Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Formulation and Characterisation of Cilnidipine Microsponge Loaded Hydrogels for Antihypertensive Activity

Author(s): Shreya Shirodkar and Raghuvir Pissurlenkar*

Volume 13, Issue 1, 2023

Published on: 19 January, 2023

Page: [48 - 68] Pages: 21

DOI: 10.2174/2210303113666221207142644

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Owing to presystemic metabolism following oral drug delivery, most antihypertensive medications have a low bioavailability. Cilnidipine is a calcium channel blocker used to treat mild to moderate hypertension. Cilnidipine's bioavailability is reduced by 13% due to substantial presystemic metabolism.

Objective: The study aimed to fabricate non-irritant and stable microsponge-based hydrogel to enhance the bioavailability of cilnidipine, a weakly water-soluble medication. In addition, the goal was to enhance the permeation rate and retention time at the site of application.

Methods: Formulation was developed by using a two-level factorial design with Design Expert software version 13 (14-day free trial). Microsponges were formulated by the emulsion solvent diffusion method, followed by evaluating responses, such as particle size, percentage entrapment efficiency, in vitro drug release, and surface morphology. In addition, X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FT-IR) were performed. Viscosity, swelling behaviour, spreadability, in vitro diffusion, skin irritancy using Wistar albino rats, and in vitro permeation using goat skin were assessed, and stability studies were performed after incorporating the finest formulation into the gel base.

Results: Fabricated microsponges were found to be within the required micro dimensions having the necessary porous morphology as demonstrated by scanning electron microscopy studies. Drug entrapment efficiency was found to be in the range of 75-88%. The extended medicament release duration of up to 8 hours was observed. The diffusion data showed controlled release, as demonstrated by Higuchi’s plot. In vitro permeation studies displayed enhanced medicament retention and permeation rate at the site of application.

Conclusion: The fabricated microsponge drug delivery system was found to be stable, non-irritant, and having enhanced permeation rate and retention time.

Keywords: Microsponge, cilnidipine, topical delivery, antihypertensive, sustained release, drug permeation, skin irritation, in vitro studies.

