Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Review on the Developments of Benzothiazole-containing Antimicrobial Agents

Author(s): Michelyne Haroun*

Volume 22, Issue 32, 2022

Published on: 21 December, 2022

Page: [2630 - 2659] Pages: 30

DOI: 10.2174/1568026623666221207161752

Price: $65

Open Access Journals Promotions 2
Abstract

The infectious diseases caused by bacterial resistance to antibiotics constitute an increasing threat to human health on a global scale. An increasing number of infections, including tuberculosis, pneumonia, salmonellosis and gonorrhea, are becoming progressively challenging to cure owing to the ineffectiveness of current clinically used antibiotics and presents a serious health threat worldwide in medical community. The major concern of this global health threat is the ability of microorganisms to develop one or several mechanisms of resistance to antibiotics, making them inefficient to therapeutic treatment. The quest for discovering novel scaffold with antimicrobial property is particularly in great need to face future challenges in hospital and healthcare settings. Hence, the development of benzothiazoles is of considerable interest to medicinal chemists. Benzothiazole, being part of an important class of heterocyclic scaffold retains a wide spectrum of various attractive pharmacological activities. Antibiotic resistance represents an increasing burden comprising medical cost, hospital stay and mortality. Several derivatives containing a benzothiazole scaffold, reported in the literature, were found to display remarkable potencies towards diverse Grampositive and Gram-negative bacterial pathogens. The principal focus concerns the antibacterial potential of benzothiazole-based derivatives as antimicrobial agents interacting with targets in bacterial pathogens. In this review, we also disclose the significance of the benzothiazole moiety in the discovery of new antibacterial compounds, the potential of benzothiazole-based derivatives in the case of resistant bacterial strains, optimization of their antibacterial activity, and their future perspectives. The structure-activity relationship study and the mode of action of the title derivatives are highlighted too.

Keywords: Antibacterial, Benzothiazole, Structure-activity relationship, Gram-positive, Gram-negative bacteria, Bactericidal effect.

Graphical Abstract
[1]
Saha, M.; Sarkar, A. Review on multiple facets of drug resistance: a rising challenge in the 21st century. J. Xenobiot., 2021, 11(4), 197-214.
[http://dx.doi.org/10.3390/jox11040013] [PMID: 34940513]
[2]
Ventola, C.L. The antibiotic resistance crisis: part 1: causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[3]
Dadgostar, P. Antimicrobial resistance: implications and costs. Infect. Drug Resist., 2019, 12, 3903-3910.
[http://dx.doi.org/10.2147/IDR.S234610] [PMID: 31908502]
[4]
Chaudhuri, S.; Ghosh, A.; Chattopadhyay, S.K. Green synthetic approaches for medium ring-sized heterocycles of biological and pharmaceutical interest. In: Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier: Amsterdam, 2021; pp. 617-653.
[http://dx.doi.org/10.1016/B978-0-12-820792-5.00004-4]
[5]
Sharma, P.C.; Sinhmar, A.; Sharma, A.; Rajak, H.; Pathak, D.P. Medicinal significance of benzothiazole scaffold: an insight view. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 240-266.
[http://dx.doi.org/10.3109/14756366.2012.720572] [PMID: 23030043]
[6]
Kok, S.H.L.; Gambari, R.; Chui, C.H.; Yuen, M.C.W.; Lin, E.; Wong, R.S.M.; Lau, F.Y.; Cheng, G.Y.M.; Lam, W.S.; Chan, S.H.; Lam, K.H.; Cheng, C.H.; Lai, P.B.; Yu, M.W.; Cheung, F.; Tang, J.C.; Chan, A.S. Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. Bioorg. Med. Chem., 2008, 16(7), 3626-3631.
[http://dx.doi.org/10.1016/j.bmc.2008.02.005] [PMID: 18295491]
[7]
Huang, S.T.; Hsei, I.J.; Chen, C. Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles. Bioorg. Med. Chem., 2006, 14(17), 6106-6119.
[http://dx.doi.org/10.1016/j.bmc.2006.05.007] [PMID: 16714116]
[8]
Ismail, M.A.H.; Tratrat, C.; Haroun, M.G. Molecular modelling design, synthesis and cytotoxic evaluation of certain substituted 2-(3,4,5-triacetoxybenzoylamino)benzo[d]thiazole and 2-(galloylami-no)benzo[d]thiazole derivatives having potential topoisomerase-I inhibitory activity. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1331-1345.
[http://dx.doi.org/10.3109/14756366.2012.716835] [PMID: 22957723]
[9]
Irfan, A.; Batool, F.; Zahra Naqvi, S.A.; Islam, A.; Osman, S.M.; Nocentini, A.; Alissa, S.A.; Supuran, C.T. Benzothiazole derivatives as anticancer agents. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 265-279.
[http://dx.doi.org/10.1080/14756366.2019.1698036] [PMID: 31790602]
[10]
Su, X.; Vicker, N.; Ganeshapillai, D.; Smith, A.; Purohit, A.; Reed, M.J.; Potter, B.V.L. Benzothiazole derivatives as novel inhibitors of human 11β-hydroxysteroid dehydrogenase type 1. Mol. Cell. Endocrinol., 2006, 248(1-2), 214-217.
