[6]
Mascaretti OA. Bacterial Pathogenesis. In: Mascaretti OA, Ed. Bacteria versus Antibacterial Agents American Society for Microbiology (ASM). Washington: USA 2014.
[13]
Lima MFP, Borges MA, Parente RS, Júnior RCV, De Oliveira ME. Staphylococcus aureus and hospital infections. Revisão De Literatura 2015; 21(1): 32-9.
[26]
Kaatz GW, McAleese F, Seo SM. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother 2005; 49(5): 1857-64.
[28]
Poole K. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 2005; 56(1): 20-51.
[42]
Litvinov VP, Roman S V, Dyachenko VD. Pyridopyridines. Russ Chem Rev 2001; 70: 299-320.
[57]
Blum CA, Caldwell T, Zheng X, et al. Discovery of novel 6,6-heterocycles as transient receptor potential vanilloid (TRPV1) antagonists. J Med Chem 2010; 53(8): 3330-48.
[62]
Holmes NE, Lindsay Grayson M. Sulfonamides Kucers the use of antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs. (7th Ed.), 2017.
[63]
Holt J, Krieg N, Sneath P, Staley J. Williams S Bergey’s Manual of Determinative Microbiology. (9th Ed..), Balt.: Lippincot, Williams Wilkins 1994.
[64]
Karl-Heinz Schleifer JAB. Family VIII Staphylococcaceae Fam Nov Bergey’s manual of systematic bacteriology. (2nd Ed..), 2009.
[69]
Kloos WE, Lambe D. Staphylococcus. In: Ballows A, Hausler WD, Jr, Hermann KL, Isenberg HD, Shadomy HJ, Eds. Manual of Clinical Microbiology. (5th ed.), Washington, DC: American Society for Microbiology 1991.
[71]
Trabulsi LR, Alterthum F. Microbiology. (4th Ed.), Publisher: Atheneu New York 2005.
[73]
Howard JB, Kloos WE. Staphylococci. In: Carson D, Birchor S, Eds. Clinical and Pathogenic Microbiology Missouri. Mosby Co: St Louis 1987.
[77]
Waldvogel FA. Staphylococcus aureus (Including Toxic Shock Syndrome). In: Mandell GL, Douglas RG, Bennett JE, Eds. Principles and Practice of Infectious Diseases. New York, Edinburgh, London, Melbourne: Churchill Livingstone 1990.
[78]
Koneman EW, et al. Microbiological Diagnosis: Text and Color Atlas. (6th ed.), Rio de Janeiro: Guanabara Koogan 2008.
[83]
Iaria ST, Furlanetto SM, Campos ML. Staphylococcus aureus research enterotoxigenic in the root handlers food in hospital, São Paulo, 1976. Rev Saude Paul 1980.
[118]
Silbergeld EK, Graham J, Price LB. Industrial food animal production, antimicrobial resistance, and human health. Annual Review of Public Health. 2008.
[129]
Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2000; 44(6): 1549-55.
[141]
Fritsche TR, Castanheira M, Miller GH, Jones RN, Armstrong ES. Detection of methyltransferases conferring high-level resistance to aminoglycosides in enterobacteriaceae from Europe, North America, and Latin America. Antimicrob Agents Chemother 2008; 52(5): 1843-5.
[177]
McMurry L, Petrucci RE, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracyline resistance determinants in Escherichia coli. Proc Natl Acad Sci USA 1980; 77(7): 3974-7.
[193]
Baysarowich J, Koteva K, Hughes DW, et al. Rifamycin antibiotic resistance by adp-ribosylation: Structure and diversity of arr. Proc Natl Acad Sci USA 2008; 105(12): 4886-91.
[212]
Koronakis V, Eswaran J, Hughes C. Structure and function of TolC: The bacterial exit duct for proteins and drugs. Annu Rev Biochem 2004; 73: 467-89.
[220]
Koronakis V, Hughes C. Synthesis, maturation and export of the E. coli hemolysin. Med Microbiol Immunol 1996; 185(2): 65-71.
[221]
Binet R, Létoffé S, Ghigo JM, Delepelaire P, Wandersman C. Protein Secretion by Gram-Negative Bacterial ABC exporters-a review. Gene. 1997.
[233]
Saier J. SMR-type multidrug resistance pumps. Curr Opin Drug Discov Devel 2001.
[237]
Daury L, Orange F, Taveau JC, et al. Tripartite assembly of RND multidrug efflux pumps. Nat Commun 2016.