Graphical Abstract
[1]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[2]
Bhaskar, K.; Mohan, C.K.; Lingam, M.; Mohan, S.J.; Venkateswarlu, V.; Rao, Y.M.; Bhaskar, K.; Anbu, J.; Ravichandran, V. Development of SLN and NLC enriched hydrogels for transdermal delivery of nitrendipine: in vitro and in vivo characteristics. Drug Dev. Ind. Pharm., 2009, 35(1), 98-113.
[http://dx.doi.org/10.1080/03639040802192822] [PMID: 18665979]
[3]
Kumar, N.; Dubey, A.; Mishra, A.; Tiwari, P. Formulation and evaluation of metoprolol succinate loaded ethosomal gel for transdermal delivery. J. Crit. Rev., 2020, 7, 1772-1782.
[4]
Mekala, S.; Pedda, Y.J.; Kothapalli, C.S.; Sabareesh, M.M. A novel vesicular nanoproniosomal gel loaded losartan potassium: Formulation, ex vivo evaluation, in vivo bioavailability and antihypertensive studies. Turk. J. Pharm. Sci., 2022, 19, 116-124.
[5]
Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M. Design, formulation and optimization of valsartan transdermal gel containing iso-eucalyptol as novel permeation enhancer: preclinical assessment of pharmacokinetics in Wistar albino rats. Expert Opin. Drug Deliv., 2014, 11(8), 1149-1162.
[http://dx.doi.org/10.1517/17425247.2014.914027] [PMID: 24830648]
[6]
Morsi, N.M.; Aboelwafa, A.A.; Dawoud, M.H.S. Enhancement of the bioavailability of an antihypertensive drug by transdermal protransfersomal system: formulation and in vivo study. J. Liposome Res., 2018, 28(2), 137-148.
[http://dx.doi.org/10.1080/08982104.2017.1295989] [PMID: 28264602]
[7]
Faheem, A.M.; Abdelkader, D.H. Novel drug delivery systems. Eng. Drug Deliv. Sys., 2019, (2), 1-16.
[8]
Angajala, G.; Ramya, R.; Subashini, R. In-vitro anti-inflammatory and mosquito larvicidal efficacy of nickel nanoparticles phytofabricated from aqueous leaf extracts of Aegle marmelos Correa. Acta Trop., 2014, 135(1), 19-26.
[http://dx.doi.org/10.1016/j.actatropica.2014.03.012] [PMID: 24681220]
[9]
Pandit, A.P.; Patel, S.A.; Bhanushali, V.P.; Kulkarni, V.S.; Kakad, V.D. Nebivolol-loaded microsponge gel for healing of diabetic wound. AAPS PharmSciTech, 2017, 18(3), 846-854.
[http://dx.doi.org/10.1208/s12249-016-0574-3] [PMID: 27357423]
[10]
Biswas, G.R.; Bhattacharya, S.; Ghoshal, P.; Majee, S.B. Fabrication of microsponge as drug delivery of an antihypertensive drug. Evaluation, 2020, 7(2), 423-430.
[11]
Osmani, R.A.M.; Aloorkar, N.H.; Ingale, D.J.; Kulkarni, P.K.; Hani, U.; Bhosale, R.R.; Jayachandra Dev, D. Microsponges based novel drug delivery system for augmented arthritis therapy. Saudi Pharm. J., 2015, 23(5), 562-572.
[http://dx.doi.org/10.1016/j.jsps.2015.02.020] [PMID: 26594124]
[12]
Sabareesh, M.; Yanadaiah, J.P.; Sekhar, K.C. Formulation development, ex vivo evaluation and in vivo antihypertensive study of losartan potassium loaded nanoproniosomal gel: A novel vesicular approach for transdermal delivery. Evaluation, 2021, 14(3), 1423-1430.
[13]
Gusai, T.; Dhavalkumar, M.; Soniwala, M.; Dudhat, K.; Vasoya, J.; Chavda, J. Formulation and optimization of microsponge-loaded emulgel to improve the transdermal application of acyclovir-a DOE based approach. Drug Deliv. Transl. Res., 2021, 11(5), 2009-2029.
[http://dx.doi.org/10.1007/s13346-020-00862-w] [PMID: 33159290]
[14]
Kaity, S.; Maiti, S.; Ghosh, A.; Pal, D.; Ghosh, A.; Banerjee, S. Microsponges: A novel strategy for drug delivery system. J. Adv. Pharm. Technol. Res., 2010, 1(3), 283-290.
[http://dx.doi.org/10.4103/0110-5558.72416] [PMID: 22247859]
[15]
Gupta, M.; Agrawal, U.; Vyas, S.P. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv., 2012, 9(7), 783-804.