[http://dx.doi.org/10.1016/j.mce.2005.10.022] [PMID: 16325333]
[11]
Moreno-Díaz, H.; Villalobos-Molina, R.; Ortiz-Andrade, R.; Díaz-Coutiño, D.; Medina-Franco, J.L.; Webster, S.P.; Binnie, M.; Estrada-Soto, S.; Ibarra-Barajas, M.; León-Rivera, I.; Navarrete-Vázquez, G. Antidiabetic activity of N-(6-substituted-1,3-benzothiazol-2-yl)benzenesulfonamides. Bioorg. Med. Chem. Lett., 2008, 18(9), 2871-2877.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.086] [PMID: 18424136]
[12]
Haroun, M. Novel hybrids of pyrazolidinedione and benzothiazole as TZD analogues. rationale design, synthesis and in vivo anti-diabetic evaluation. Med. Chem., 2019, 15(6), 624-633.
[http://dx.doi.org/10.2174/1573406415666190515093657] [PMID: 31113352]
[13]
Haroun, M. In silico Design, Synthesis and evaluation of novel series of benzothiazole- based pyrazolidinediones as potent hypoglycemic Agents. Med. Chem., 2020, 16(6), 812-825.
[http://dx.doi.org/10.2174/1573406416666191227113716] [PMID: 31880249]
[14]
Haroun, M.; Petrou, A.; Tratrat, C.; Kositsi, K.; Gavalas, A.; Geronikaki, A.; Venugopala, K.N.; Sreeharsha, N. Discovery of benzothiazole-based thiazolidinones as potential anti-inflammatory agents: anti-inflammatory activity, soybean lipoxygenase inhibition effect and molecular docking studies. SAR QSAR Environ. Res., 2022, 33(6), 485-497.
[http://dx.doi.org/10.1080/1062936X.2022.2084772] [PMID: 35703013]
[15]
Doğruer, D.S.; Ünlü, S.; Şahin, M.F.; Yqilada, E. Anti-nociceptive and anti-inflammatory activity of some (2-benzoxazolone-3-yl and 2-benzothiazolone-3-yl) acetic acid derivatives. Farmaco, 1998, 53(1), 80-84.
[http://dx.doi.org/10.1016/S0014-827X(97)00017-7] [PMID: 9543729]
[16]
Venugopala, K.N.; Khedr, M.A.; Pillay, M.; Nayak, S.K.; Chandrashekharappa, S.; Aldhubiab, B.E.; Harsha, S.; Attimard, M.; Odhav, B. Benzothiazole analogs as potential anti-TB agents: computational input and molecular dynamics. J. Biomol. Struct. Dyn., 2019, 37(7), 1830-1842.
[http://dx.doi.org/10.1080/07391102.2018.1470035] [PMID: 29697293]
[17]
Venugopala, K.N.; Chandrashekharappa, S.; Pillay, M.; Bhandary, S.; Kandeel, M.; Mahomoodally, F.M.; Morsy, M.A.; Chopra, D.; Aldhubiab, B.E.; Attimarad, M.; Alwassil, O.I.; Harsha, S.; Mlisana, K.; Odhav, B. Synthesis and structural elucidation of novel benzothiazole derivatives as anti-tubercular agents: In-silico screening for possible target identification. Med. Chem., 2019, 15(3), 311-326.
[http://dx.doi.org/10.2174/1573406414666180703121815] [PMID: 29968540]
[18]
Moodley, R.; Mashaba, C.; Rakodi, G.; Ncube, N.; Maphoru, M.; Balogun, M.; Jordan, A.; Warner, D.; Khan, R.; Tukulula, M. New quinoline-urea-benzothiazole hybrids as promising antitubercular agents: synthesis, in vitro antitubercular activity, cytotoxicity studies, and in silico ADME profiling. Pharmaceuticals (Basel), 2022, 15(5), 576.
[http://dx.doi.org/10.3390/ph15050576] [PMID: 35631402]
[19]
Ke, S.; Wei, Y.; Yang, Z.; Wang, K.; Liang, Y.; Shi, L. Novel cycloalkylthiophene-imine derivatives bearing benzothiazole scaffold: Synthesis, characterization and antiviral activity evaluation. Bioorg. Med. Chem. Lett., 2013, 23(18), 5131-5134.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.023] [PMID: 23920438]
[20]
Vicini, P.; Geronikaki, A.; Incerti, M.; Busonera, B.; Poni, G.; Cabras, C.A.; La Colla, P. Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg. Med. Chem., 2003, 11(22), 4785-4789.
[http://dx.doi.org/10.1016/S0968-0896(03)00493-0] [PMID: 14556794]
[21]
Nagarajan, S.R.; De Crescenzo, G.A.; Getman, D.P.; Lu, H.F.; Sikorski, J.A.; Walker, J.L.; McDonald, J.J.; Houseman, K.A.; Kocan, G.P.; Kishore, N.; Mehta, P.P.; Funkes-Shippy, C.L.; Blystone, L. Discovery of novel benzothiazolesulfonamides as potent inhibitors of HIV-1 protease. Bioorg. Med. Chem., 2003, 11(22), 4769-4777.