[241]
Handzlik J, Matys A, Kieć-Kononowicz K. Recent advances in multi-drug resistance (MDR) efflux pump inhibitors of grampositive bacteria S. aureus. Antibiotics 2(1): 28-45.
[248]
Naroditskaya V, Schlosser MJ, Fang NY, Lewis K. An E. coli gene emrd is involved in adaptation to low energy shock. Biochem Biophys Res Commun 1993; 196(2): 803-9.
[254]
Li J, Wehmeyer G, Lovell S, Battaile KP, Egan SM. 1.65 Å resolution structure of the arac-family transcriptional activator toxt from Vibrio Cholerae. Acta Crystallogr F Struct Biol Commun 2016; 72(Pt 9): 726-31.
[261]
Gill MJ, Brenwald NP, Wise R. Identification of an efflux pump gene, pmra, associated with fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 1999; 43(1): 187-9.
[264]
Krämer R. Functional Principles of Solute Transport Systems: Concepts and Perspectives. BBA - Bioenergetics 1994.
[271]
Li XZ, Livermore DM, Nikaido H. Role of Efflux Pump(s) in Intrinsic Resistance of Pseudomonas aeruginosa: Resistance to Tetracycline, Chloramphenicol, and Norfloxacin. Antimicrob Agents Chemother 1994.
[285]
Saurin W, Hofnung M, Dassa E. Getting in or out: Early segregation between importers and exporters in the evolution of ATP-Binding Cassette (ABC) transporters. J Mol Evol 1999; 48(1): 22-41.
[286]
Köhler T, Pechère JC, Plésiat P. Bacterial antibiotic efflux systems of medical importance. CMLS. Cell Mol Life Sci 1999; 56: 771-8.
[357]
Fisher LM, Heaton VJ. Dual activity of fluoroquinolones against Streptococcus Pneumoniae. J Antimicrob Chemother 2003; 51(2): 463-4.
[361]
Sum PE, Petersen P. Synthesis and structure-activity relationship of novel glycylcycline derivatives leading to the discovery of GAR-936. Bioorganic Med Chem Lett 1999; 9(10): 1459-62.
[368]
McMurry LM, Levy S. Tetracycline Resistance in Gram-Positive Bacteria. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI, Eds. Gram-Positive Pathogens;. American Society for Microbiology. Washington, D.C. 2000.
[390]
Ashima KB, Mohanty P. Bacterial efflux pumps involved in multidrug resistance and their inhibitors: Rejuvinating the antimicrobial chemotherapy. Recent Pat Antiinfect Drug Discov 2012; 7(1): 73-89.
[432]
Tintino SR, Morais-Tintino CD, Campina FF, Costa M. Tannic acid affects the phenotype of Staphylococcus aureus resistant to tetracycline and erythromycin by inhibition of efflux pumps. Bioorg Chem 2017; 74: 197-200.
[462]
Neyfakh AA, Bidnenko VE, Lan Bo Chen. Efflux-mediated multidrug resistance in Bacillus subtilis: Similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci USA 1991; 88(11): 4781-5.
[466]
Limaverde PW, Campina FF, da Cunha FAB, Crispim FD, Figueredo FG, Lima LF. Datiane de M. Oliveira-Tintino, C.; de Matos, Y.M.L.S.; Morais-Braga, M.F.B.; Menezes, I.R.A.; Balbino, V.Q.; Coutinho, H.D.M.; Siqueira-Júnior, J.P.; Almeida, J.R.G.S.; Tintino, S.R. Inhibition of the TetK efflux-pump by the essential oil of Chenopodium ambrosioides L. and α-Terpinene against Staphylococcus aureus IS-58. Food Chem Toxicol 2017.
[489]
Sabnis RW. Handbook of Biological Dyes and Stains: Synthesisand Industrial Applications. 2010.
[505]
Reissert A. On di-γ‐amidopropyl) acetic acid (Diamino.1.7.Heptanemethyl Acid.4) and its internal condensation product, the octohydro.1.8.Naphtyridine. Reports of the Dtsch Chem Society 1893.
[506]
Bobrański B, Sucharda E. On a synthesis of 1.5-naphthyridine. Reports of the German Chem Society (AB Ser 1927)
[507]
Koller G. On 1.8-Naphthyridine. Reports by Dtsch Chem Society (AB Ser 1927).
[508]
Koller G. On 1.8-Naphthyridine and its derivatives (Preliminary communication). Reports of the Dtsch Chem Gesellschaft (AB Ser 1927).