[http://dx.doi.org/10.1517/17425247.2012.686490] [PMID: 22559240]
[16]
Pradhan, S.K. Microsponges as the versatile tool for drug delivery system. Int. J. Res. Pharm. Chem., 2011, 1(2), 243-258.
[17]
Singhvi, G.; Manchanda, P.; Hans, N.; Dubey, S.K.; Gupta, G. Microsponge: An emerging drug delivery strategy. Drug Dev. Res., 2019, 80(2), 200-208.
[http://dx.doi.org/10.1002/ddr.21492] [PMID: 30456763]
[18]
Bouwstra, J.A.; Honeywell-Nguyen, P.L. Skin structure and mode of action of vesicles. Adv. Drug Deliv. Rev., 2002, 54(S1), S41-S55.
[http://dx.doi.org/10.1016/S0169-409X(02)00114-X] [PMID: 12460715]
[19]
Amrutiya, N.; Bajaj, A.; Madan, M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech, 2009, 10(2), 402-409.
[http://dx.doi.org/10.1208/s12249-009-9220-7] [PMID: 19381834]
[20]
Jadhav, N.; Patel, V.; Mungekar, S.; Bhamare, G.; Karpe, M.; Kadams, V. Microsponge delivery system: An updated review, current status and future prospects. J. Sci. Innov., 2013, 2(6), 1097-1110.
[21]
Anderson, D.L.; Chung-Heng, C.; Nacht, S. Flow characteristics of loosely compacted macroporous Microsponge® polymeric systems. Powder Technol., 1994, 78(1), 15-18.
[http://dx.doi.org/10.1016/0032-5910(93)02764-2]
[22]
Jyoti, J.; Kumar, S. Innovative and novel strategy: Microsponges for topical drug delivery. J. Drug Deliv. Ther., 2018, 8(5), 28-34.
[http://dx.doi.org/10.22270/jddt.v8i5.1885]
[23]
Abdalla, K.F.; Osman, M.A.; Nouh, A.T.; El Maghraby, G.M. Microsponges for controlled release and enhanced oral bioavailability of carbamazepine. J. Drug Deliv. Sci. Technol., 2021, 65(6), 102683.
[http://dx.doi.org/10.1016/j.jddst.2021.102683]
[24]
Badhe, K.P.; Saudagar, R.B. A review on Microsponge a novel drug delivery system. As. J. Pharm. Res., 2016, 6(1), 51.
[http://dx.doi.org/10.5958/2231-5713.2016.00008.8]
[25]
Mahant, S.; Kumar, S.; Nanda, S.; Rao, R. Microsponges for dermatological applications: Perspectives and challenges. As. J. Pharm. Sci., 2020, 15(3), 273-291.
[http://dx.doi.org/10.1016/j.ajps.2019.05.004] [PMID: 32636947]
[26]
Srivastava, R.; Pathak, K. Microsponges: a futuristic approach for oral drug delivery. Expert Opin. Drug Deliv., 2012, 9(7), 863-878.
[http://dx.doi.org/10.1517/17425247.2012.693072] [PMID: 22663167]
[27]
Qumbar, M. Ameeduzzafar; Imam, S.S.; Ali, J.; Ahmad, J.; Ali, A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In-vitro characterization and in-vivo activity. Biomed. Pharmacother., 2017, 93, 255-266.
[http://dx.doi.org/10.1016/j.biopha.2017.06.043] [PMID: 28738502]
[28]
Güngör, S.; Özsoy, Y. Systemic delivery of antihypertensive drugs via skin. Ther. Deliv., 2012, 3(9), 1101-1116.
[http://dx.doi.org/10.4155/tde.12.87] [PMID: 23035594]
[29]
Ahad, A.; Aqil, M.; Ali, A. Investigation of antihypertensive activity of carbopol valsartan transdermal gel containing 1,8-cineole. Int. J. Biol. Macromol., 2014, 64, 144-149.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.11.018] [PMID: 24296403]
[30]
Osmani, R.A.M.; Aloorkar, N.H.; Thaware, B.U.; Kulkarni, P.K.; Moin, A.; Hani, U.; Srivastava, A.; Bhosale, R.R. Microsponge based drug delivery system for augmented gastroparesis therapy: Formulation development and evaluation. As. J. Pharm. Sci., 2015, 10(5), 442-451.
[http://dx.doi.org/10.1016/j.ajps.2015.06.003]
[31]
Bhimavarapu, R.; Chitra, K.P.; Karunkiran, P. Itraconazole loaded microspongses-A novel carrier system. Int. J. Pharm. Investig., 2015, 3(1), 953-957.
[32]
Mahaparale, P.R.; Ikam, S.A.N.; Chavan, M.S. Formulation and evaluation of terbinafine hydrochloride polymeric microsponges for topical drug delivery. Indian J. Pharm. Sci., 2018, 80(6), 1086-1092.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000459]