[http://dx.doi.org/10.1016/j.bmc.2003.07.001] [PMID: 14556792]
[22]
Haroun, M.; Tratrat, C.; Petrou, A.; Geronikaki, A.; Ivanov, M.; Ciric, A.; Sokovic, M. 2-Aryl-3-(6-trifluoromethoxy)benzo[d]thiazole-based thiazolidinone hybrids as potential anti-infective agents: Synthesis, biological evaluation and molecular docking studies. Bioorg. Med. Chem. Lett., 2021, 32, 127718.
[http://dx.doi.org/10.1016/j.bmcl.2020.127718] [PMID: 33253880]
[23]
Haroun, M.; Tratrat, C.; Kositzi, K.; Tsolaki, E.; Petrou, A.; Aldhubiab, B.; Attimarad, M.; Harsha, S.; Geronikaki, A.; Venugopala, K.N.; Elsewedy, H.S.; Sokovic, M.; Glamoclija, J.; Ciric, A. New benzothiazole-based thiazolidinones as potent antimicrobial agents. Design, synthesis and biological evaluation. Curr. Top. Med. Chem., 2018, 18(1), 75-87.
[http://dx.doi.org/10.2174/1568026618666180206101814] [PMID: 29412109]
[24]
Tratrat, C. novel thiazole-based thiazolidinones as potent anti-infective agents: in silico pass and toxicity prediction, synthesis, biological evaluation and molecular modelling. Comb. Chem. High Throughput Screen., 2020, 23(2), 126-140.
[http://dx.doi.org/10.2174/1386207323666200127115238] [PMID: 31985370]
[25]
Herrera Cano, N.; Ballari, M.S.; López, A.G.; Santiago, A.N. New synthesis and biological evaluation of benzothiazole derivates as antifungal agents. J. Agric. Food Chem., 2015, 63(14), 3681-3686.
[http://dx.doi.org/10.1021/acs.jafc.5b00150] [PMID: 25797910]
[26]
Liu, Y.; Wang, Y.; Dong, G.; Zhang, Y.; Wu, S.; Miao, Z.; Yao, J.; Zhang, W.; Sheng, C. Novel benzothiazole derivatives with a broad antifungal spectrum: design, synthesis and structure-activity relationships. MedChemComm, 2013, 4(12), 1551-1561.
[http://dx.doi.org/10.1039/c3md00215b]
[27]
Jimonet, P.; Audiau, F.; Barreau, M.; Blanchard, J.C.; Boireau, A.; Bour, Y.; Coléno, M.A.; Doble, A.; Doerflinger, G.; Do Huu, C.; Donat, M.H.; Duchesne, J.M.; Ganil, P.; Guérémy, C.; Honoré, E.; Just, B.; Kerphirique, R.; Gontier, S.; Hubert, P.; Laduron, P.M.; Le Blevec, J.; Meunier, M.; Miquet, J.M.; Nemecek, C.; Pasquet, M.; Piot, O.; Pratt, J.; Rataud, J.; Reibaud, M.; Stutzmann, J-M.; Mignani, S. Riluzole series. Synthesis and in vivo “antiglutamate” activity of 6-substituted-2-benzothiazolamines and 3-substituted-2-imino-benzothiazolines. J. Med. Chem., 1999, 42(15), 2828-2843.
[http://dx.doi.org/10.1021/jm980202u] [PMID: 10425092]
[28]
Benazzouz, A.; Boraud, T.; Dubédat, P.; Boireau, A.; Stutzmann, J.M.; Gross, C. Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study. Eur. J. Pharmacol., 1995, 284(3), 299-307.
[http://dx.doi.org/10.1016/0014-2999(95)00362-O] [PMID: 8666012]
[29]
Neres, J.; Brewer, M.L.; Ratier, L.; Botti, H.; Buschiazzo, A.; Edwards, P.N.; Mortenson, P.N.; Charlton, M.H.; Alzari, P.M.; Frasch, A.C.; Bryce, R.A.; Douglas, K.T. Discovery of novel inhibitors of Trypanosoma cruzi trans-sialidase from in silico screening. Bioorg. Med. Chem. Lett., 2009, 19(3), 589-596.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.065] [PMID: 19144516]
[30]
Sreenivasa, G.; Jayachandran, E.; Shivakumar, B.; Jayaraj, K.; Vijay, K. Synthesis of bioactive molecule fluoro benzothiazole comprising potent heterocyclic moieties for anthelmintic activity. Arch. Pharm. Sci. Res, 2009, 1, 150-157.
[31]
Gao, X.; Liu, J.; Zuo, X.; Feng, X.; Gao, Y. Recent advances in synthesis of benzothiazole compounds related to green chemistry. Molecules, 2020, 25(7), 1675.
