Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Marine-derived Natural Products as Anticancer Agents

Author(s): Nancy Saini, Ritika Sirohi, Anuradha A., Neetu Saini, Pankaj Wadhwa, Paranjeet Kaur, Vikas Sharma, Gurdeep Singh, Iqubal Singh and Sanjeev Kumar Sahu*

Volume 19, Issue 6, 2023

Published on: 06 January, 2023

Page: [538 - 555] Pages: 18

DOI: 10.2174/1573406419666221202144044

Open Access Journals Promotions 2
Abstract

Cancer is a deadly human disease on the rise due to changes in lifestyle, nutrition, and global warming. Cancer is characterized by uncontrolled, disordered, and undesired cell division. About 60% of cancer medicines approved by the FDA are made from natural ingredients. Intensive efforts over the last decade to better understand the vast chemical diversity provided by marine life have resulted in an intriguing "marine pipeline" of potential anticancer clinical and preclinical treatments. The molecular targets of marine products as anticancer drugs, as well as different reported compounds acting on distinct targets, are the topic of this review.

Keywords: Anticancer, marine drugs, natural, anti-cancer, anti-prostate, marine compounds.

Graphical Abstract
[1]
Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.E.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; Chang, F.R.; Iwasaki, A.; Suenaga, K.; Alajlani, M.; Göransson, U.; El-Seedi, H.R. Marine natural products: A source of novel anticancer drugs. Mar. Drugs, 2019, 17(9), 491.
[http://dx.doi.org/10.3390/md17090491] [PMID: 31443597]
[2]
Saeed, A.F.U.H.; Su, J.; Ouyang, S. Marine-derived drugs: Recent advances in cancer therapy and immune signaling. Biomed. Pharmacother., 2021, 134, 111091.
[http://dx.doi.org/10.1016/j.biopha.2020.111091] [PMID: 33341044]
[3]
Jimeno, J.; Faircloth, G.; Sousa-Faro, J.M.; Scheuer, P.; Rinehart, K. New marine derived anticancer therapeutics- a journey from the sea to clinical trials. Mar. Drugs, 2004, 2(1), 14-29.
[http://dx.doi.org/10.3390/md201014]
[4]
Jimeno, J.M. A clinical armamentarium of marine-derived anti-cancer compounds. Anticancer Drugs, 2002, 13(Suppl. 1), S15-S19.
[PMID: 12173490]
[5]
Kim, S.K.; Kalimuthu, S. Introduction to anticancer drugs from marine origin. In:Handbook of anticancer drugs from marine origin; Springer, 2015, pp. 1-13.
[http://dx.doi.org/10.1007/978-3-319-07145-9_1]
[6]
Sarfaraj, H. M.; Sheeba, F.; Saba, A.; Khan, M. Marine natural products: A lead for Anti-cancer., 2012.
[7]
Song, X.; Xiong, Y.; Qi, X.; Tang, W.; Dai, J.; Gu, Q.; Li, J. Molecular targets of active anticancer compounds derived from marine sources. Mar. Drugs, 2018, 16(5), 175.
[http://dx.doi.org/10.3390/md16050175] [PMID: 29786660]
[8]
Gomes, N.; Lefranc, F.; Kijjoa, A.; Kiss, R. Can some marine-derived fungal metabolites become actual anticancer agents? Mar. Drugs, 2015, 13(6), 3950-3991.
[http://dx.doi.org/10.3390/md13063950] [PMID: 26090846]
[9]
Voudouri, K.; Berdiaki, A.; Tzardi, M.; Tzanakakis, G.N.; Nikitovic, D. Insulin-like growth factor and epidermal growth factor signaling in breast cancer cell growth: focus on endocrine resistant disease. Analyt. Cellul. Pathol.,, 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/975495]
[10]
Adrian, T. Novel marine-derived anti-cancer agents. Curr. Pharm. Des., 2007, 13(33), 3417-3426.
[http://dx.doi.org/10.2174/138161207782360500] [PMID: 18045195]
[11]
Osolodkin, D.I.; Palyulin, V.A.; Zefirov, N.S. Glycogen synthase kinase 3 as an anticancer drug target: novel experimental findings and trends in the design of inhibitors. Curr. Pharm. Des., 2013, 19(4), 665-679.
[http://dx.doi.org/10.2174/138161213804581972] [PMID: 23016861]
[12]
Sithranga Boopathy, N.; Kathiresan, K. Anticancer drugs from marine flora: an overview. J. Oncol.,, 2010, 2010 [Epub ahead of print]
[http://dx.doi.org/10.1155/2010/214186]
[13]
Hozzein, W.N.; Mohany, M.; Alhawsawi, S.M.M.; Zaky, M.Y.; Al-Rejaie, S.S.; Alkhalifah, D.H.M. Flavonoids from marine-derived actinobacteria as anticancer drugs. Curr. Pharm. Des., 2021, 27(4), 505-512.
[http://dx.doi.org/10.2174/1381612826666201216160154] [PMID: 33327903]
[14]
Fedorov, S.; Ermakova, S.; Zvyagintseva, T.; Stonik, V. Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects. Mar. Drugs, 2013, 11(12), 4876-4901.
[http://dx.doi.org/10.3390/md11124876] [PMID: 24317475]
[15]
Fan, M.; Nath, A.; Tang, Y.; Choi, Y.J.; Debnath, T.; Choi, E.J.; Kim, E.K. Investigation of the anti-prostate cancer properties of marine-derived compounds. Mar. Drugs, 2018, 16(5), 160.
[http://dx.doi.org/10.3390/md16050160] [PMID: 29757237]
[16]
Kang, H.; Choi, M.C.; Seo, C.; Park, Y. Therapeutic properties and biological benefits of marine-derived anticancer peptides. Int. J. Mol. Sci., 2018, 19(3), 919.
[http://dx.doi.org/10.3390/ijms19030919] [PMID: 29558431]
[17]
Yun, C.W.; Kim, H.J.; Lee, S.H. Therapeutic application of diverse marine-derived natural products in cancer therapy. Anticancer Res., 2019, 39(10), 5261-5284.
[http://dx.doi.org/10.21873/anticanres.13721] [PMID: 31570422]
[18]
Schwartsmann, G.; da Rocha, A.B.; Mattei, J.; Lopes, R. Marine-derived anticancer agents in clinical trials. Expert Opin. Investig. Drugs, 2003, 12(8), 1367-1383.
[http://dx.doi.org/10.1517/13543784.12.8.1367] [PMID: 12882622]
[19]
Schwartsmann, G.; da Rocha, A.B.; Berlinck, R.G.S.; Jimeno, J. Marine organisms as a source of new anticancer agents. Lancet Oncol., 2001, 2(4), 221-225.
[http://dx.doi.org/10.1016/S1470-2045(00)00292-8] [PMID: 11905767]
[20]
Lath, A.; Santal, A.R.; Kaur, N.; Kumari, P.; Singh, N.P. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol. Genet. Eng. Rev., 2022, 38(1), 1-40.
[http://dx.doi.org/10.1080/02648725.2022.2082157] [PMID: 35699384]
[21]
Seyed, M.A.; Ayesha, S. Marine-derived pipeline anticancer natural products: a review of their pharmacotherapeutic potential and molecular mechanisms. Fut. J. Pharma. Sci., 2021, 7(1), 1-14.
[22]
Jacobsen, S.E.W.; Ruscetti, F.W.; Longo, D.L.; Keller, J.R. Antineoplastic dolastatins: potent inhibitors of hematopoietic progenitor cells. J. Natl. Cancer Inst., 1991, 83(22), 1672-1677.
[http://dx.doi.org/10.1093/jnci/83.22.1672] [PMID: 1749020]
[23]
Liu, W.; Wang, G.; Wang, Z.; Wang, G.; Huang, J.; Liu, B. Repurposing small-molecule drugs for modulating toxic protein aggregates in neurodegenerative diseases. Drug Discov. Today, 2022, 27(7), 1994-2007.
[http://dx.doi.org/10.1016/j.drudis.2022.04.003] [PMID: 35395400]
[24]
Mammari, N.; Salles, E.; Beaussart, A.; El-Kirat-Chatel, S.; Varbanov, M. Squalamine and its aminosterol derivatives: overview of biological effects and mechanisms of action of compounds with multiple therapeutic applications. Microorganisms, 2022, 10(6), 1205.
[http://dx.doi.org/10.3390/microorganisms10061205] [PMID: 35744723]
[25]
Faircloth, G.; Marchante, M.d.C.C.; Kahalalide, F. ES285: potent anticancer agents from marine molluscs; Molluscs, 2006, pp. 363-379.
[26]
Tidke, P.C.; Sangode, C.M.; Umekar, M.J. A voyage from the sea to clinical studies for innovative anticancer therapeutics derived from marine origins. World J. Pharm. Pharm. Sci., 2021, 10(5), 450-476.
[27]
Sparidans, R.W.; Stokvis, E.; Jimeno, J.M.; López-Lázaro, L.; Schellens, J.H.M.; Beijnen, J.H. Chemical and enzymatic stability of a cyclic depsipeptide, the novel, marine-derived, anti-cancer agent kahalalide F. Anticancer Drugs, 2001, 12(7), 575-582.
[http://dx.doi.org/10.1097/00001813-200108000-00003] [PMID: 11487713]
[28]
Sánchez, A.M.; Malagarie-Cazenave, S.; Olea, N.; Vara, D.; Cuevas, C.; Díaz-Laviada, I. Spisulosine (ES-285) induces prostate tumor PC-3 and LNCaP cell death by de novo synthesis of ceramide and PKCζ activation. Eur. J. Pharmacol., 2008, 584(2-3), 237-245.
[http://dx.doi.org/10.1016/j.ejphar.2008.02.011] [PMID: 18343365]
[29]
Lu, W.Y.; Li, H.J.; Li, Q.Y.; Wu, Y.C. Application of marine natural products in drug research. Bioorg. Med. Chem., 2021, 35, 116058.
[http://dx.doi.org/10.1016/j.bmc.2021.116058] [PMID: 33588288]
[30]
Le Tourneau, C.; Faivre, S.; Ciruelos, E.; Domínguez, M.J.; López-Martín, J.A.; Izquierdo, M.A.; Jimeno, J.; Raymond, E. Reports of clinical benefit of plitidepsin (Aplidine), a new marine-derived anticancer agent, in patients with advanced medullary thyroid carcinoma. Am. J. Clin. Oncol., 2010, 33(2), 132-136.
[http://dx.doi.org/10.1097/COC.0b013e318199fb6e] [PMID: 19687728]
[31]
Wu, L.; Ye, K.; Jiang, S.; Zhou, G. Marine power on cancer: Drugs, lead compounds, and mechanisms. Mar. Drugs, 2021, 19(9), 488.
[http://dx.doi.org/10.3390/md19090488] [PMID: 34564150]
[32]
Xie, G.; Zhu, X.; Li, Q.; Gu, M.; He, Z.; Wu, J.; Li, J.; Lin, Y.; Li, M.; She, Z.; Yuan, J. SZ-685C, a marine anthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the Akt/FOXO pathway. Br. J. Pharmacol., 2010, 159(3), 689-697.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00577.x] [PMID: 20128807]
[33]
Giddings, L.A.; Newman, D.J. Extremophilic fungi from marine environments: underexplored sources of antitumor, anti-infective and other biologically active agents. Mar. Drugs, 2022, 20(1), 62.
[http://dx.doi.org/10.3390/md20010062] [PMID: 35049917]
[34]
Zhu, X.; He, Z.; Wu, J.; Yuan, J.; Wen, W.; Hu, Y.; Jiang, Y.; Lin, C.; Zhang, Q.; Lin, M.; Zhang, H.; Yang, W.; Chen, H.; Zhong, L.; She, Z.; Chen, S.; Lin, Y.; Li, M. A marine anthraquinone SZ-685C overrides adriamycin-resistance in breast cancer cells through suppressing Akt signaling. Mar. Drugs, 2012, 10(12), 694-711.
[http://dx.doi.org/10.3390/md10040694] [PMID: 22690138]
[35]
Jeong, S.Y.; Shin, H.J.; Kim, T.S.; Lee, H.S.; Park, S.; Kim, H.M. Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp. KORDI-3238. J. Antibiot., 2006, 59(4), 234-240.
[http://dx.doi.org/10.1038/ja.2006.33] [PMID: 16830891]
[36]
Ma, H.Y.; Song, Y.C.; Mao, Y.Y.; Jiang, J.H.; Tan, R.X.; Luo, L. Endophytic fungal metabolite fumigaclavine C causes relaxation of isolated rat aortic rings. Planta Med., 2006, 72(5), 387-392.
[http://dx.doi.org/10.1055/s-2005-916235] [PMID: 16557450]
[37]
Zihad, S.; Hasan, M.; Sultana, M.S.; Nath, S.; Nahar, L.; Rashid, M.A.; Uddin, S.J.; Sarker, S.D.; Shilpi, J.A. Isolation and characterization of antibacterial compounds from Aspergillus fumigatus: an endophytic fungus from a mangrove plant of the sundarbans. Evi. Based Compl. Alter. Med., 2022, 2022, 1-10.
[38]
Li, Y.X.; Himaya, S.W.A.; Dewapriya, P.; Zhang, C.; Kim, S.K. Fumigaclavine C from a marine-derived fungus Aspergillus fumigatus induces apoptosis in MCF-7 breast cancer cells. Mar. Drugs, 2013, 11(12), 5063-5086.
[http://dx.doi.org/10.3390/md11125063] [PMID: 24351905]
[39]
Akl, M.; Foudah, A.; Ebrahim, H.; Meyer, S.; Sayed, K. The marine-derived sipholenol A-4-O-3′,4′-dichlorobenzoate inhibits breast cancer growth and motility in vitro and in vivo through the suppression of Brk and FAK signaling. Mar. Drugs, 2014, 12(4), 2282-2304.
[http://dx.doi.org/10.3390/md12042282] [PMID: 24736807]
[40]
Mujumdar, P.; Teruya, K.; Tonissen, K.F.; Vullo, D.; Supuran, C.T.; Peat, T.S.; Poulsen, S.A. An unusual natural product primary sulfonamide: synthesis, carbonic anhydrase inhibition, and protein X-ray structures of psammaplin C. J. Med. Chem., 2016, 59(11), 5462-5470.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00443] [PMID: 27172398]
[41]
Yang, Q.; Liu, D.; Sun, D.; Yang, S.; Hu, G.; Wu, Z.; Zhao, L. Synthesis of the marine bromotyrosine psammaplin F and crystal structure of a psammaplin A analogue. Molecules, 2010, 15(12), 8784-8795.
[http://dx.doi.org/10.3390/molecules15128784] [PMID: 21127464]
[42]
Park, Y.; Liu, Y.; Hong, J.; Lee, C.O.; Cho, H.; Kim, D.K.; Im, K.S.; Jung, J.H. New bromotyrosine derivatives from an association of two sponges, Jaspis wondoensis and Poecillastra wondoensis. J. Nat. Prod., 2003, 66(11), 1495-1498.
[http://dx.doi.org/10.1021/np030162j] [PMID: 14640526]
[43]
Piña, I.C.; Gautschi, J.T.; Wang, G.Y.S.; Sanders, M.L.; Schmitz, F.J.; France, D.; Cornell-Kennon, S.; Sambucetti, L.C.; Remiszewski, S.W.; Perez, L.B.; Bair, K.W.; Crews, P. Psammaplins from the sponge Pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase. J. Org. Chem., 2003, 68(10), 3866-3873.
[http://dx.doi.org/10.1021/jo034248t] [PMID: 12737565]
[44]
Zhou, Y.D.; Li, J.; Du, L.; Mahdi, F.; Le, T.; Chen, W.L.; Swanson, S.; Watabe, K.; Nagle, D. Biochemical and anti-triple negative metastatic breast tumor cell properties of psammaplins. Mar. Drugs, 2018, 16(11), 442.
[http://dx.doi.org/10.3390/md16110442] [PMID: 30423844]
[45]
Jing, Q.; Hu, X.; Ma, Y.; Mu, J.; Liu, W.; Xu, F.; Li, Z.; Bai, J.; Hua, H.; Li, D. Marine-derived natural lead compound disulfide-linked dimer psammaplin A: biological activity and structural modification. Mar. Drugs, 2019, 17(7), 384.
[http://dx.doi.org/10.3390/md17070384] [PMID: 31252563]
[46]
Gomes, N.G.M.; Pereira, R.B.; Andrade, P.B.; Valentão, P. Double the chemistry, double the fun: Structural diversity and biological activity of marine-derived diketopiperazine dimers. Mar. Drugs, 2019, 17(10), 551.
[http://dx.doi.org/10.3390/md17100551] [PMID: 31569621]
[47]
Lin, A.Q.; Du, L.; Fang, Y.C.; Wang, F.Z.; Zhu, T.J.; Gu, Q.Q.; Zhu, W.M. iso-α-Cyclopiazonic acid, a new natural product isolated from the marine-derived fungus Aspergillus flavus C-F-3. Chem. Nat. Compd., 2009, 45(5), 677-680.
[http://dx.doi.org/10.1007/s10600-009-9433-8]
[48]
Sun, K.; Li, Y.; Guo, L.; Wang, Y.; Liu, P.; Zhu, W. Indole diterpenoids and isocoumarin from the fungus, Aspergillus flavus, isolated from the prawn, Penaeus vannamei. Mar. Drugs, 2014, 12(7), 3970-3981.
[http://dx.doi.org/10.3390/md12073970] [PMID: 24983640]
[49]
Ding, L.; Li, F.; Qin, M.; Qin, S.; Kelter, G.; Fiebig, H.; Laatsch, H. Antitumor compounds isolated from marine Aspergillus sp. Chin. J. Nat. Med., 2009, 6(6), 421-424.
[http://dx.doi.org/10.3724/SP.J.1009.2008.00421]
[50]
Overman, L.E.; Paone, D.V. Enantioselective total syntheses of ditryptophenaline and ent-WIN 64821. J. Am. Chem. Soc., 2001, 123(38), 9465-9467.
[http://dx.doi.org/10.1021/ja0166141] [PMID: 11562239]
[51]
Xu, J.; Hu, Q.; Ding, W.; Wang, P.; Di, Y. New asymmetrical bispyrrolidinoindoline diketopiperazines from the marine fungus Aspergillus sp. DX4H. Nat. Prod. Res., 2018, 32(7), 815-820.
[http://dx.doi.org/10.1080/14786419.2017.1363752] [PMID: 28786310]
[52]
Gu, B.B.; Gui, Y.H.; Liu, L.; Su, Z.Y.; Jiao, W.; Li, L.; Sun, F.; Wang, S.P.; Yang, F.; Lin, H.W. A new asymmetric diketopiperazine dimer from the sponge-associated fungus Aspergillus versicolor 16F-11. Magn. Reson. Chem., 2019, 57(1), 49-54.
[http://dx.doi.org/10.1002/mrc.4780] [PMID: 29981526]
[53]
Cho, K.H.; Sohn, J.H.; Oh, H. Isolation and structure determination of a new diketopiperazine dimer from marine-derived fungus Aspergillus sp. SF-5280. Nat. Prod. Res., 2018, 32(2), 214-221.
[http://dx.doi.org/10.1080/14786419.2017.1346642] [PMID: 28670919]
[54]
Kaur, A.; Raja, H.A.; Darveaux, B.A.; Chen, W.L.; Swanson, S.M.; Pearce, C.J.; Oberlies, N.H. New diketopiperazine dimer from a filamentous fungal isolate of Aspergillus sydowii. Magn. Reson. Chem., 2015, 53(8), 616-619.
[http://dx.doi.org/10.1002/mrc.4254] [PMID: 26040447]
[55]
Ovenden, S.P.B.; Sberna, G.; Tait, R.M.; Wildman, H.G.; Patel, R.; Li, B.; Steffy, K.; Nguyen, N.; Meurer-Grimes, B.M. A diketopiperazine dimer from a marine-derived isolate of Aspergillus niger. J. Nat. Prod., 2004, 67(12), 2093-2095.
[http://dx.doi.org/10.1021/np0497494] [PMID: 15620260]
[56]
May Zin, W.W.; Buttachon, S.; Dethoup, T.; Pereira, J.A.; Gales, L.; Inácio, Â.; Costa, P.M.; Lee, M.; Sekeroglu, N.; Silva, A.M.S.; Pinto, M.M.M.; Kijjoa, A. Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006. Phytochemistry, 2017, 141, 86-97.
[http://dx.doi.org/10.1016/j.phytochem.2017.05.015] [PMID: 28586721]
[57]
Du, F.Y.; Li, X.M.; Li, C.S.; Shang, Z.; Wang, B.G.; Cristatumins, A-D. Cristatumins A–D, new indole alkaloids from the marine-derived endophytic fungus Eurotium cristatum EN-220. Bioorg. Med. Chem. Lett., 2012, 22(14), 4650-4653.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.088] [PMID: 22727636]
[58]
Lorenzo, P.; Álvarez, R.; de Lera, Á.R. Total synthesis and structural revision of (+)-cristatumin C. J. Nat. Prod., 2014, 77(2), 421-423.
[http://dx.doi.org/10.1021/np400969u] [PMID: 24437951]
[59]
Liu, J.; Gu, B.; Yang, L.; Yang, F.; Lin, H. New anti-inflammatory cyclopeptides from a sponge-derived fungus Aspergillus violaceofuscus. Front Chem., 2018, 6, 226.
[http://dx.doi.org/10.3389/fchem.2018.00226] [PMID: 29963550]
[60]
Lu, C.; Paschall, A.V.; Shi, H.; Savage, N.; Waller, J.L.; Sabbatini, M.E.; Oberlies, N.H.; Pearce, C.; Liu, K. The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion. J. Natl. Cancer Inst., 2017, 109(6), djw283.
[http://dx.doi.org/10.1093/jnci/djw283] [PMID: 28131992]
[61]
Paschall, A.V.; Yang, D.; Lu, C.; Choi, J.H.; Li, X.; Liu, F.; Figueroa, M.; Oberlies, N.H.; Pearce, C.; Bollag, W.B.; Nayak-Kapoor, A.; Liu, K. H3K9 trimethylation silences Fas expression to confer colon carcinoma immune escape and 5-fluorouracil chemoresistance. J. Immunol., 2015, 195(4), 1868-1882.
[http://dx.doi.org/10.4049/jimmunol.1402243] [PMID: 26136424]
[62]
Figueroa, M.; Graf, T.N.; Ayers, S.; Adcock, A.F.; Kroll, D.J.; Yang, J.; Swanson, S.M.; Munoz-Acuna, U.; Carcache de Blanco, E.J.; Agrawal, R.; Wani, M.C.; Darveaux, B.A.; Pearce, C.J.; Oberlies, N.H. Cytotoxic epipolythiodioxopiperazine alkaloids from filamentous fungi of the Bionectriaceae. J. Antibiot. (Tokyo), 2012, 65(11), 559-564.
[http://dx.doi.org/10.1038/ja.2012.69] [PMID: 22968289]
[63]
Dong, J.Y.; He, H.P.; Shen, Y.M.; Zhang, K.Q. Nematicidal Epipolysulfanyldioxopiperazines from Gliocladium r oseum. J. Nat. Prod., 2005, 68(10), 1510-1513.
[http://dx.doi.org/10.1021/np0502241] [PMID: 16252916]
[64]
Ebrahim, W.; Kjer, J.; El Amrani, M.; Wray, V.; Lin, W.; Ebel, R.; Lai, D.; Proksch, P. Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris. Mar. Drugs, 2012, 10(12), 1081-1091.
[http://dx.doi.org/10.3390/md10051081] [PMID: 22822358]
[65]
Zheng, C.J.; Kim, C.J.; Bae, K.S.; Kim, Y.H.; Kim, W.G.; Bionectins, A.C. Bionectins A-C, epidithiodioxopiperazines with anti-MRSA activity, from Bionectra byssicola F120. J. Nat. Prod., 2006, 69(12), 1816-1819.
[http://dx.doi.org/10.1021/np060348t] [PMID: 17190469]
[66]
Greiner, D.; Bonaldi, T.; Eskeland, R.; Roemer, E.; Imhof, A. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat. Chem. Biol., 2005, 1(3), 143-145.
[http://dx.doi.org/10.1038/nchembio721] [PMID: 16408017]
[67]
Greiner, D.; Bonaldi, T.; Eskeland, R.; Roemer, E.; Imhof, A. Reply to “Chaetocin is a nonspecific inhibitor of histone lysine methyltransferases”. Nat. Chem. Biol., 2013, 9(3), 137-137.
[http://dx.doi.org/10.1038/nchembio.1188] [PMID: 23416388]
[68]
Zhang, D.; Shu, C.; Lian, X.; Zhang, Z. New antibacterial bagremycins F and G from the marine-derived Streptomyces sp. ZZ745. Mar. Drugs, 2018, 16(9), 330.
[http://dx.doi.org/10.3390/md16090330] [PMID: 30213054]
[69]
Kang, D.Y.; Sp, N.; Lee, J.M.; Jang, K.J. Antitumor effects of ursolic acid through mediating the inhibition of STAT3/PD-L1 signaling in non-small cell lung cancer cells. Biomedicines, 2021, 9(3), 297.
[http://dx.doi.org/10.3390/biomedicines9030297] [PMID: 33805840]
[70]
Tian, T.; Liu, X.; Lee, E.S.; Sun, J.; Feng, Z.; Zhao, L.; Zhao, C. Synthesis of novel oleanolic acid and ursolic acid in C-28 position derivatives as potential anticancer agents. Arch. Pharm. Res., 2017, 40(4), 458-468.
[http://dx.doi.org/10.1007/s12272-016-0868-8] [PMID: 28101738]
[71]
Chi, K.Q.; Wei, Z.Y.; Wang, K.S.; Wu, J.; Chen, W.Q.; Jin, X.J.; Piao, H.R. Design, synthesis, and evaluation of novel ursolic acid derivatives as HIF-1α inhibitors with anticancer potential. Bioorg. Chem., 2017, 75, 157-169.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.013] [PMID: 28950243]
[72]
Liu, M.C.; Yang, S.J.; Jin, L.H.; Hu, D.Y.; Xue, W.; Yang, S. Synthesis and evaluation as potential antitumor agents of novel ursolic acid derivatives. Med. Chem. Res., 2016, 25(10), 2267-2279.
[http://dx.doi.org/10.1007/s00044-016-1680-1]
[73]
Hua, S.X.; Huang, R.Z.; Ye, M.Y.; Pan, Y.M.; Yao, G.Y.; Zhang, Y.; Wang, H.S. Design, synthesis and in vitro evaluation of novel ursolic acid derivatives as potential anticancer agents. Eur. J. Med. Chem., 2015, 95, 435-452.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.051] [PMID: 25841199]
[74]
Wiemann, J.; Heller, L.; Csuk, R. Targeting cancer cells with oleanolic and ursolic acid derived hydroxamates. Bioorg. Med. Chem. Lett., 2016, 26(3), 907-909.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.064] [PMID: 26750249]
[75]
Nedopekina, D.A.; Gubaidullin, R.R.; Odinokov, V.N.; Maximchik, P.V.; Zhivotovsky, B.; Bel’skii, Y.P.; Khazanov, V.A.; Manuylova, A.V.; Gogvadze, V.; Spivak, A.Y. Mitochondria-targeted betulinic and ursolic acid derivatives: synthesis and anticancer activity. MedChemComm, 2017, 8(10), 1934-1945.
[http://dx.doi.org/10.1039/C7MD00248C] [PMID: 30108714]
[76]
Jiang, W.; Huang, R.Z.; Zhang, J.; Guo, T.; Zhang, M.T.; Huang, X.C.; Zhang, B.; Liao, Z.X.; Sun, J.; Wang, H.S. Discovery of antitumor ursolic acid long-chain diamine derivatives as potent inhibitors of NF-κB. Bioorg. Chem., 2018, 79, 265-276.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.005] [PMID: 29778798]
[77]
Kawahara, T.; Fujiwara, T.; Kagaya, N.; Shin-ya, K. JBIR-150, a novel 20-membered polyene macrolactam from marine-derived Streptomyces sp. OPMA00071. J. Antibiot. , 2018, 71(3), 390-392.
[http://dx.doi.org/10.1038/s41429-017-0010-2] [PMID: 29348521]
[78]
Zhang, W.; Li, S.; Zhu, Y.; Chen, Y.; Chen, Y.; Zhang, H.; Zhang, G.; Tian, X.; Pan, Y.; Zhang, S.; Zhang, W.; Zhang, C.; Heronamides, D.F. Polyketide macrolactams from the deep-sea-derived Streptomyces sp. SCSIO 03032. J. Nat. Prod., 2014, 77(2), 388-391.
[http://dx.doi.org/10.1021/np400665a] [PMID: 24547685]
[79]
Ding, Y.; An, F.; Zhu, X.; Yu, H.; Hao, L.; Lu, Y.; Curdepsidones, B-G. six depsidones with anti-inflammatory activities from the marine-derived fungus Curvularia sp. IFB-Z10. Mar. Drugs, 2019, 17(5), 266.
[http://dx.doi.org/10.3390/md17050266] [PMID: 31060304]
[80]
Zhu, G.; Kong, F.; Wang, Y.; Fu, P.; Zhu, W. Cladodionen, a cytotoxic hybrid polyketide from the marine-derived Cladosporium sp. OUCMDZ-1635. Mar. Drugs, 2018, 16(2), 71.
[http://dx.doi.org/10.3390/md16020071] [PMID: 29470403]
[81]
Wang, M.; Zhao, L.; Wu, H.; Zhao, C.; Gong, Q.; Yu, W. Cladodionen is a potential quorum sensing inhibitor against Pseudomonas aeruginosa. Mar. Drugs, 2020, 18(4), 205.
[http://dx.doi.org/10.3390/md18040205] [PMID: 32290259]
[82]
Figuerola, B.; Avila, C. The phylum bryozoa as a promising source of anticancer drugs. Mar. Drugs, 2019, 17(8), 477.
[http://dx.doi.org/10.3390/md17080477] [PMID: 31426556]
[83]
Karthikeyan, A.; Joseph, A.; Nair, B.G. Promising bioactive compounds from the marine environment and their potential effects on various diseases. J. Genet. Eng. Biotechnol., 2022, 20(1), 14.
[http://dx.doi.org/10.1186/s43141-021-00290-4] [PMID: 35080679]

© 2024 Bentham Science Publishers | Privacy Policy