[509]
Koller G. On a Synthesis of derivatives of 1.8-naphthyridine. Reports of the Dtsch Chem Gesellschaft (AB Ser1927).
[510]
Bachand B. Antiviral Methods Using [1, 8] Naphthyridine Derivatives. US patent 6,340,690, 2002.
[511]
Domagala JM, Mich TF, Nichols JB. Naphthyridine antibacterial agents. US patent 5,281,612, 1994.
[514]
Srivastava SK, Jaggi M, Singh AT, et al. Anticancer and anti-inflammatory activities of 1,8-Naphthyridine-3-Carboxamide derivatives. Bioorganic Med Chem Lett 2007; 17(23): 6660-4.
[522]
Huang X, Zhang A, Chen D, Jia Z, Li X. 4-Substituted 4-(1H-1,2,3-Triazol-1-Yl)Piperidine: Novel C7 moieties of fluoroquinolones as antibacterial agents. Bioorganic Med Chem Lett 2010; 20(9): 2859-63.
[523]
Kondo H, Taguchi M, Inoue Y, Sakamoto F, Tsukamoto G. Synthesis and Antibacterial Activity of Thiazolo-, Oxazolo-, and Imidazolo[3,2-a][l,8]Naphthyridinecarboxylic Acids. J Med Chem 1990.
[525]
Tani J, Mushika Y, Yamaguchi T. Studies on biologically active halogenated compounds. IV. Synthesis and antibacterial activity of fluorinated quinoline derivatives. Chem Pharm Bull 1982; 30(10): 3530-43.
[526]
Suzuki N. Synthesis of Antimicrobial Agents. V. Synthesis and antimicrobial activities of some heterocyclic condensed 1,8-naphthyridine derivatives. Chem Pharm Bull 1980; 28(3): 761-8.
[540]
Gao LZ, Li T, Yu XS, Huang WL, Zhao H, Hu GQ. [Design, synthesis, antibacterial and anti-cell proliferation activities of [1,2,4]triazino[3,4-h] [1,8]naphthyridine-8-one-7-carboxylic acid derivatives]. Yao Xue Xue Bao 2015.
[543]
Oh YS, Cho SH. Syntheses of new pyridonecarboxylic acid derivatives containing 1- or 2-naohthyl substituents at N-1 and their anti-HIV-RT activities. J Heterocycl Chem 1998.
[547]
Kuo SC, Tsai SY, Li HT, Wu CH, Ishii K, Nakamura H. Studies on Heterocyclic Compounds. IX.1) Synthesis and antiallergic activity of Furo[2,3-b][1,8]Naphthyridine-3,4(2H,9H)-Diones and 4H-Furo[2,3-d]Pyrido[1,2-a]-Pyrimidine-3,4(2H)-Diones. Chem Pharm Bull 1988; 36(11): 4403-7.
[567]
Trefouel J, Nitti F, Bovet D. Action of P-aminophenylsulfamide in experimental streptococcus infections of mice and rabbits. C R Seances Soc Biol Fil 1935.
[568]
Fouts JR, Kamm JJ, Brodie BB. Enzymatic reduction of prontosil and other azo dyes. J Pharmacol Exp Ther 1957; 120(3): 291-300.
[573]
Woods DD. The Relation of P-Aminobenzoic acid to the mechanism of the action of sulphanilamide. Br J Exp Pathol 1940; 21: 74.
[576]
casini A, Scozzafava A, Mastrolorenzo A, Supuran C. Sulfonamides and sulfonylated derivatives as anticancer agents. Curr Cancer Drug Targets 2005; (1): 55-75.
[578]
Forster WG. Treatment of trachoma with sulfanilamide. Arch Ophthalmol 1939; 21(4): 577-80.
[589]
Shoaib Ahmad Shah S, Rivera G, Ashfaq M. Recent Advances in medicinal chemistry of sulfonamides. rational design as antitumoral, anti-bacterial and anti-inflammatory agents. MiniReviews Med Chem 2012; 13(1): 70-86.
[591]
Oliveira-Tintino CD de M, Tintino SR, Muniz DF, et al. Do 1,8-naphthyridine sulfonamides possess an inhibitory action against tet(k) and msra efflux pumps in multiresistant Staphylococcus aureus strains? Microb Pathog 2020; 147.
[592]
Oliveira-Tintino CD de M, Tintino SR, Muniz DF. Chemical synthesis, molecular docking and mepa efflux pump inhibitory effect by 1,8-naphthyridines sulfonamides. Eur J Pharm Sci 2021; 160.