[http://dx.doi.org/10.3390/molecules25071675] [PMID: 32260500]
[32]
Maddila, S.; Gorle, S.; Seshadri, N.; Lavanya, P.; Jonnalagadda, S.B. Synthesis, antibacterial and antifungal activity of novel benzothiazole pyrimidine derivatives. Arab. J. Chem., 2016, 9(5), 681-687.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.003]
[33]
Abood, Z.H.; Qabel, H.A.; Ali, H.R. Microwave synthesis of 2,3-disubstituted-5-methyl-1,3-imidazolidines-4-one bearing benzothiazole moiety and elementarily assessment of their antibacterial action. J. Phys. Conf. Ser., 2018, 1032, 012058.
[http://dx.doi.org/10.1088/1742-6596/1032/1/012058]
[34]
Sharma, P.C.; Padwal, S.; Saini, A.; Bansal, K. Synthesis, characterization and antimicrobial evaluation of benzimidazole clubbed benzothiazole derivatives. Chem. Biol. Lett., 2017, 4, 63-68.
[35]
Catalano, A.; Carocci, A.; Defrenza, I.; Muraglia, M.; Carrieri, A.; Van Bambeke, F.; Rosato, A.; Corbo, F.; Franchini, C. 2-Aminobenzothiazole derivatives: Search for new antifungal agents. Eur. J. Med. Chem., 2013, 64, 357-364.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.064] [PMID: 23644218]
[36]
Goya-Jorge, E.; Abdmouleh, F.; Carpio, L.E.; Giner, R.M.; Sylla-Iyarreta Veitía, M. Discovery of 2-aryl and 2-pyridinylbenzo-thiazoles endowed with antimicrobial and aryl hydrocarbon receptor agonistic activities. Eur. J. Pharm. Sci., 2020, 151, 105386.
[http://dx.doi.org/10.1016/j.ejps.2020.105386] [PMID: 32470576]
[37]
Bandyopadhyay, P.; Sathe, M.; Ponmariappan, S.; Sharma, A.; Sharma, P.; Srivastava, A.K.; Kaushik, M.P. Exploration of in vitro time point quantitative evaluation of newly synthesized benzimidazole and benzothiazole derivatives as potential antibacterial agents. Bioorg. Med. Chem. Lett., 2011, 21(24), 7306-7309.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.034] [PMID: 22047695]
[38]
Bait, S.; Shinde, S.; Adivarekar, R.; Sekar, N. A study on multifunctional protein fibre with UV protection, moth repellency and antibacterial properties using ESIPT core containing benzimidazole and benzothiazole based functional acid azo dyes. J. Indian Chem. Soc., 2021, 98(12), 100236.
[http://dx.doi.org/10.1016/j.jics.2021.100236]
[39]
Wang, Y.; Zhou, R.; Sun, N.; He, M.; Wu, Y.; Xue, W. Synthesis and antibacterial activity of novel 1,4‐pentadien‐3‐one derivatives bearing a benzothiazole moiety. J. Heterocycl. Chem., 2022, 59(3), 533-542.
[http://dx.doi.org/10.1002/jhet.4399]
[40]
Morsy, M.A.; Ali, E.M.; Kandeel, M.; Venugopala, K.N.; Nair, A.B.; Greish, K.; El-Daly, M. Screening and molecular docking of novel benzothiazole derivatives as potential antimicrobial agents. Antibiotics (Basel), 2020, 9(5), 221.
[http://dx.doi.org/10.3390/antibiotics9050221] [PMID: 32365587]
[41]
Kousaxidis, A.; Kovacikova, L.; Nicolaou, I.; Stefek, M.; Geronikaki, A. Non-acidic bifunctional benzothiazole-based thiazolidinones with antimicrobial and aldose reductase inhibitory activity as a promising therapeutic strategy for sepsis. Med. Chem. Res., 2021, 30(10), 1837-1848.
[http://dx.doi.org/10.1007/s00044-021-02778-7] [PMID: 34366640]
[42]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[43]
Chazin, E.L.; Terra, L.; Moor, L.; Sanches, P.; Pinto, L.; Martins, T.; de Souza, M.; Gomes, C.; Montenegro, R.; Novais, J. 1, 3-benzoxathiol-2-one and 1, 3-benzothiazole compounds as potential anticancer and antimicrobial agents. Rev. Virtual Quím., 2020, 12, 1586-1598.
[http://dx.doi.org/10.21577/1984-6835.20200125]
[44]
Pawar, S.J.; Kale, A.; Zori, P.; Dorugade, R. Synthesis, molecular docking and antimicrobial evaluation of some benzothiazoles. Res. Square, 2021, 2021, 1-26.
[45]
Maliyappa, M.R.; Keshavayya, J.; Nazrulla, M.A.; Sudhanva, M.S.; Rangappa, S. Six-substituted benzothiazole based dispersed azo dyes having antipyrine moiety: synthesis, characterization, DFT, antimicrobial, anticancer and molecular docking studies. J. Iran. Chem. Soc., 2022.
[http://dx.doi.org/10.1007/s13738-022-02569-w]
[46]
Khalil, M.; Khalal, Q. Synthesis and characterization of new compounds derived from 2-hydrazinobenzothiazole and evaluated their antibacterial activity. In: Proceedings of the Journal of Physics Conference Series2021, p. 012007.
[47]
Saraswat, P.; Jeyabalan, G.; Hassan, M.Z.; Ahsan, M.J. Design, synthesis and biological evaluation of benzothiazole-thiophene hybrids: A new class of potent antimicrobial agents. Antiinfect. Agents, 2018, 16(1), 57-63.
[http://dx.doi.org/10.2174/2211352515666171124155327]
[48]
Malunavar, S.S.; Prabhala, P.; Sutar, S.M.; Kapavarapu, R.; Mittal, M.K.; Kalkhambkar, R.G. Molecular modeling and in vitro antimicrobial evaluation of some 2-aryl-benzoxazoles/benzothiazole analogues containing alkyl, alkenyl and alkynyl linkages. Chem. Data Collect., 2022, 39, 100876.
[http://dx.doi.org/10.1016/j.cdc.2022.100876]
[49]
Gilani, S.J.; Nagarajan, K.; Dixit, S.P.; Taleuzzaman, M.; Khan, S.A. Benzothiazole incorporated thiazolidin-4-ones and azetidin-2-ones derivatives: Synthesis and in vitro antimicrobial evaluation. Arab. J. Chem., 2016, 9, S1523-S1531.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.004]
[50]
Maddili, S.K.; Li, Z.Z.; Kannekanti, V.K.; Bheemanaboina, R.R.Y.; Tuniki, B.; Tangadanchu, V.K.R.; Zhou, C.H. Azoalkyl ether imidazo[2,1-b]benzothiazoles as potentially antimicrobial agents with novel structural skeleton. Bioorg. Med. Chem. Lett., 2018, 28(14), 2426-2431.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.016] [PMID: 29929884]
[51]
Mohamed, K.S.; Elbialy, E.E.; Fadda, A.A. Synthesis of novel heterocycles comprising benzothiazole moiety and their antimicrobial evaluations. Polycycl. Aromat. Compd., 2021, 2021, 2014535.
[http://dx.doi.org/10.1080/10406638.2021.2014535]
[52]
Aa, F.; Soliman, N.N.; Fekri, A. Convenient route synthesis of some new benzothiazole derivatives and their pharmacological screening as antimicrobial agents. Ann. Adv. Chem., 2017, 1(1), 032-046.
[http://dx.doi.org/10.29328/journal.aac.1001004]
[53]
Bondock, S.; Khalifa, W.; Fadda, A.A. Synthesis and antimicrobial evaluation of some new thiazole, thiazolidinone and thiazoline derivatives starting from 1-chloro-3,4-dihydronaphthalene-2-carbox-aldehyde. Eur. J. Med. Chem., 2007, 42(7), 948-954.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.025] [PMID: 17316908]
[54]
Ouyang, L.; Huang, Y.; Zhao, Y.; He, G.; Xie, Y.; Liu, J.; He, J.; Liu, B.; Wei, Y. Preparation, antibacterial evaluation and preliminary structure-activity relationship (SAR) study of benzothiazol and benzoxazol-2-amine derivatives. Bioorg. Med. Chem. Lett., 2012, 22(9), 3044-3049.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.079] [PMID: 22494615]
[55]
Seenaiah, D.; Reddy, P.R.; Reddy, G.M.; Padmaja, A.; Padmavathi, V.; Siva krishna, N. Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole. Eur. J. Med. Chem., 2014, 77, 1-7.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.050] [PMID: 24607584]
[56]
Zhang, J.; Wei, C.; Li, S.; Hu, D.; Song, B. Discovery of novel bis-sulfoxide derivatives bearing acylhydrazone and benzothiazole moieties as potential antibacterial agents. Pestic. Biochem. Physiol., 2020, 167, 104605.
[http://dx.doi.org/10.1016/j.pestbp.2020.104605] [PMID: 32527439]
[57]
Stella, A.; Segers, K.; De Jonghe, S.; Vanderhoydonck, B.; Rozenski, J.; Anné, J.; Herdewijn, P. Synthesis and antibacterial evaluation of a novel series of 2-(1,2-dihydro-3-oxo-3H-pyrazol-2-yl)benzothiazoles. Chem. Biodivers., 2011, 8(2), 253-265.
[http://dx.doi.org/10.1002/cbdv.201000241] [PMID: 21337499]
[58]
Catalano, A.; Rosato, A.; Salvagno, L.; Iacopetta, D.; Ceramella, J.; Fracchiolla, G.; Sinicropi, M.S.; Franchini, C. Benzothiazole-containing analogues of triclocarban with potent antibacterial activity. Antibiotics (Basel), 2021, 10(7), 803.
[http://dx.doi.org/10.3390/antibiotics10070803] [PMID: 34356724]
[59]
Nehra, N.; Tittal, R.K.; Ghule, V.D. 1,2,3-Triazoles of 8-Hydroxyquinoline and HBT: Synthesis and studies (DNA binding, antimicrobial, molecular docking, ADME, and DFT). ACS Omega, 2021, 6(41), 27089-27100.
[http://dx.doi.org/10.1021/acsomega.1c03668] [PMID: 34693129]
[60]
Zhang, N.; Song, D.; Chen, W.; Zhang, S.; Zhang, P.; Zhang, N.; Ma, S. Modification of 5-methylphenanthridium from benzothiazoles to indoles as potent FtsZ inhibitors: Broadening the antibacterial spectrum toward vancomycin-resistant enterococci. Eur. J. Med. Chem., 2021, 224, 113723.
[http://dx.doi.org/10.1016/j.ejmech.2021.113723] [PMID: 34340044]
[61]
Chaithanya, M.s.; Nagendrappa, G.; Vaidya, V.P.; Rudraswamy, M.S. Synthesis, antibacterial, antifungal and antiinflammatory activities of 4-aryl-2-(4-chlorophenyl)-4H-pyrimido-[2,1-b][1,3]-benzothiazoles. Pharm. Lett., 2013, 5, 94-99.
[62]
Sai Priya, D.; Kini, S.G.; Bhatt, V.G.; Rathi, E.; Muralidharan, A.; Koteshwara, A. Novel schiff’s bases of substituted 2-amino benzothiazoles: Design, synthesis and antimicrobial activity. Indian Drugs, 2018, 55(4), 18-26.
[http://dx.doi.org/10.53879/id.55.04.11219]
[63]
Naaz, F.; Srivastava, R.; Singh, A.; Singh, N.; Verma, R.; Singh, V.K.; Singh, R.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg. Med. Chem., 2018, 26(12), 3414-3428.
[http://dx.doi.org/10.1016/j.bmc.2018.05.015] [PMID: 29778528]
[64]
Kumar, P.; Bhatia, R.; Khanna, R.; Dalal, A.; Kumar, D.; Surain, P.; Kamboj, R.C. Synthesis of some benzothiazoles by developing a new protocol using urea nitrate as a catalyst and their antimicrobial activities. J. Sulfur Chem., 2017, 38, 1334781.
[http://dx.doi.org/10.1080/17415993.2017.1334781]
[65]
Rezki, N.; Aouad, M.R. Green ultrasound-assisted three-component click synthesis of novel 1 H -1,2,3-triazole carrying benzothiazoles and fluorinated-1,2,4-triazole conjugates and their antimicrobial evaluation. Acta Pharm., 2017, 67(3), 309-324.
[http://dx.doi.org/10.1515/acph-2017-0024] [PMID: 28858836]
[66]
Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc., 2008, 3(2), 163-175.
[http://dx.doi.org/10.1038/nprot.2007.521] [PMID: 18274517]
[67]
Varaldo, P.E. Antimicrobial resistance and susceptibility testing: an evergreen topic. J. Antimicrob. Chemother., 2002, 50(1), dkf093.
[http://dx.doi.org/10.1093/jac/dkf093] [PMID: 12095999]
[68]
Zablotskaya, A.; Segal, I.; Geronikaki, A.; Eremkina, T.; Belyakov, S.; Petrova, M.; Shestakova, I.; Zvejniece, L.; Nikolajeva, V. Synthesis, physicochemical characterization, cytotoxicity, antimicrobial, anti-inflammatory and psychotropic activity of new N-[1,3-(benzo)thiazol-2-yl]-ω-[3,4-dihydroisoquinolin-2(1H)-yl]alkanamides. Eur. J. Med. Chem., 2013, 70, 846-856.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.008] [PMID: 24262377]
[69]
Padalkar, V.S.; Borse, B.N.; Gupta, V.D.; Phatangare, K.R.; Patil, V.S.; Sekar, N. Synthesis and antimicrobial activities of novel 2-[substituted-1 H -pyrazol-4-yl] benzothiazoles, benzoxazoles, and benzimidazoles. J. Heterocycl. Chem., 2016, 53(5), 1347-1355.
[http://dx.doi.org/10.1002/jhet.1506]
[70]
Geesi, M.H.; Ouerghi, O.; Dehbi, O.; Riadi, Y. Metal-doped TiO2 nanocatalysts in an MX2/urea mixture for the synthesis of benzothiazoles bearing substituted pyrrolidin-2-ones: Enhanced catalytic performance and antibacterial activity. J. Environ. Chem. Eng., 2021, 9(4), 105344.
[http://dx.doi.org/10.1016/j.jece.2021.105344]
[71]
Palkar, M.; Noolvi, M.; Sankangoud, R.; Maddi, V.; Gadad, A.; Nargund, L.V.G. Synthesis and antibacterial activity of a novel series of 2,3-diaryl-substituted-imidazo(2,1-b)-benzothiazole derivatives. Arch. Pharm. (Weinheim), 2010, 343(6), 353-359.
[http://dx.doi.org/10.1002/ardp.200900260] [PMID: 20397211]
[72]
Wang, X.; Chen, J.; Wang, W.; Jaunarajs, A.; Wang, X. Tryptoline-based benzothiazoles re-sensitize MRSA to β-lactam antibiotics. Bioorg. Med. Chem., 2019, 27(21), 115095.
[http://dx.doi.org/10.1016/j.bmc.2019.115095] [PMID: 31521461]
[73]
Gurram, S.R.; Azam, M.A. Design, Synthesis, antibacterial evaluation and molecular docking studies of some newer baenzothiazole containing aryl and alkaryl hydrazides. Chem. Biodivers., 2021, 18(7), e2100117.