[33]
Gangadharappa, H.V.; Chandra Prasad, S.M.; Singh, R.P. Formulation, in vitro and in vivo evaluation of celecoxib nanosponge hydrogels for topical application. J. Drug Deliv. Sci. Technol., 2017, 41, 488-501.
[http://dx.doi.org/10.1016/j.jddst.2017.09.004]
[34]
Kakkar, V.; Muppu, S.K.; Chopra, K.; Kaur, I.P. Curcumin loaded solid lipid nanoparticles: An efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur. J. Pharm. Biopharm., 2013, 85(3), 339-345.
[http://dx.doi.org/10.1016/j.ejpb.2013.02.005] [PMID: 23454202]
[35]
Sharma, R.; Pathak, K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm. Dev. Technol., 2011, 16(4), 367-376.
[http://dx.doi.org/10.3109/10837451003739289] [PMID: 20367024]
[36]
Shah, C.N.; Shah, D.P. Design and optimization of fluconazole microsponges containing ethyl cellulose for topical delivery system using quality by design approach. Pharma Sci. Monitor, 2014, 5(3), 95-33.
[37]
Shahzad, Y.; Saeed, S.; Ghori, M.U.; Mahmood, T.; Yousaf, A.M.; Jamshaid, M.; Sheikh, R.; Rizvi, S.A.A. Influence of polymer ratio and surfactants on controlled drug release from cellulosic microsponges. Int. J. Biol. Macromol., 2018, 109, 963-970.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.089] [PMID: 29154881]
[38]
Shoaib, Q.; Abbas, N.; Irfan, M.; Hussain, A.; Arshad, M.S.; Hussain, S.Z.; Latif, S.; Bukhari, N.I. Development and evaluation of scaffold-based nanosponge formulation for controlled drug delivery of naproxen and ibuprofen. Trop. J. Pharm. Res., 2018, 17(8), 1465-1474.
[http://dx.doi.org/10.4314/tjpr.v17i8.2]
[39]
Ivanova, N.A.; Trapani, A.; Franco, C.D.; Mandracchia, D.; Trapani, G.; Franchini, C.; Corbo, F.; Tripodo, G.; Kolev, I.N.; Stoyanov, G.S.; Bratoeva, K.Z. In vitro and ex vivo studies on diltiazem hydrochloride-loaded microsponges in rectal gels for chronic anal fissures treatment. Int. J. Pharm., 2019, 557, 53-65.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.039] [PMID: 30580086]
[40]
Divya, P.S.; Chacko, A.J. Formulation and evaluation of trimethoprim loaded nanosponge ocular in-situ gel. Int. J. Pharm. Pharm. J., 2018, 13(3), 158-171.
[41]
Kumar, P.S.; Hematheerthani, N.; Ratna, J.V.; Saikishore, V. Design and characterization of miconazole nitrate loaded nanosponges containing vaginal gels. Int. J. Pharm. Ana. Res., 2016, 5(3), 410-417.
[42]
Kapileshwari, G.R.; Barve, A.R.; Kumar, L.; Bhide, P.J.; Joshi, M.; Shirodkar, R.K. Novel drug delivery system of luliconazole - Formulation and characterisation. J. Drug Deliv. Sci. Technol., 2020, 55, 101302.
[http://dx.doi.org/10.1016/j.jddst.2019.101302]
[43]
Bachhav, Y.; Patravale, V. Microemulsion based vaginal gel of fluconazole: Formulation, in vitro and in vivo evaluation. Int. J. Pharm., 2009, 365(1-2), 175-179.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.021] [PMID: 18790032]
[44]
Rapalli, V.K.; Kaul, V.; Waghule, T.; Gorantla, S.; Sharma, S.; Roy, A.; Dubey, S.K.; Singhvi, G. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition. Eur. J. Pharm. Sci., 2020, 152, 105438.
[http://dx.doi.org/10.1016/j.ejps.2020.105438] [PMID: 32598913]
[45]
Bothiraja, C.; Gholap, A.D.; Shaikh, K.S.; Pawar, A.P. Investigation of ethyl cellulose microsponge gel for topical delivery of eberconazole nitrate for fungal therapy. Ther. Deliv., 2014, 5(7), 781-794.
[http://dx.doi.org/10.4155/tde.14.43] [PMID: 25287385]
[46]
Garg, R.; Girotra, P.; Singh, S.K.; Kumar, D.; Chakarvarti, S.K. Evaluation of track etch membrane as a surrogate for ex-vivo drug permeation studies. Int. J. Pharm. Sci. Drug Res., 2014, 6(3), 189-192.
[47]
Li, Q.; Li, F.; Qi, X.; Wei, F.; Chen, H.; Wang, T. Pluronic® F127 stabilized reduced graphene oxide hydrogel for the treatment of psoriasis: In vitro and in vivo studies. Colloids Surf. B Biointerfaces, 2020, 195, 111246.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111246] [PMID: 32659651]
[48]
Al-Suwayeh, SA.; Taha, EI.; Al-Qahtani, FM.; Ahmed, MO.; Badran, MM. Evaluation of skin permeation and analgesic activity effects of carbopol lornoxicam topical gels containing penetration enhancer. The Sci. World J., 2014, 2014, 1-4.
[http://dx.doi.org/10.1155/2014/127495]
[49]
Pandey, S.S.; Maulvi, F.A.; Patel, P.S.; Shukla, M.R.; Shah, K.M.; Gupta, A.R.; Joshi, S.V.; Shah, D.O. Cyclosporine laden tailored microemulsion-gel depot for effective treatment of psoriasis: In vitro and in vivo studies. Colloids Surf. B Biointerfaces, 2020, 186, 110681.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110681] [PMID: 31812077]
[50]
Biswas, G.R.; Majee, S.B.; Roy, A. Combination of synthetic and natural polymers in hydrogel: An impact on drug permeation. J. Appl. Pharm. Sci., 1930, 6(11), 158-164.
[51]
Zhang, H.; Zhao, Z.; Chen, W.; Lv, M.; Cheng, J.; Sun, Z. In vitro and in vivo studies of micro-depots using tailored microemulsion for sustained local anaesthesia. Pharm. Dev. Technol., 2020, 25(7), 874-881.
[http://dx.doi.org/10.1080/10837450.2020.1754425] [PMID: 32274946]
[52]
Gupta, V.; Trivedi, P. In vitro and in vivo characterization of pharmaceutical topical nanocarriers containing anticancer drugs for skin cancer treatment. Lipid Nanocarr. Drug Target., 2018, 2018, 563-627.
[http://dx.doi.org/10.1016/B978-0-12-813687-4.00015-3]
[53]
Shinde, G.; Desai, P.; Shelke, S.; Patel, R.; Bangale, G.; Kulkarni, D. Mometasone furoate-loaded aspasomal gel for topical treatment of psoriasis: formulation, optimization, in vitro and in vivo performance. J. Dermatolog. Treat., 2022, 33(2), 885-896.
[http://dx.doi.org/10.1080/09546634.2020.1789043] [PMID: 32603203]
[54]
Ahmad, N.; Ahmad, R.; Mohammed Buheazaha, T.; Salman AlHomoud, H.; Al-Nasif, H.A.; Sarafroz, M. A comparative ex vivo permeation evaluation of a novel 5-Fluorocuracil nanoemulsion-gel by topically applied in the different excised rat, goat, and cow skin. Saudi J. Biol. Sci., 2020, 27(4), 1024-1040.
[http://dx.doi.org/10.1016/j.sjbs.2020.02.014] [PMID: 32256163]
[55]
Nokhodchi, A.; Jelvehgari, M.; Siahi, M.R.; Mozafari, M.R. Factors affecting the morphology of benzoyl peroxide microsponges. Micron, 2007, 38(8), 834-840.
[http://dx.doi.org/10.1016/j.micron.2007.06.012] [PMID: 17692528]
[56]
Swidan, SA.; Mansour, ZN.; Mourad, ZA.; Elhesaisy, NA.; Mohamed, NA.; Bekheet, MS.; Badawy, MA.; Elsemeiri, MM.; Elrefaey, AE.; Hassaneen, AM. DOE, formulation, and optimization of repaglinide nanostructured lipid carriers. J. Appl. Pharm. Sci., 1930, 8(10), 8-16.
[57]
Pawar, Y.B.; Purohit, H.; Valicherla, G.R.; Munjal, B.; Lale, S.V.; Patel, S.B.; Bansal, A.K. Novel lipid based oral formulation of curcumin: Development and optimization by design of experiments approach. Int. J. Pharm., 2012, 436(1-2), 617-623.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.031] [PMID: 22842624]
[58]
Shah, M.; Agrawal, Y. Development of ciprofloxacin HCl-based solid lipid nanoparticles using ouzo effect: An experimental optimization and comparative study. J. Dispers. Sci. Technol., 2013, 34(1), 37-46.
[http://dx.doi.org/10.1080/01932691.2011.646614]
[59]
Aldawsari, H.M.; Badr-Eldin, S.M.; Labib, G.S.; El-Kamel, A.H. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: in vitro/in vivo evaluation. Int. J. Nanomedicine, 2015, 10, 893-902.
[PMID: 25673986]
[60]
Tripathi, P.K.; Gorain, B.; Choudhury, H.; Srivastava, A.; Kesharwani, P. Dendrimer entrapped microsponge gel of dithranol for effective topical treatment. Heliyon, 2019, 5(3), e01343.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01343] [PMID: 30957038]
[61]
Qureshi, S.; Zaman, M.; Mahmood, A.; Shah, S.; Amjad, M.W.; Shaheryar, Z.A.; Sarfraz, R.M.; Khan, S.M.; Raja, M.A.G. Development and optimization of flurbiprofen loaded microsponges; an in-vitro evaluation. Pak. J. Pharm. Sci., 2019, 32(4), 1773-1779.
[PMID: 31680072]
[62]
Osmani, R.A.M.; Moin, A.; Deb, T.K.; Bhosale, R.; Hani, U. Fabrication, characterization, and evaluation of microsponge delivery system for facilitated fungal therapy. J. Basic Clin. Pharm., 2016, 7(2), 39-48.
[http://dx.doi.org/10.4103/0976-0105.177705] [PMID: 27057125]
[63]
Rao, M.R.P.; Chaudhari, J.; Trotta, F.; Caldera, F. Investigation of cyclodextrin-based nanosponges for solubility and bioavailability enhancement of rilpivirine. AAPS PharmSciTech, 2018, 19(5), 2358-2369.
[http://dx.doi.org/10.1208/s12249-018-1064-6] [PMID: 29869305]
[64]
Chadwick, E.G.; Beloshapkin, S.; Tanner, D.A. Microstructural characterisation of metallurgical grade porous silicon nanosponge particles. J. Mater. Sci., 2012, 47(5), 2396-2404.
[http://dx.doi.org/10.1007/s10853-011-6060-0]
[65]
Mahesh Kumar, P.; Ghosh, A. Development and evaluation of metronidazole loaded microsponge based gel for superficial surgical wound infections. J. Drug Deliv. Sci. Technol., 2015, 30, 15-29.
[http://dx.doi.org/10.1016/j.jddst.2015.09.006]
[66]
Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev., 2012, 64, 128-137.
[http://dx.doi.org/10.1016/j.addr.2012.09.032] [PMID: 15019749]
[67]
Wadhwa, G.; Kumar, S.; Mittal, V.; Rao, R. Encapsulation of babchi essential oil into microsponges: Physicochemical properties, cytotoxic evaluation and anti-microbial activity. Yao Wu Shi Pin Fen Xi, 2019, 27(1), 60-70.
[PMID: 30648595]
[68]
Salah, S.; Awad, G.E.A.; Makhlouf, A.I.A. Improved vaginal retention and enhanced antifungal activity of miconazole microsponges gel: Formulation development and in vivo therapeutic efficacy in rats. Eur. J. Pharm. Sci., 2018, 114, 255-266.
[http://dx.doi.org/10.1016/j.ejps.2017.12.023] [PMID: 29288706]
[69]
Patel, S.S.; Patel, M.R.; Patel, M.J. Formulation and evaluation of microsponge based nicorandil sustained released tablet. J. Sci. Res., 2017, 9(3), 285-296.
[http://dx.doi.org/10.3329/jsr.v9i3.31193]
[70]
Saini, R.; Singh, S.K.; Verma, P.R.P. Evaluation of carvedilol-loaded microsponges with nanometric pores using response surface methodology. J. Exp. Nanosci., 2014, 9(8), 831-850.
[http://dx.doi.org/10.1080/17458080.2012.725258]
[71]
Pawar, AP; Gholap, AP; Kuchekar, AB; Bothiraja, C; Mali, AJ Formulation and evaluation of optimized oxybenzone microsponge gel for topical delivery. J. Drug Deliv. 2015, 2015.
[72]
Patil, A.; Masareddy, R.S.; Patil, A.S.; Dwivedi, P.S.R. Microsponge gel approach to increase the stability and efficacy of avobenzone as a sun-protective agent. J. Pharm. Innov., 2022, 1-3.
[http://dx.doi.org/10.1007/s12247-021-09616-8]
[73]
Jafar, M.; Salahuddin, M.; Khan, M.S.A.; Alshehry, Y.; Alrwaili, N.R.; Alzahrani, Y.A.; Imam, S.S.; Alshehri, S. Preparation and In Vitro-In Vivo evaluation of luteolin loaded gastroretentive microsponge for the eradication of Helicobacter pylori infections. Pharmaceutics, 2021, 13(12), 2094.
[http://dx.doi.org/10.3390/pharmaceutics13122094] [PMID: 34959375]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy