Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis, Biological Evaluation, and Docking Studies of Open-Chain Carbohydrate Amides as Acetylcholinesterase Inhibitors

Author(s): Rita Gonçalves-Pereira, Jose A. Figueiredo, Susana D. Lucas, Maria I. García-Moreno, Carmen O. Mellet, Amelia P. Rauter and Maria I. Ismael*

Volume 19, Issue 6, 2023

Published on: 06 January, 2023

Page: [570 - 577] Pages: 8

DOI: 10.2174/1573406419666221202154219

Open Access Journals Promotions 2
Abstract

Introduction: Alzheimer’s disease is a multifactorial syndrome, which is not yet fully understood, causing memory loss, dementia, and, ultimately, death. Acetylcholinesterase inhibitors are the mainstay drugs that are used in disease-symptomatic treatment. In this work, we report a new synthetic route yielding sugar amides as low to moderate acetylcholinesterase inhibitors.

Methods: Commercially available diacetone glucose was converted into perbenzyl D-glucono-1,4- lactone, which reacted with aromatic or aliphatic amines to afford the corresponding new amides in a high isolated yield. Docking studies of the most promising hydroxybutylamide and benzylamide were performed to assign binding interactions with acetylcholinesterase and determine the key features for bioactivity.

Results: The inhibitors are accommodated in enzyme gorge, blocking the access to Ser203 mainly due to π-π stacking interactions of sugar benzyl groups with the aromatic gorge residues, Tyr337 and Tyr341 for both inhibitors and Trp439 only for the hydroxybutylamide.

Conclusion: Bonding is also significant through sugar interaction with the residues Tyr124 and Ser125-OH in both inhibitors. Flexibility of these open-chain structures seems to be quite relevant for the observed binding to acetylcholinesterase.

Keywords: Sugar amides, synthesis, acetylcholinesterase inhibitors, docking studies, Alzheimer’s disease, open chain carbohydrate.

Graphical Abstract
[1]
Duan, S.; Guan, X.; Lin, R.; Liu, X.; Yan, Y.; Lin, R.; Zhang, T.; Chen, X.; Huang, J.; Sun, X.; Li, Q.; Fang, S.; Xu, J.; Yao, Z.; Gu, H. Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of Alzheimer’s disease. Neurobiol. Aging, 2015, 36(5), 1792-1807.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.02.002] [PMID: 25771396]
[2]
Li, Y.; Qiang, X.; Luo, L.; Li, Y.; Xiao, G.; Tan, Z.; Deng, Y.; Tan, Z.; Deng, Y. Synthesis and evaluation of 4-hydroxyl aurone derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(10), 2342-2351.
[http://dx.doi.org/10.1016/j.bmc.2016.04.012] [PMID: 27079124]
[3]
Mohamed, L.W.; Abuel-Maaty, S.M.; Mohammed, W.A.; Galal, M.A. Synthesis and biological evaluation of new oxopyrrolidine derivatives as inhibitors of acetyl cholinesterase and β amyloid protein as anti – Alzheimer’s agents. Bioorg. Chem., 2018, 76, 210-217.
[http://dx.doi.org/10.1016/j.bioorg.2017.11.008] [PMID: 29190477]
[4]
Przybyłowska, M.; Dzierzbicka, K.; Kowalski, S.; Demkowicz, S.; Daśko, M.; Inkielewicz-Stepniak, I. Design, synthesis and biological evaluation of novel N -phosphorylated and O -phosphorylated tacrine derivatives as potential drugs against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1012-1022.
[http://dx.doi.org/10.1080/14756366.2022.2045591] [PMID: 35361039]
[5]
Ragab, H.M.; Teleb, M.; Haidar, H.R.; Gouda, N. Chlorinated tacrine analogs: Design, synthesis and biological evaluation of their anti-cholinesterase activity as potential treatment for Alzheimer’s disease. Bioorg. Chem., 2019, 86, 557-568.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.033] [PMID: 30782574]
[6]
Petit, D.; Montplaisir, J.; Boeve, B.F. Principles and practice of sleep medicine chapter 91-Alzheimer’s disease and other dementia. 2011, 1038-1047.
[7]
Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement., 2020, 16(3), 391-460.
[http://dx.doi.org/10.1002/alz.12068] [PMID: 32157811]
[8]
Alzheimer’s Disease International. World Alzheimer Report 2019: Attitudes to Dementia; London,, 2019. Available from: https://www.alzint.org/u/WorldAlzheimerReport2019.pdf
[9]
DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[10]
Guerchet, M.; Prince, M.; Prina, M. Numbers of people with dementia worldwide: an update to the estimates in the World Alzheimer Report 2015; , 2020. Available from: https://www.alzint.org/resource/numbers-of-people-with-dementia-worldwide/
[11]
Więckowska, A; Więckowski, K; Bajda, M; Brus, B; Sałat, K; Czerwińska, P; Gobec, S; Filipek, B; Malawska, B Synthesis of new N-benzylpiperidine derivatives as cholinesterase inhibitors with β-amyloid anti-aggregation properties and beneficial effects on memory in vivo. Bioorg. Med. Chem., 2015, 23(10), 2445-2457.
[12]
Bature, F.; Guinn, B.; Pang, D.; Pappas, Y. Signs and symptoms preceding the diagnosis of Alzheimer’s disease: a systematic scoping review of literature from 1937 to 2016. BMJ Open, 2017, 7(8), e015746.
[http://dx.doi.org/10.1136/bmjopen-2016-015746] [PMID: 28851777]
[13]
Novais, F.; Starkstein, S. Phenomenology of depression in Alzheimer’s disease. J. Alzheimers Dis., 2015, 47(4), 845-855.
[http://dx.doi.org/10.3233/JAD-148004] [PMID: 26401763]
[14]
Zdarova Karasova, J.; Soukup, O.; Korabecny, J.; Hroch, M.; Krejciova, M.; Hrabinova, M.; Misik, J.; Novotny, L.; Hepnarova, V.; Kuca, K. Tacrine and its 7-methoxy derivate; time-change concentration in plasma and brain tissue and basic toxicological profile in rats. Drug Chem. Toxicol., 2021, 44(2), 207-214.
[http://dx.doi.org/10.1080/01480545.2019.1566350] [PMID: 31257938]
[15]
Przybyłowska, M.; Dzierzbicka, K.; Kowalski, S.; Chmielewska, K.; Inkielewicz-Stepniak, I. Therapeutic potential of multifunctional derivatives of cholinesterase inhibitors. Curr. Neuropharmacol., 2021, 19(8), 1323-1344.
[http://dx.doi.org/10.2174/1570159X19666201218103434] [PMID: 33342413]
[16]
Serrano-Pozo, A.; Frosch, M.P.; Elieze, M.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2011, 1(1), a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189]
[17]
Laske, C.; Sohrabi, H.R.; Frost, S.M.; López-de-Ipiña, K.; Garrard, P.; Buscema, M.; Dauwels, J.; Soekadar, S.R.; Mueller, S.; Linnemann, C.; Bridenbaugh, S.A.; Kanagasingam, Y.; Martins, R.N.; O’Bryant, S.E. Innovative diagnostic tools for early detection of Alzheimer’s disease. Alzheimers Dement., 2015, 11(5), 561-578.
[http://dx.doi.org/10.1016/j.jalz.2014.06.004] [PMID: 25443858]
[18]
Hampel, H.; Mesulam, M-M.; Cuello, A.C.; Khachaturian, A.S.; Vergallo, A.; Farlow, M.R.; Snyder, P.J.; Giacobini, E.; Khachaturian, Z.S. Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. J. Prev. Alzheimers Dis., 2019, 6(1), 2-15.
[PMID: 30569080]
[19]
Varley, J.; Brooks, D.J.; Edison, P. Imaging neuroinflammation in Alzheimer’s disease and other dementias: Recent advances and future directions. Alzheimers Dement., 2015, 11(9), 1110-1120.
[http://dx.doi.org/10.1016/j.jalz.2014.08.105] [PMID: 25449529]
[20]
Huang, M.; Xie, S.S.; Jiang, N.; Lan, J.S.; Kong, L.Y.; Wang, X.B. Multifunctional coumarin derivatives: Monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2015, 25(3), 508-513.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.034] [PMID: 25542589]
[21]
Fancellu, G.; Chand, K.; Tomás, D.; Orlandini, E.; Piemontese, L.; Silva, D.F.; Cardoso, S.M.; Chaves, S.; Santos, M.A. Novel tacrine–benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer’s Disease. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 211-226.
[http://dx.doi.org/10.1080/14756366.2019.1689237] [PMID: 31760822]
[22]
Bloom, G.S. Amyloid-β and Tau. JAMA Neurol., 2014, 71(4), 505-508.
[http://dx.doi.org/10.1001/jamaneurol.2013.5847] [PMID: 24493463]
[23]
Gallardo, G.; Holtzman, D.M. Amyloid-β and Tau at the crossroads of Alzheimer’s disease. Adv. Exp. Med. Biol., 2019, 1184, 187-203.
[http://dx.doi.org/10.1007/978-981-32-9358-8_16] [PMID: 32096039]
[24]
Gao, Y.; Tan, L.; Yu, J.T.; Tan, L. Tau in Alzheimer’s disease: mechanisms and therapeutic strategies. Curr. Alzheimer Res., 2018, 15(3), 283-300.
[http://dx.doi.org/10.2174/1567205014666170417111859] [PMID: 28413986]
[25]
Vaz, M.; Silvestre, S. Alzheimer’s disease: Recent treatment strategies. Eur. J. Pharmacol., 2020, 887, 173554-1737567.
[http://dx.doi.org/10.1016/j.ejphar.2020.173554] [PMID: 32941929]
[26]
Giacomini, A.C.V.V.; Bueno, B.W.; Marcon, L.; Scolari, N.; Genario, R.; Demin, K.A.; Kolesnikova, T.O.; Kalueff, A.V.; de Abreu, M.S. An acetylcholinesterase inhibitor, donepezil, increases anxiety and cortisol levels in adult zebrafish. J. Psychopharmacol., 2020, 34(12), 1449-1456.
[http://dx.doi.org/10.1177/0269881120944155] [PMID: 32854587]
[27]
Jung, W.; Jung, H.; Vu, N.A.T.; Kim, G.Y.; Kim, G.W.; Chae, J.; Kim, T.; Yun, H. Model-Based equivalent dose optimization to develop new donepezil patch formulation. Pharmaceutics, 2022, 14(2), 244-254.
[http://dx.doi.org/10.3390/pharmaceutics14020244] [PMID: 35213976]
[28]
Kostadinova, I.I.; Danchev, N.D.; Vezenkov, L.T.; Tsekova, D.S.; Rozhanets, V.V. Effect of original peptide derivatives of galantamine on passive avoidance in mice. Bull. Exp. Biol. Med., 2020, 170(2), 200-202.
[http://dx.doi.org/10.1007/s10517-020-05032-z] [PMID: 33269452]
[29]
Sun, Q.; Peng, D.Y.; Yang, S.G.; Zhu, X.L.; Yang, W.C.; Yang, G.F. Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase. Bioorg. Med. Chem., 2014, 22(17), 4784-4791.
[http://dx.doi.org/10.1016/j.bmc.2014.06.057] [PMID: 25088549]
[30]
McShane, R.; Westby, M.J.; Roberts, E.; Minakaran, N.; Schneider, L.; Farrimond, L.E.; Maayan, N.; Ware, J.; Debarros, J. Memantine for dementia. Cochrane Database Syst. Rev., 2019, 3, CD003154.
[PMID: 30891742]
[31]
Ghosh, S.; Jana, K.; Wakchaure, P.D.; Ganguly, B. Revealing the cholinergic inhibition mechanism of Alzheimer’s by galantamine: a metadynamics simulation study. J. Biomol. Struct. Dyn., 2022, 40(11), 5100-5111.
[http://dx.doi.org/10.1080/07391102.2020.1867644] [PMID: 33382027]
[32]
Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology, 2021, 190, 108352-108361.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108352] [PMID: 33035532]
[33]
Gurjar, A.S.; Darekar, M.N.; Yeong, K.Y.; Ooi, L. In silico studies, synthesis and pharmacological evaluation to explore multi-targeted approach for imidazole analogues as potential cholinesterase inhibitors with neuroprotective role for Alzheimer’s disease. Bioorg. Med. Chem., 2018, 26(8), 1511-1522.
[http://dx.doi.org/10.1016/j.bmc.2018.01.029] [PMID: 29429576]
[34]
Rauter, A.P.; Padilha, M.; Figueiredo, J.A.; Ismael, M.I.; Justino, J.; Ferreira, H.; Ferreira, M.J.; Rajendran, C.; Wilkins, R.; Vaz, P.D.; Calhorda, M.J. Bioactive pseudo-C-nucleosides containing thiazole, thiazolidinone, and tetrazole rings. J. Carbohydr. Chem., 2005, 24(3), 275-296.
[http://dx.doi.org/10.1081/CAR-200060396]
[35]
Figueiredo, J.A.; Ismael, M.I.; Pinheiro, J.M.; Silva, A.M.S.; Justino, J.; Silva, F.V.M.; Goulart, M.; Mira, D.; Araújo, M.E.M.; Campoy, R.; Rauter, A.P. Facile synthesis of oxo-/thioxopyrimidines and tetrazoles C–C linked to sugars as novel non-toxic antioxidant acetylcholinesterase inhibitors. Carbohydr. Res., 2012, 347(1), 47-54.
[http://dx.doi.org/10.1016/j.carres.2011.11.006] [PMID: 22153708]
[36]
Lin, T.S.; Liw, Y.W.; Song, J.S.; Hsieh, T.C.; Yeh, H.W.; Hsu, L.C.; Lin, C.J.; Wu, S.H.; Liang, P.H. Synthesis and biological evaluation of novel C-aryl d-glucofuranosides as sodium-dependent glucose co-transporter 2 inhibitors. Bioorg. Med. Chem., 2013, 21(21), 6282-6291.
[http://dx.doi.org/10.1016/j.bmc.2013.08.067] [PMID: 24071445]
[37]
Ghorai, S.; Mukhopadhyay, R.; Kundu, A.P.; Bhattacharjya, A. Intramolecular 1,3-dipolar nitrone and nitrile oxide cycloaddition of 2- and 4-O-allyl and propargyl glucose derivatives: a versatile approach to chiral cyclic ether fused isoxazolidines, isoxazolines and isoxazoles. Tetrahedron, 2005, 61(12), 2999-3012.
[http://dx.doi.org/10.1016/j.tet.2005.01.119]
[38]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[39]
Mohamed, T.; Rao, P.P.N. Design, synthesis and evaluation of 2,4-disubstituted pyrimidines as cholinesterase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(12), 3606-3609.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.108] [PMID: 20472431]
[40]
Mohamed, T.; Zhao, X.; Habib, L.K.; Yang, J.; Rao, P.P.N. Design, synthesis and structure–activity relationship (SAR) studies of 2,4-disubstituted pyrimidine derivatives: Dual activity as cholinesterase and Aβ-aggregation inhibitors. Bioorg. Med. Chem., 2011, 19(7), 2269-2281.
[http://dx.doi.org/10.1016/j.bmc.2011.02.030] [PMID: 21429752]
[41]
Schwarz, S.; Lucas, S.D.; Sommerwerk, S.; Csuk, R. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases. Bioorg. Med. Chem., 2014, 22(13), 3370-3378.
[http://dx.doi.org/10.1016/j.bmc.2014.04.046] [PMID: 24853320]
[42]
MOE, Molecular Operating Environment; Chemical Computing Group: Montreal, Canada 2012. Available from:: www.chemcomp.com
[43]
GOLD, version 5.2; Cambridge Crystallographic Data Centre: Cambridge, U.K Available from:: www.ccdc.cam.ac.uk/products/gold_suite
[44]
Su, T.; Xie, S.; Wei, H.; Yan, J.; Huang, L.; Li, X. Synthesis and biological evaluation of berberine–thiophenyl hybrids as multi-functional agents: Inhibition of acetylcholinesterase, butyrylcholinesterase, and Aβ aggregation and antioxidant activity. Bioorg. Med. Chem., 2013, 21(18), 5830-5840.
[http://dx.doi.org/10.1016/j.bmc.2013.07.011] [PMID: 23932451]
[45]
Chiou, S.Y.; Huang, C.F.; Hwang, M.T.; Lin, G. Comparison of active sites of butyrylcholinesterase and acetylcholinesterase based on inhibition by geometric isomers of benzene-di-N-substituted carbamates. J. Biochem. Mol. Toxicol., 2009, 23(5), 303-308.
[http://dx.doi.org/10.1002/jbt.20286] [PMID: 19827033]

© 2024 Bentham Science Publishers | Privacy Policy