[http://dx.doi.org/10.1002/cbdv.202100117] [PMID: 34050601]
[74]
Kumbhare, R.M.; Dadmal, T.L.; Pamanji, R.; Kosurkar, U.B.; Velatooru, L.R.; Appalanaidu, K.; Khageswara Rao, Y.; Venkateswara Rao, J. Synthesis of novel fluoro 1,2,3-triazole tagged amino bis(benzothiazole) derivatives, their antimicrobial and anticancer activity. Med. Chem. Res., 2014, 23(10), 4404-4413.
[http://dx.doi.org/10.1007/s00044-014-1006-0]
[75]
Kumbhare, M.R.; Nagragu, C. Synthesis and study of the antimicrobial activity of novel tricyclic 2 hpyrimido [2, 1-b] benzothiazoles. Lett. Drug Des. Discov., 2011, 8, 633-639.
[http://dx.doi.org/10.2174/157018011796235211]
[76]
Er, M.; Özer, A.; Direkel, Ş.; Karakurt, T.; Tahtaci, H. Novel substituted benzothiazole and Imidazo[2,1-b][1,3,4]Thiadiazole derivatives: Synthesis, characterization, molecular docking study, and investigation of their in vitro antileishmanial and antibacterial activities. J. Mol. Struct., 2019, 1194, 284-296.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.104]
[77]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[78]
BIOVIA. D.S. Discovery Studio Modeling Environment Release 4.5; Dassault Systemes: San Diego, 2015.
[79]
Racané, L.; Ptiček, L.; Fajdetić, G.; Tralić-Kulenović, V.; Klobučar, M.; Kraljević Pavelić S.; Perić, M.; Paljetak, H.Č; Verbanac, D.; Starčević, K. Green synthesis and biological evaluation of 6-substituted-2-(2-hydroxy/methoxy phenyl)benzothiazole derivatives as potential antioxidant, antibacterial and antitumor agents. Bioorg. Chem., 2020, 95, 103537.
[http://dx.doi.org/10.1016/j.bioorg.2019.103537] [PMID: 31884142]
[80]
Zha, L.; Xie, Y.; Wu, C.; Lei, M.; Lu, X.; Tang, W.; Zhang, J. Novel benzothiazole-urea hybrids: Design, synthesis and biological activity as potent anti-bacterial agents against MRSA. Eur. J. Med. Chem., 2022, 236, 114333.
[http://dx.doi.org/10.1016/j.ejmech.2022.114333] [PMID: 35397402]
[81]
Bax, B.D.; Chan, P.F.; Eggleston, D.S.; Fosberry, A.; Gentry, D.R.; Gorrec, F.; Giordano, I.; Hann, M.M.; Hennessy, A.; Hibbs, M.; Huang, J.; Jones, E.; Jones, J.; Brown, K.K.; Lewis, C.J.; May, E.W.; Saunders, M.R.; Singh, O.; Spitzfaden, C.E.; Shen, C.; Shillings, A.; Theobald, A.J.; Wohlkonig, A.; Pearson, N.D.; Gwynn, M.N. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 2010, 466(7309), 935-940.
[http://dx.doi.org/10.1038/nature09197] [PMID: 20686482]
[82]
Kyhoiesh, H.A.K.; Al-Adilee, K.J. Synthesis, spectral characterization and biological activities of Ag(I), Pt(IV) and Au(III) complexes with novel azo dye ligand (N, N, O) derived from 2-amino-6-methoxy benzothiazole. Chem. Zvesti, 2022, 76(5), 2777-2810.
[http://dx.doi.org/10.1007/s11696-022-02072-9]
[83]
Mishra, A.; Batar, A.; Kumar, R.; Khandelwal, A.; Lama, P.; Chhabra, M.; Metre, R.K. Assembly of Di-, tetra- and hexanuclear organostannoxanes using hemi labile intramolecular n→sn coordination: synthesis, structure, DFT and antibacterial studies. Polyhedron, 2021, 209, 115487.
[http://dx.doi.org/10.1016/j.poly.2021.115487]
[84]
Singh, G. Diksha; Mohit; Suman; Shilpy; Devi, A.; Gupta, S.; Yadav, R.; Sehgal, R. Benzothiazole tethered triazole based potential antibacterial agent as a selective fluorometric probe for the detection of Al3+ ions and phenylalanine. J. Mol. Struct., 2022, 1262, 132967.
[http://dx.doi.org/10.1016/j.molstruc.2022.132967]
[85]
Mishra, N.; Kumar, K.; Pandey, H.; Raj Anand, S.; Yadav, R.; Prakash Srivastava, S.; Pandey, R. Synthesis, characterization, optical and anti-bacterial properties of benzothiazole Schiff bases and their lanthanide (III) complexes. J. Saudi Chem. Soc., 2020, 24(12), 925-933.
[http://dx.doi.org/10.1016/j.jscs.2020.09.009]
[86]
Ibrahim, S.; Gavisiddegowda, P.; Deepakumari, H.N.; Kollur, S.P.; Naik, N. Newly synthesized benzothiazole derived ligand and its Co (III) and Ru (III) complexes as biological potent molecules: Chemical preparation, structure, antimicrobial, in vitro and in vivo cytotoxicity studies. Biointerface Res. Appl. Chem., 2022, 12(6), 7817-7844.
[87]
Jawoor, S.S.; Patil, S.A.; Toragalmath, S.S. Synthesis and characterization of heteroleptic Schiff base transition metal complexes: a study of anticancer, antimicrobial, DNA cleavage and anti-TB activity. J. Coord. Chem., 2018, 71(2), 271-283.
[http://dx.doi.org/10.1080/00958972.2017.1421951]
[88]
Rambabu, A.; Pradeep Kumar, M.; Tejaswi, S.; Vamsikrishna, N. Shivaraj, DNA interaction, antimicrobial studies of newly synthesized copper (II) complexes with 2-amino-6-(trifluoromethoxy)] benzothiazole Schiff base ligands. J. Photochem. Photobiol. B, 2016, 165, 147-156.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.10.027] [PMID: 27794220]
[89]
Meghdadi, S.; Amirnasr, M.; Mirhashemi, A.; Amiri, A. Synthesis, characterization and X-ray crystal structure of copper(I) complexes of the 2-(2-quinolyl)benzothiazole ligand. Electrochemical and antibacterial studies. Polyhedron, 2015, 97, 234-239.
[http://dx.doi.org/10.1016/j.poly.2015.05.026]
[90]
Chakraborty, I.; Pinto, M.; Stenger-Smith, J.; Martinez-Gonzalez, J.; Mascharak, P.K. Synthesis, structures and antibacterial properties of Cu(II) and Ag(I) complexes derived from 2,6-bis(benzothiazole)-pyridine. Polyhedron, 2019, 172, 1-7.
[http://dx.doi.org/10.1016/j.poly.2019.02.001]
[91]
Jung, W.K.; Koo, H.C.; Kim, K.W.; Shin, S.; Kim, S.H.; Park, Y.H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol., 2008, 74(7), 2171-2178.
[http://dx.doi.org/10.1128/AEM.02001-07] [PMID: 18245232]
[92]
Rao, N.N.; kishan, E.; Gopichand, K.; Nagaraju, R.; Ganai, A.M.; Rao, P.V. Design, synthesis, spectral characterization, DNA binding, photo cleavage and antibacterial studies of transition metal complexes of benzothiazole Schiff base. Chem. Data Collect., 2020, 27, 100368.
[http://dx.doi.org/10.1016/j.cdc.2020.100368]
[93]
Stenger-Smith, J.; Chakraborty, I.; Sameera, W.M.C.; Mascharak, P.K. Antimicrobial silver (I) complexes derived from aryl-benzothiazoles as turn-on sensors: Syntheses, properties and density functional studies. Inorg. Chim. Acta, 2018, 471, 326-335.
[http://dx.doi.org/10.1016/j.ica.2017.11.022]
[94]
Stenger-Smith, J.; Chakraborty, I.; Mascharak, P.K. Cationic Au(I) complexes with aryl-benzothiazoles and their antibacterial activity. J. Inorg. Biochem., 2018, 185, 80-85.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.05.003] [PMID: 29800748]
[95]
Pal, N.; Arya, A.K. An efficient and facile synthesis of Zn(II) complexes with 2-substituted benzothiazoles and glycine- and alanine-based ligands having antifungal and antibacterial activities. Res. Chem. Intermed., 2013, 39(2), 553-560.
[http://dx.doi.org/10.1007/s11164-012-0578-x]
[96]
Ahlawat, A.; Khatkar, P.; Singh, V.; Asija, S. Diorganotin(IV) complexes of Schiff bases derived from salicylaldehyde and 2-amino-6-substituted benzothiazoles: synthesis, spectral studies, in vitro antimicrobial evaluation and QSAR studies. Res. Chem. Intermed., 2018, 44(7), 4415-4435.
[http://dx.doi.org/10.1007/s11164-018-3395-z]
[97]
Devi, J.; Devi, S.; Kumar, A. Synthesis, spectral, and in vitro antimicrobial studies of organosilicon(IV) complexes with Schiff bases derived from dehydroacetic acid. Monatsh. Chem., 2016, 147(12), 2195-2207.
[http://dx.doi.org/10.1007/s00706-016-1720-z]
[98]
Dias, L.C.; de Lima, G.M.; Takahashi, J.A.; Ardisson, J.D. New di- and triorganotin(IV) carboxylates derived from a Schiff base: synthesis, characterization and in vitro antimicrobial activities. Appl. Organomet. Chem., 2015, 29(5), 305-313.
[http://dx.doi.org/10.1002/aoc.3292]
[99]
Czympiel, L.; Lekeu, J.M.; Hegemann, C.; Mathur, S. Oxidative halogenation of Sn(II)heteroaryl alkenolates: Formation of unusual trans -dihalo Sn(IV) complexes. Inorg. Chim. Acta, 2017, 455, 197-203.
[http://dx.doi.org/10.1016/j.ica.2016.10.023]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy