doi.org/10.1371/journal.pone.0093342] [PMID: 24675794]
[16]
Gilmore SF, Blanchette CD, Scharadin TM, et al. Lipid cross-linking of nanolipoprotein particles substantially enhances serum stability and cellular uptake. ACS Appl Mater Interfaces 2016; 8(32): 20549-57.
[http://dx.doi.org/10.1021/acsami.6b04609] [PMID: 27411034]
[17]
Chen Y, Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev 2012; 64(7): 640-65.
[http://dx.doi.org/10.1016/j.addr.2011.11.010] [PMID: 22154620]
[18]
Ueno M, Nakagawa T, Wu B, et al. Transporters in the brain endothelial barrier. Curr Med Chem 2010; 17(12): 1125-38.
[http://dx.doi.org/10.2174/092986710790827816]
[19]
Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 2014; 9: 2241-57.
[http://dx.doi.org/10.2147/IJN.S61288] [PMID: 24872687]
[20]
Arduino I, Iacobazzi RM, Riganti C, et al. Induced expression of P-gp and BCRP transporters on brain endothelial cells using transferrin functionalized nanostructured lipid carriers: A first step of a potential strategy for the treatment of Alzheimer’s disease. Int J Pharm 2020; 591: 120011.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120011] [PMID: 33115695]
[21]
Shityakov S, Förster C, Förster C. Multidrug resistance protein P-gp interaction with nanoparticles (fullerenes and carbon nanotube) to assess their drug delivery potential: A theoretical molecular docking study. Int J Comput Biol Drug Des 2013; 6(4): 343-57.
[http://dx.doi.org/10.1504/IJCBDD.2013.056801] [PMID: 24088267]
[22]
Shityakov S, Foerster C. In silico structure-based screening of versatile P-glycoprotein inhibitors using polynomial empirical scoring functions. Adv Appl Bioinform Chem 2014; 7: 1-9.
[http://dx.doi.org/10.2147/AABC.S56046] [PMID: 24711707]
[23]
Shityakov S, Foerster C. In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Adv Appl Bioinform Chem 2014; 7: 23-36.
[http://dx.doi.org/10.2147/AABC.S63749] [PMID: 25214795]
[24]
Laron Z. Insulin and the brain. Arch Physiol Biochem 2009; 115(2): 112-6.
[http://dx.doi.org/10.1080/13813450902949012] [PMID: 19485707]
[25]
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235: 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[26]
Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm 2005; 2(5): 373-83.
[http://dx.doi.org/10.1021/mp050032z] [PMID: 16196490]
[27]
Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012; 64(7): 686-700.
[http://dx.doi.org/10.1016/j.addr.2011.10.007] [PMID: 22100125]
[28]
Larsen A, Kolind K, Pedersen DS, et al. Gold ions bio-released from metallic gold particles reduce inflammation and apoptosis and increase the regenerative responses in focal brain injury. Histochemistry and Cell Biology 2008; 130(4): 681-92.
[http://dx.doi.org/10.1007/s00418-008-0448-1]
[29]
Pedersen MØ, Larsen A, Pedersen DS, Stoltenberg M, Penkowa M. Metallic gold treatment reduces proliferation of inflammatory cells, increases expression of VEGF and FGF, and stimulates cell proliferation in the subventricular zone following experimental traumatic brain injury. Histol Histopathol 2009; 24(5): 573-86.
[PMID: 19283666]
[30]
Muller AP, Ferreira GK, Pires AJ, et al. Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of Alzheimer’s type. Mater Sci Eng C 2017; 77: 476-83.
[http://dx.doi.org/10.1016/j.msec.2017.03.283] [PMID: 28532055]
[31]
Tsai CY, Shiau AL, Chen SY, et al. Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis Rheum 2007; 56(2): 544-54.
[http://dx.doi.org/10.1002/art.22401] [PMID: 17265489]
[32]
Liu Y, Zhou H, Yin T, et al. Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease. J Colloid Interface Sci 2019; 552: 388-400.
[http://dx.doi.org/10.1016/j.jcis.2019.05.066] [PMID: 31151017]
[33]
Kim MJ, Rehman SU, Amin FU, Kim MO. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1-42-induced neuroinflammation and neurodegeneration via the NF-KB /JNK/GSK3β signaling pathway. Nanomedicine 2017; 13(8): 2533-44.
[http://dx.doi.org/10.1016/j.nano.2017.06.022] [PMID: 28736294]
[34]
Sivaji K, Kannan RR. Polysorbate 80 coated gold nanoparticle as a drug carrier for brain targeting in zebrafish model. J Cluster Sci 2019; 30(4): 897-906.
[http://dx.doi.org/10.1007/s10876-019-01548-1]
[35]
Shilo M, Motiei M, Hana P, Popovtzer R. Transport of nanoparticles through the blood–brain barrier for imaging and therapeutic applications. Nanoscale 2014; 6(4): 2146-52.
[http://dx.doi.org/10.1039/C3NR04878K] [PMID: 24362586]
[36]
Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011; 3(4): 1411-20.
[http://dx.doi.org/10.1039/c0nr00875c] [PMID: 21369578]
[37]
Karakoti A, Singh S, Dowding JM, Seal S, Self WT. Redox-active radical scavenging nanomaterials. Chem Soc Rev 2010; 39(11): 4422-32.
[http://dx.doi.org/10.1039/b919677n] [PMID: 20717560]
[38]
Karakoti AS, Singh S, Kumar A, et al. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J Am Chem Soc 2009; 131(40): 14144-5.
[http://dx.doi.org/10.1021/ja9051087] [PMID: 19769392]
[39]
Beverly AR, Charles SC, Marion E. Cerium oxide nanoparticles in neuroprotection and considerations for efficacy and safety. WIREs 2017; 9(4): e1444.
[40]
Kwon HJ, Cha MY, Kim D, et al. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano 2016; 10(2): 2860-70.
[http://dx.doi.org/10.1021/acsnano.5b08045] [PMID: 26844592]
[41]
Dokyoon K, Jin KH, Taeghwan H. Magnetite/ceria nanoparticle assemblies for extracorporeal cleansing of amyloid-β in Alzheimer's disease. Adv Mater (Deerfield Beach, Fla) 2019; 31(19)
[42]
Guan Y, Gao N, Ren J, Qu X. Rationally designed CeNP@MnMoS4 core-shell nanoparticles for modulating multiple facets of Alzheimer’s disease. Chemistry 2016; 22(41): 14523-6.
[http://dx.doi.org/10.1002/chem.201603233] [PMID: 27490019]
[43]
Ling D. Iron oxide nanoparticles: Chemical design of biocompatible iron oxide nanoparticles for medical applications (Small 9-10/2013). Small 2013; 9(9-10)
[http://dx.doi.org/10.1002/smll.201370057] [PMID: 23233377]
[44]
Anwar M, Asfer M, Prajapati AP, et al. Synthesis and in vitro localization study of curcumin-loaded SPIONs in a micro capillary for simulating a targeted drug delivery system. Int J Pharm 2014; 468(1-2): 158-64.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.038] [PMID: 24746694]
[45]
Cheng KK, Chan PS, Fan S, et al. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 2015; 44: 155-72.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.005] [PMID: 25617135]
[46]
Wadghiri YZ, Li J, Wang J, et al. Detection of amyloid plaques targeted by bifunctional USPIO in Alzheimer’s disease transgenic mice using magnetic resonance microimaging. PLoS One 2013; 8(2): e57097.
[http://dx.doi.org/10.1371/journal.pone.0057097] [PMID: 23468919]
[47]
Sonawane SK, Ahmad A, Chinnathambi S. Protein-capped metal nanoparticles inhibit tau aggregation in alzheimer’s disease. ACS Omega 2019; 4(7): 12833-40.
[http://dx.doi.org/10.1021/acsomega.9b01411] [PMID: 31460408]
[48]
Javdani N, Rahpeyma SS, Ghasemi Y, Raheb J. Effect of superparamagnetic nanoparticles coated with various electric charges on α-synuclein and β-amyloid proteins fibrillation process. Int J Nanomedicine 2019; 14: 799-808.
[http://dx.doi.org/10.2147/IJN.S190354] [PMID: 30774334]
[49]
Brahmkhatri VP, Sharma N, Sunanda P, D’Souza A, Raghothama S, Atreya HS. Curcumin nanoconjugate inhibits aggregation of N-terminal region (Aβ-16) of an amyloid beta peptide. New J Chem 2018; 42(24): 19881-92.
[http://dx.doi.org/10.1039/C8NJ03541E]
[50]
Li C, Lu J, Hu X, et al. Assembly of nanoconjugates as new kind inhibitor of the aggregation of amyloid peptides associated with Alzheimer’s disease. Part Part Syst Charact 2018; 35(3): 1700384.
[http://dx.doi.org/10.1002/ppsc.201700384]
[51]
Wu SH, Hung Y, Mou CY. Mesoporous silica nanoparticles as nanocarriers. Chem Commun (Camb) 2011; 47(36): 9972-85.
[http://dx.doi.org/10.1039/c1cc11760b] [PMID: 21716992]
[52]
Lin YH, Chen YP, Liu TP, et al. Approach to deliver two antioxidant enzymes with mesoporous silica nanoparticles into cells. ACS Appl Mater Interfaces 2016; 8(28): 17944-54.
[http://dx.doi.org/10.1021/acsami.6b05834] [PMID: 27353012]
[53]
Chang FP, Chen YP, Mou CY. Intracellular implantation of enzymes in hollow silica nanospheres for protein therapy: cascade system of superoxide dismutase and catalase. Small 2014; 10(22): 4785-95.
[http://dx.doi.org/10.1002/smll.201401559] [PMID: 25160910]
[54]
Liu X, Sui B, Sun J. Blood-brain barrier dysfunction induced by silica NPs in vitro and in vivo:Involvement of oxidative stress and Rho-kinase/JNK signaling pathways. Biomaterials 2017; 121: 64-82.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.006] [PMID: 28081460]
[55]
Cho Y, Shi R, Ivanisevic A, Ben Borgens R. Functional silica nanoparticle-mediated neuronal membrane sealing following traumatic spinal cord injury. J Neurosci Res 2010; 88(7): 1433-44.
[http://dx.doi.org/10.1002/jnr.22309] [PMID: 19998478]
[56]
Ye Y, Hui L, Lakpa KL, et al. Effects of silica nanoparticles on endolysosome function in primary cultured neurons. Can J Physiol Pharmacol 2019; 97(4): 297-305.
[http://dx.doi.org/10.1139/cjpp-2018-0401] [PMID: 30312546]
[57]
Cheng CS, Liu TP, Chien FC, Mou CY, Wu SH, Chen YP. Codelivery of plasmid and curcumin with mesoporous silica nanoparticles for promoting neurite outgrowth. ACS Appl Mater Interfaces 2019; 11(17): 15322-31.
[http://dx.doi.org/10.1021/acsami.9b02797] [PMID: 30986029]
[58]
Halevas E, Nday CM, Salifoglou A. Hybrid catechin silica nanoparticle influence on Cu(II) toxicity and morphological lesions in primary neuronal cells. J Inorg Biochem 2016; 163: 240-9.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.04.017] [PMID: 27301643]
[59]
Deshpande AS, Khomane RB, Vaidya BK, Joshi RM, Harle AS, Kulkarni BD. Sulfur nanoparticles synthesis and characterization from H2S gas, using novel biodegradable iron chelates in W/O microemulsion. Nanoscale Res Lett 2008; 3(6): 221.
[http://dx.doi.org/10.1007/s11671-008-9140-6]
[60]
Moura CS, Silva JC, Faria S, et al. Chondrogenic differentiation of mesenchymal stem/stromal cells on 3D porous poly (ε-caprolactone) scaffolds: Effects of material alkaline treatment and chondroitin sulfate supplementation. J Biosci Bioeng 2020; 129(6): 756-64.
[http://dx.doi.org/10.1016/j.jbiosc.2020.01.004] [PMID: 32107152]
[61]
Ju C, Hou L, Sun F, et al. Anti-oxidation and antiapoptotic effects of chondroitin sulfate on 6-hydroxydopamine-induced injury through the up-regulation of nrf2 and inhibition of mitochondria-mediated pathway. Neurochem Res 2015; 40(7): 1509-19.
[http://dx.doi.org/10.1007/s11064-015-1628-8] [PMID: 26033682]
[62]
Betancur MI, Mason HD, Alvarado-Velez M, Holmes PV, Bellamkonda RV, Karumbaiah L. Chondroitin sulfate glycosaminoglycan matrices promote neural stem cell maintenance and neuroprotection post-traumatic brain injury. ACS Biomater Sci Eng 2017; 3(3): 420-30.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00805] [PMID: 29744379]
[63]
Li YM, Wu JY, Jiang J, et al. Chondroitin sulfate-polydopamine modified polyethylene terephthalate with extracellular matrix-mimetic immunoregulatory functions for osseointegration. J Mater Chem B Mater Biol Med 2019; 7(48): 7756-70.
[http://dx.doi.org/10.1039/C9TB01984G] [PMID: 31750849]
[64]
Cañas N, Valero T, Villarroya M, et al. Chondroitin sulfate protects SH-SY5Y cells from oxidative stress by inducing heme oxygenase-1 via phosphatidylinositol 3-kinase/Akt. J Pharmacol Exp Ther 2007; 323(3): 946-53.
[http://dx.doi.org/10.1124/jpet.107.123505] [PMID: 17885094]
[65]
Sun J, Xie W, Zhu X, Xu M, Liu J. Sulfur nanoparticles with novel morphologies coupled with brain-targeting peptides RVG as a new type of inhibitor against metal-induced aβ aggregation. ACS Chem Neurosci 2018; 9(4): 749-61.
[http://dx.doi.org/10.1021/acschemneuro.7b00312] [PMID: 29192759]
[66]
Liu Y, Gong Y, Xie W, et al. Microbubbles in combination with focused ultrasound for the delivery of quercetin-modified sulfur nanoparticles through the blood brain barrier into the brain parenchyma and relief of endoplasmic reticulum stress to treat Alzheimer’s disease. Nanoscale 2020; 12(11): 6498-511.
[http://dx.doi.org/10.1039/C9NR09713A] [PMID: 32154811]
[67]
Gao F, Zhao J, Liu P, et al. Preparation and in vitro evaluation of multi-target-directed selenium-chondroitin sulfate nanoparticles in protecting against the Alzheimer’s disease. Int J Biol Macromol 2020; 142: 265-76.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.098] [PMID: 31593732]
[68]
Ji D, Wu X, Li D, et al. Protective effects of chondroitin sulphate nano-selenium on a mouse model of Alzheimer’s disease. Int J Biol Macromol 2020; 154: 233-45.
[69]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[70]
Brambilla D, Souguir H, Nicolas J, et al. Colloidal properties of biodegradable nanoparticles influence interaction with amyloid-β peptide. J Biotechnol 2011; 156(4): 338-40.
[http://dx.doi.org/10.1016/j.jbiotec.2011.07.020] [PMID: 21807038]
[71]
Yao L, Gu X, Song Q, et al. Nanoformulated alpha-mangostin ameliorates Alzheimer’s disease neuropathology by elevating LDLR expression and accelerating amyloid-beta clearance. J Control Release 2016; 226: 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.055] [PMID: 26836197]
[72]
Liu Z, Gao X, Kang T, et al. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem 2013; 24(6): 997-1007.
[http://dx.doi.org/10.1021/bc400055h] [PMID: 23718945]
[73]
Huo X, Zhang Y, Jin X, Li Y, Zhang L. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J Photochem Photobiol B 2019; 190: 98-102.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.008] [PMID: 30504054]
[74]
Anila M, Takahiro F, Yutaka N, et al. Sakthi. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 2012; 7(3)
[75]
Kuo Y-C, Tsai H-C. Rosmarinic acid- and curcumin-loaded polyacrylamide-cardiolipin-poly(lactide-co-glycolide) nanoparticles with conjugated 83-14 monoclonal antibody to protect β-amyloid-insulted neurons. Mater Sci Eng C 2018; 91: 445-57.
[http://dx.doi.org/10.1016/j.msec.2018.05.062]
[76]
Silva-Abreu M, Calpena AC, Andrés-Benito P, et al. PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer’s disease: in vitro and in vivo studies. Int J Nanomedicine 2018; 13: 5577-90.
[http://dx.doi.org/10.2147/IJN.S171490] [PMID: 30271148]
[77]
Jeon SG, Cha MY, Kim J, et al. Vitamin D-binding protein-loaded PLGA nanoparticles suppress Alzheimer’s disease-related pathology in 5XFAD mice. Nanomedicine 2019; 17: 297-307.
[http://dx.doi.org/10.1016/j.nano.2019.02.004] [PMID: 30794963]
[78]
Lachowicz M, Stańczak A, Kołodziejczyk M. Characteristic of cyclodextrins: Their role and use in the pharmaceutical technology. Curr Drug Targets 2020; 21(14): 1495-510.
[http://dx.doi.org/10.2174/1389450121666200615150039] [PMID: 32538725]
[79]
Shityakov S, Broscheit J, Förster C. α-Cyclodextrin dimer complexes of dopamine and levodopa derivatives to assess drug delivery to the central nervous system: ADME and molecular docking studies. Int J Nanomedicine 2012; 7: 3211-9.
[http://dx.doi.org/10.2147/IJN.S31373] [PMID: 22811606]
[80]
Shityakov S, Puskás I, Pápai K, et al. Sevoflurane-sulfobutylether-β-cyclodextrin complex: Preparation, characterization, cellular toxicity, molecular modeling and blood-brain barrier transport studies. Molecules 2015; 20(6): 10264-79.
[http://dx.doi.org/10.3390/molecules200610264] [PMID: 26046323]
[81]
Shityakov S, Sohajda T, Puskás I, Roewer N, Förster C, Broscheit JA. Ionization states, cellular toxicity and molecular modeling studies of midazolam complexed with trimethyl-β-cyclodextrin. Molecules 2014; 19(10): 16861-76.
[http://dx.doi.org/10.3390/molecules191016861] [PMID: 25338177]
[82]
Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K. Chitosan as a bioactive polymer: Processing, properties and applications. Int J Biol Macromol 2017; 105(Pt 2): 1358-68.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.087] [PMID: 28735006]
[83]
Heydari S, Hedayati Ch M, Saadat F, et al. Diphtheria toxoid nanoparticles improve learning and memory impairment in animal model of Alzheimer’s disease. Pharmacol Rep 2020; 72(4): 814-26.
[http://dx.doi.org/10.1007/s43440-019-00017-w] [PMID: 32048245]
[84]
Lauzon MA, Marcos B, Faucheux N. Characterization of alginate/chitosan-based nanoparticles and mathematical modeling of their SpBMP-9 release inducing neuronal differentiation of human SH-SY5Y cells. Carbohydr Polym 2018; 181: 801-11.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.075] [PMID: 29254039]
[85]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[86]
Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011; 12(1): 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[87]
Dara T, Vatanara A, Sharifzadeh M, et al. Improvement of memory deficits in the rat model of Alzheimer’s disease by erythropoietin-loaded solid lipid nanoparticles. Neurobiol Learn Mem 2019; 166: 107082.
[http://dx.doi.org/10.1016/j.nlm.2019.107082] [PMID: 31493483]
[88]
Vakilinezhad MA, Amini A, Akbari Javar H, Baha’addini Beigi Zarandi BF, Montaseri H, Dinarvand R. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. Daru 2018; 26(2): 165-77.
[http://dx.doi.org/10.1007/s40199-018-0221-5] [PMID: 30386982]
[89]
Loureiro J, Andrade S, Duarte A, et al. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules 2017; 22(2): 277.
[http://dx.doi.org/10.3390/molecules22020277] [PMID: 28208831]
[90]
Rishitha N, Muthuraman A. Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci 2018; 199: 80-7.
[http://dx.doi.org/10.1016/j.lfs.2018.03.010] [PMID: 29522770]
[91]
Yusuf M, Khan M, Khan RA, Ahmed B. Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target 2013; 21(3): 300-11.
[http://dx.doi.org/10.3109/1061186X.2012.747529] [PMID: 23231324]
[92]
Malekpour-Galogahi F, Hatamian-Zarmi A, Ganji F, et al. Preparation and optimization of rivastigmine-loaded tocopherol succinate-based solid lipid nanoparticles. J Liposome Res 2018; 28(3): 226-35.
[http://dx.doi.org/10.1080/08982104.2017.1349143] [PMID: 28670949]
[93]
Craparo EF, Bondì ML, Pitarresi G, Cavallaro G. Nanoparticulate systems for drug delivery and targeting to the central nervous system. CNS Neurosci Ther 2011; 17(6): 670-7.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00199.x] [PMID: 20950327]
[94]
Gabathuler R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 2010; 37(1): 48-57.
[http://dx.doi.org/10.1016/j.nbd.2009.07.028] [PMID: 19664710]
[95]
Fernandes C, Soni U, Patravale V. Nano-interventions for neurodegenerative disorders. Pharmacol Res 2010; 62(2): 166-78.
[http://dx.doi.org/10.1016/j.phrs.2010.02.004] [PMID: 20153429]
[96]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[97]
Meng F, Asghar S, Gao S, et al. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. Colloids Surf B Biointerfaces 2015; 134.
[98]
Sadegh Malvajerd S, Izadi Z, Azadi A, et al. Neuroprotective potential of curcumin-loaded nanostructured lipid carrier in an animal model of Alzheimer’s disease: Behavioral and biochemical evidence. J Alzheimers Dis 2019; 69(3): 671-86.
[http://dx.doi.org/10.3233/JAD-190083] [PMID: 31156160]
[99]
Gifty M, Jojo. , Kuppusamy G, Anindita De V V S, Karri NR. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer’s disease using Box-Behnken design. Drug Dev Ind Pharm 2019; 45(7): 207-22.
[100]
Singh A, Kumar A, Verma RK, Shukla R. Silymarin encapsulated nanoliquid crystals for improved activity against beta amyloid induced cytotoxicity. Int J Biol Macromol 2020; 149: 1198-206.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.041] [PMID: 32044368]
[101]
Pinheiro RGR, Granja A, Loureiro JA, et al. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur J Pharm Sci 2020; 148: 105314.
[http://dx.doi.org/10.1016/j.ejps.2020.105314] [PMID: 32200044]
[102]
Wavikar P, Pai R, Vavia P. Nose to brain delivery of rivastigmine by in situ gelling cationic nanostructured lipid carriers: Enhanced brain distribution and pharmacodynamics. J Pharm Sci 2017; 106(12): 3613-22.
[http://dx.doi.org/10.1016/j.xphs.2017.08.024] [PMID: 28923321]
[103]
Ross C, Taylor M, Fullwood N, Allsop D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 2018; 13: 8507-22.
[http://dx.doi.org/10.2147/IJN.S183117] [PMID: 30587974]
[104]
Mohammad H. Liposomal drug delivery of Aphanamixis polystachya leaf extracts and its neurobehavioral activity in mice model Sci Rep 2020; 10(1): 6938.
[http://dx.doi.org/10.1038/s41598-020-63894-9]
[105]
Kuo YC, Lou YI, Rajesh R. Dual functional liposomes carrying antioxidants against tau hyperphosphorylation and apoptosis of neurons. J Drug Target 2020; 28(9): 949-60.
[http://dx.doi.org/10.1080/1061186X.2020.1761819] [PMID: 32338078]
[106]
Arora S, Sharma D, Singh J. GLUT-1: An effective target to deliver brain-derived neurotrophic factor gene across the blood brain barrier. ACS Chem Neurosci 2020; 11(11): 1620-33.
[http://dx.doi.org/10.1021/acschemneuro.0c00076] [PMID: 32352752]
[107]
Rodrigues BS, Kanekiyo T, Singh J. Nerve growth factor gene delivery across the blood–brain barrier to reduce beta amyloid accumulation in ad mice. Mol Pharm 2020; 17(6): 2054-63.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00218] [PMID: 32315185]
[108]
Binda A, Panariti A, Barbuti A, et al. Modulation of the intrinsic neuronal excitability by multifunctional liposomes tailored for the treatment of Alzheimer’s disease. Int J Nanomedicine 2018; 13: 4059-71.
[http://dx.doi.org/10.2147/IJN.S161563] [PMID: 30034232]
[109]
Kuo YC, Chen CL, Rajesh R. Optimized liposomes with transactivator of transcription peptide and anti-apoptotic drugs to target hippocampal neurons and prevent tau-hyperphosphorylated neurodegeneration. Acta Biomater 2019; 87: 207-22.
[http://dx.doi.org/10.1016/j.actbio.2019.01.065] [PMID: 30716553]
[110]
Aliakbari F, Shabani AA, Bardania H, et al. Formulation and anti-neurotoxic activity of baicalein-incorporating neutral nanoliposome. Colloids Surf B Biointerfaces 2018; 161: 578-87.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.023] [PMID: 29149763]
[111]
Ordóñez-Gutiérrez L, Posado-Fernández A, Ahmadvand D, et al. ImmunoPEGliposome-mediated reduction of blood and brain amyloid levels in a mouse model of Alzheimer’s disease is restricted to aged animals. Biomaterials 2017; 112: 141-52.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.027] [PMID: 27760398]
[112]
Saei AA, Yazdani M, Lohse SE, et al. Nanoparticle surface functionality dictates cellular and systemic toxicity. Chem Mater 2017; 29(16): 6578-95.
[http://dx.doi.org/10.1021/acs.chemmater.7b01979]
[113]
Kuhn V, Diederich L, Keller TCS IV, et al. Red blood cell function and dysfunction: Redox regulation, nitric oxide metabolism, anemia. Antioxid Redox Signal 2017; 26(13): 718-42.
[http://dx.doi.org/10.1089/ars.2016.6954] [PMID: 27889956]
[114]
Ayi K, Lu Z, Serghides L, et al. CD47-SIRPα interactions regulate macrophage uptake of plasmodium falciparum-infected erythrocytes and clearance of malaria in vivo. Infect Immun 2016; 84(7): 2002-11.
[http://dx.doi.org/10.1128/IAI.01426-15] [PMID: 27091932]
[115]
Gao C, Wang Y, Sun J, et al. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice. Acta Biomater 2020; 108: 285-99.
[http://dx.doi.org/10.1016/j.actbio.2020.03.029] [PMID: 32251785]
[116]
Han Y, Chu X, Cui L, et al. Neuronal mitochondria-targeted therapy for Alzheimer’s disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv 2020; 27(1): 502-18.
[http://dx.doi.org/10.1080/10717544.2020.1745328] [PMID: 32228100]
[117]
Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 2016; 240: 109-26.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.009] [PMID: 26571000]
[118]
Iordana N, Gabriela RA, Alina D, Elena NL, Chiriac AP. Basic concepts and recent advances in nano-gels as carriers for medical applications. Drug Deliv 2017; 24(1) [J].
[119]
Tahara Y, Akiyoshi K. Current advances in self-assembled nanogel delivery systems for immunotherapy. Adv Drug Deliv Rev 2015; 95: 65-76.
[http://dx.doi.org/10.1016/j.addr.2015.10.004] [PMID: 26482187]
[120]
Vashist A, Kaushik A, Vashist A, et al. Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discov Today 2018; 23(7): 1436-43.
[http://dx.doi.org/10.1016/j.drudis.2018.05.018] [PMID: 29775669]
[121]
Molina M, Asadian-Birjand M, Balach J, Bergueiro J, Miceli E, Calderón M. Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 2015; 44(17): 6161-86.
[http://dx.doi.org/10.1039/C5CS00199D] [PMID: 26505057]
[122]
Zhao G, Dong X, Sun Y. Self-assembled curcumin–poly(carboxybetaine methacrylate) conjugates: Potent nano-inhibitors against amyloid β-protein fibrillogenesis and cytotoxicity. Langmuir 2019; 35(5): 1846-57.
[http://dx.doi.org/10.1021/acs.langmuir.8b01921] [PMID: 30134656]
[123]
Fernandez AM, Torres-Alemán I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 2012; 13(4): 225-39.
[http://dx.doi.org/10.1038/nrn3209] [PMID: 22430016]
[124]
Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 2001; 177(1-2): 125-34.
[http://dx.doi.org/10.1016/S0303-7207(01)00455-5] [PMID: 11377828]
[125]
Benedict C, Hallschmid M, Hatke A, et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology 2004; 29(10): 1326-34.
[http://dx.doi.org/10.1016/j.psyneuen.2004.04.003] [PMID: 15288712]
[126]
Claxton A, Baker LD, Hanson A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimers Dis 2015; 44(3): 897-906.
[http://dx.doi.org/10.3233/JAD-141791] [PMID: 25374101]
[127]
Picone P, Ditta LA, Sabatino MA, et al. Ionizing radiation-engineered nanogels as insulin nanocarriers for the development of a new strategy for the treatment of Alzheimer’s disease. Biomaterials 2016; 80: 179-94.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.057] [PMID: 26708643]
[128]
Picone P, Sabatino MA, Ditta LA, et al. Nose-to-brain delivery of insulin enhanced by a nanogel carrier. J Control Release 2018; 270: 23-36.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.040] [PMID: 29196041]
[129]
Mohsenifar A, Nazem H, Majdi S. Chitosan-myristate nanogel as an artificial chaperone protects neuroserpin from misfolding. Adv Biomed Res 2016; 5(1): 170.
[http://dx.doi.org/10.4103/2277-9175.190942] [PMID: 27995109]
[130]
Tomalia DA, Reyna LA, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007; 35(1): 61-7.
[http://dx.doi.org/10.1042/BST0350061] [PMID: 17233602]
[131]
Pandita D, Poonia N, Kumar S, Lather V, Madaan K. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 2014; 6(3): 139-50.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[132]
Igartúa DE, Martinez CS, Del V Alonso S, Prieto MJ, Prieto MJ. Combined therapy for alzheimer’s disease: tacrine and pamam dendrimers co-administration reduces the side effects of the drug without modifying its activity. AAPS PharmSciTech 2020; 21(3): 110.
[http://dx.doi.org/10.1208/s12249-020-01652-w] [PMID: 32215751]
[133]
Wang Z, Dong X, Sun Y. Mixed carboxyl and hydrophobic dendrimer surface inhibits amyloid-β fibrillation: new insight from the generation number effect. Langmuir 2019; 35(45): 14681-7.
[http://dx.doi.org/10.1021/acs.langmuir.9b02527] [PMID: 31635460]
[134]
Gothwal A, Singh H, Jain SK, Dutta A, Borah A, Gupta U. Behavioral and biochemical implications of dendrimeric rivastigmine in memory-deficit and alzheimer’s induced rodents. ACS Chem Neurosci 2019; 10(8): 3789-95.
[http://dx.doi.org/10.1021/acschemneuro.9b00286] [PMID: 31257860]
[135]
Huang M, Hu M, Song Q, et al. GM1-modified lipoprotein-like nanoparticle: multifunctional nanoplatform for the combination therapy of alzheimer’s disease. ACS Nano 2015; 9(11): 10801-16.
[http://dx.doi.org/10.1021/acsnano.5b03124] [PMID: 26440073]
[136]
AnjiReddy K, Karpagam S. Hyperbranched cellulose polyester of oral thin film and nanofiber for rapid release of donepezil; preparation and in vivo evaluation. Int J Biol Macromol 2019; 124: 871-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.224] [PMID: 30496855]
[137]
Yao P, Nussler A, Liu L, et al. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol 2007; 47(2): 253-61.
[http://dx.doi.org/10.1016/j.jhep.2007.02.008] [PMID: 17433488]
[138]
Benek O, Korabecny J, Soukup O. A perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol Sci 2020; 41(7): 434-45.
[http://dx.doi.org/10.1016/j.tips.2020.04.008] [PMID: 32448557]
[139]
Wang W, Sun C, Mao L, et al. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci Technol 2016; 56: 21-38.
[http://dx.doi.org/10.1016/j.tifs.2016.07.004]
[140]
Dou Y, Zhao D, Yang F, Tang Y, Chang J. Natural phyto-antioxidant albumin nanoagents to treat advanced Alzheimer’s disease. ACS Appl Mater Interfaces 2021; 13(26): 30373-82.
[http://dx.doi.org/10.1021/acsami.1c07281] [PMID: 34180234]
[141]
Zhang Y, Wang L, Li G, Gao J. Berberine-albumin nanoparticles: Preparation, thermodynamic study and evaluation their protective effects against oxidative stress in primary neuronal cells as a model of Alzheimer’s disease. J Biomed Nanotechnol 2021; 17(6): 1088-97.
[http://dx.doi.org/10.1166/jbn.2021.2995] [PMID: 34167623]
[142]
Shityakov S, Fischer A, Su KP, Hussein AA, Dandekar T, Broscheit J. Novel approach for characterizing propofol binding affinities to serum albumins from different species. ACS Omega 2020; 5(40): 25543-51.
[http://dx.doi.org/10.1021/acsomega.0c01295] [PMID: 33073080]
[143]
Karimi M, Bahrami S, Ravari SB, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv 2016; 13(11): 1609-23.
[http://dx.doi.org/10.1080/17425247.2016.1193149] [PMID: 27216915]
[144]
Zhou N, Yuan M, Gao Y, Li D, Yang D. Semiconductor quantum dots. ACS Nano 2016; 10(4): 4154-63.
[http://dx.doi.org/10.1021/acsnano.5b07400] [PMID: 26972554]
[145]
Zhou S, Xu H, Gan W, Yuan Q. Graphene quantum dots: Recent progress in preparation and fluorescence sensing applications. RSC Advances 2016; 6(112): 110775-88.
[http://dx.doi.org/10.1039/C6RA24349E]
[146]
Tak K, Sharma R, Dave V, Jain S, Sharma S. Clitoria ternatea mediated synthesis of graphene quantum dots for the treatment of Alzheimer’s disease. ACS Chem Neurosci 2020; 11(22): 3741-8.
[http://dx.doi.org/10.1021/acschemneuro.0c00273] [PMID: 33119989]
[147]
Liu Y, Xu LP, Dai W, Dong H, Wen Y, Zhang X. Graphene quantum dots for the inhibition of β amyloid aggregation. Nanoscale 2015; 7(45): 19060-5.
[http://dx.doi.org/10.1039/C5NR06282A] [PMID: 26515666]
[148]
Liu Y, Xu LP, Wang Q, Yang B, Zhang X. Synergistic inhibitory effect of gqds–tramiprosate covalent binding on amyloid aggregation. ACS Chem Neurosci 2018; 9(4): 817-23.
[http://dx.doi.org/10.1021/acschemneuro.7b00439] [PMID: 29244487]
[149]
Shityakov S, Pastorin G, Foerster C, Salvador E. Blood–brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate. Int J Nanomedicine 2015; 10: 1703-13.
[http://dx.doi.org/10.2147/IJN.S68429] [PMID: 25784800]
[150]
You Y, Wang N, He L, et al. Designing dual-functionalized carbon nanotubes with high blood–brain-barrier permeability for precise orthotopic glioma therapy. Dalton Trans 2019; 48(5): 1569-73.
[http://dx.doi.org/10.1039/C8DT03948H] [PMID: 30499579]
[151]
Kafa H, Wang JTW, Rubio N, et al. Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood–brain barrier in vitro and in vivo. J Control Release 2016; 225: 217-29.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.031] [PMID: 26809004]
[152]
Liliom H, Lajer P, Bérces Z, et al. Comparing the effects of uncoated nanostructured surfaces on primary neurons and astrocytes. J Biomed Mater Res A 2019; 107(10): 2350-9.
[http://dx.doi.org/10.1002/jbm.a.36743] [PMID: 31161618]
[153]
Yoo CJ, Lee U, Kim YJ, Park J, Yoo YM. Dose-dependent cytotoxicity of gold nanoparticles on human neural progenitor cells and rat brain. J Nanosci Nanotechnol 2019; 19(9): 5441-7.
[http://dx.doi.org/10.1166/jnn.2019.16547] [PMID: 30961694]
[154]
Song B, Zhang Y, Liu J, Feng X, Zhou T, Shao L. Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms. Beilstein J Nanotechnol 2016; 7(1): 645-54.
[http://dx.doi.org/10.3762/bjnano.7.57] [PMID: 27335754]
[155]
Bittner A, Ducray AD, Stoffel MH, Felser A, Mevissen M. Polymer-coated nanoparticles and their effects on mitochondrial function in brain endothelial cells. Toxicol Appl Pharmacol 2019; 385: 114800.
[http://dx.doi.org/10.1016/j.taap.2019.114800] [PMID: 31678605]
[156]
Wang Z, Zhang C, Liu X, Huang F, Wang Z, Yan B. Oral intake of ZrO2 nanoparticles by pregnant mice results in nanoparticles’ deposition in fetal brains. Ecotoxicol Environ Saf 2020; 202: 110884.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110884] [PMID: 32563952]
[157]
Vijayan V, Uthaman S, Park IK. Cell membrane-camouflaged nanoparticles: A promising biomimetic strategy for cancer theragnostics. Polymers (Basel) 2018; 10(9): 983.
[http://dx.doi.org/10.3390/polym10090983] [PMID: 30960908]
[158]
Ma Y, Mou Q, Wang D, Zhu X, Yan D. Dendritic polymers for theranostics. Theranostics 2016; 6(7): 930-47.
[http://dx.doi.org/10.7150/thno.14855] [PMID: 27217829]
[159]
Grimaudo MA, Concheiro A, Alvarez-Lorenzo C. Nanogels for regenerative medicine. J Control Release 2019; 313: 148-60.
[http://dx.doi.org/10.1016/j.jconrel.2019.09.015] [PMID: 31629040]
[160]
Liu N, Tang M. Toxicity of different types of quantum dots to mammalian cells in vitro: An update review. J Hazard Mater 2020; 399(43): 122606.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122606] [PMID: 32516645]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy