Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Commentary

Bidirectional Communication Between Microglia and Astrocytes in Neuroinflammation

Author(s): Anup Bhusal, Ruqayya Afridi, Won-Ha Lee and Kyoungho Suk*

Volume 21, Issue 10, 2023

Published on: 06 January, 2023

Page: [2020 - 2029] Pages: 10

DOI: 10.2174/1570159X21666221129121715

Abstract

Neuroinflammation is a common feature of diverse nervous system pathologies. In many instances, it begins at an early stage of the disease, paving the way for further exacerbations. The main drivers of neuroinflammation are brain-resident glial cells, such as microglia and astrocytes. Microglia are the primary responders to any insult to the brain parenchyma, translating the signals into diverse molecules. These molecules derived from microglia can regulate the stimuli-dependent reactivity of astrocytes. Once activated, astrocytes in turn, can control microglia phenotypes. Recent evidence indicates that the crosstalk between these glial cells plays an important role in delaying or accelerating neuroinflammation and overall disease progression. To date, various molecules have been recognized as key mediators of the bidirectional communication between microglia and astrocytes. The current review aims to discuss the novel molecules identified recently, which play a critical role in interglial crosstalk, highlighting their therapeutic potential.

Keywords: Microglia, astrocytes, crosstalk, neuroinflammation, glia, central nervous system.

Graphical Abstract
[1]
Nimmerjahn, A.; Kirchhoff, F.; Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 2005, 308(5726), 1314-1318.
[http://dx.doi.org/10.1126/science.1110647] [PMID: 15831717]
[2]
Jha, M.K.; Jo, M.; Kim, J.H.; Suk, K. Microglia-astrocyte crosstalk: An intimate molecular conversation. Neuroscientist, 2019, 25(3), 227-240.
[http://dx.doi.org/10.1177/1073858418783959] [PMID: 29931997]
[3]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[4]
Clark, I.C.; Gutiérrez-Vázquez, C.; Wheeler, M.A.; Li, Z.; Rothhammer, V.; Linnerbauer, M.; Sanmarco, L.M.; Guo, L.; Blain, M.; Zandee, S.E.J.; Chao, C.C.; Batterman, K.V.; Schwabenland, M.; Lotfy, P.; Tejeda-Velarde, A.; Hewson, P.; Manganeli Polonio, C.; Shultis, M.W.; Salem, Y.; Tjon, E.C.; Fonseca-Castro, P.H.; Borucki, D.M.; Alves de Lima, K.; Plasencia, A.; Abate, A.R.; Rosene, D.L.; Hodgetts, K.J.; Prinz, M.; Antel, J.P.; Prat, A.; Quintana, F.J. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science, 2021, 372(6540), eabf1230.
[http://dx.doi.org/10.1126/science.abf1230] [PMID: 33888612]
[5]
Gong, Q.; Lin, Y.; Lu, Z.; Xiao, Z. Microglia-astrocyte cross talk through IL-18/IL-18R signaling modulates migraine-like behavior in experimental models of migraine. Neuroscience, 2020, 451, 207-215.
[http://dx.doi.org/10.1016/j.neuroscience.2020.10.019] [PMID: 33137409]
[6]
Xie, L.; Zhang, N.; Zhang, Q.; Li, C.; Sandhu, A.F.; Iii, G.W.; Lin, S.; Lv, P.; Liu, Y.; Wu, Q.; Yu, S. Inflammatory factors and amyloid β-induced microglial polarization promote inflammatory crosstalk with astrocytes. Aging (Albany NY), 2020, 12(22), 22538-22549.
[http://dx.doi.org/10.18632/aging.103663] [PMID: 33196457]
[7]
Li, T.; Liu, T.; Chen, X.; Li, L.; Feng, M.; Zhang, Y.; Wan, L.; Zhang, C.; Yao, W. Microglia induce the transformation of A1/A2 reactive astrocytes via the CXCR7/PI3K/Akt pathway in chronic post-surgical pain. J. Neuroinflammation, 2020, 17(1), 211.
[http://dx.doi.org/10.1186/s12974-020-01891-5] [PMID: 32665021]
[8]
Sano, F.; Shigetomi, E.; Shinozaki, Y.; Tsuzukiyama, H.; Saito, K.; Mikoshiba, K.; Horiuchi, H.; Cheung, D.L.; Nabekura, J.; Sugita, K.; Aihara, M.; Koizumi, S. Reactive astrocyte-driven epileptogenesis is induced by microglia initially activated following status epilepticus. JCI Insight, 2021, 6(9), e135391.
[http://dx.doi.org/10.1172/jci.insight.135391] [PMID: 33830944]
[9]
Yun, S.P.; Kam, T.I.; Panicker, N.; Kim, S.; Oh, Y.; Park, J.S.; Kwon, S.H.; Park, Y.J.; Karuppagounder, S.S.; Park, H.; Kim, S.; Oh, N.; Kim, N.A.; Lee, S.; Brahmachari, S.; Mao, X.; Lee, J.H.; Kumar, M.; An, D.; Kang, S.U.; Lee, Y.; Lee, K.C.; Na, D.H.; Kim, D.; Lee, S.H.; Roschke, V.V.; Liddelow, S.A.; Mari, Z.; Barres, B.A.; Dawson, V.L.; Lee, S.; Dawson, T.M.; Ko, H.S. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat. Med., 2018, 24(7), 931-938.
[http://dx.doi.org/10.1038/s41591-018-0051-5] [PMID: 29892066]
[10]
Xu, X.; Zhang, A.; Zhu, Y.; He, W.; Di, W.; Fang, Y.; Shi, X. MFG‐E8 reverses microglial‐induced neurotoxic astrocyte (A1) via NF‐κB and PI3K‐Akt pathways. J. Cell. Physiol., 2019, 234(1), 904-914.
[http://dx.doi.org/10.1002/jcp.26918] [PMID: 30076715]
[11]
Rothhammer, V.; Borucki, D.M.; Tjon, E.C.; Takenaka, M.C.; Chao, C.C.; Ardura-Fabregat, A.; de Lima, K.A.; Gutiérrez-Vázquez, C.; Hewson, P.; Staszewski, O.; Blain, M.; Healy, L.; Neziraj, T.; Borio, M.; Wheeler, M.; Dragin, L.L.; Laplaud, D.A.; Antel, J.; Alvarez, J.I.; Prinz, M.; Quintana, F.J. Microglial control of astrocytes in response to microbial metabolites. Nature, 2018, 557(7707), 724-728.
[http://dx.doi.org/10.1038/s41586-018-0119-x] [PMID: 29769726]
[12]
Cheng, L.; Zheng, M-G.; Jing, J-H.; Yu, S-S.; Li, Z-Y.; Xu, X-Z.; Yao, F.; Luo, Y.; Liu, Y-C. M1-type microglia can induce astrocytes to deposit chondroitin sulfate proteoglycan after spinal cord injury. Neural Regen. Res., 2022, 17(5), 1072-1079.
[http://dx.doi.org/10.4103/1673-5374.324858] [PMID: 34558535]
[13]
Ye, Y.; Hao, J.; Hong, Z.; Wu, T.; Ge, X.; Qian, B.; Chen, X.; Zhang, F. Downregulation of microRNA-145-5p in activated microglial exosomes promotes astrocyte proliferation by removal of Smad3 inhibition. Neurochem. Res., 2022, 47(2), 382-393.
[http://dx.doi.org/10.1007/s11064-021-03446-3] [PMID: 34623564]
[14]
Peng, J.; Yi, M.H.; Jeong, H.; McEwan, P.P.; Zheng, J.; Wu, G.; Ganatra, S.; Ren, Y.; Richardson, J.R.; Oh, S.B.; Wu, L.J. The voltage-gated proton channel Hv1 promotes microglia-astrocyte communication and neuropathic pain after peripheral nerve injury. Mol. Brain, 2021, 14(1), 99.
[http://dx.doi.org/10.1186/s13041-021-00812-8] [PMID: 34183051]
[15]
Joshi, A.U.; Minhas, P.S.; Liddelow, S.A.; Haileselassie, B.; Andreasson, K.I.; Dorn, G.W., II; Mochly-Rosen, D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci., 2019, 22(10), 1635-1648.
[http://dx.doi.org/10.1038/s41593-019-0486-0] [PMID: 31551592]
[16]
Bellver-Landete, V.; Bretheau, F.; Mailhot, B.; Vallières, N.; Lessard, M.; Janelle, M.E.; Vernoux, N.; Tremblay, M.È.; Fuehrmann, T.; Shoichet, M.S.; Lacroix, S. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat. Commun., 2019, 10(1), 518.
[http://dx.doi.org/10.1038/s41467-019-08446-0] [PMID: 30705270]
[17]
Zhou, X.; Wahane, S.; Friedl, M.S.; Kluge, M.; Friedel, C.C.; Avrampou, K.; Zachariou, V.; Guo, L.; Zhang, B.; He, X.; Friedel, R.H.; Zou, H. Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2. Nat. Neurosci., 2020, 23(3), 337-350.
[http://dx.doi.org/10.1038/s41593-020-0597-7] [PMID: 32112058]
[18]
Li, Z.; Song, Y.; He, T.; Wen, R.; Li, Y.; Chen, T.; Huang, S.; Wang, Y.; Tang, Y.; Shen, F.; Tian, H.L.; Yang, G.Y.; Zhang, Z. M2 microglial small extracellular vesicles reduce glial scar formation via the miR-124/STAT3 pathway after ischemic stroke in mice. Theranostics, 2021, 11(3), 1232-1248.
[http://dx.doi.org/10.7150/thno.48761] [PMID: 33391532]
[19]
Guo, X.; Kimura, A.; Namekata, K.; Harada, C.; Arai, N.; Takeda, K.; Ichijo, H.; Harada, T. ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proc. Natl. Acad. Sci. USA, 2022, 119(6), e2103812119.
[http://dx.doi.org/10.1073/pnas.2103812119] [PMID: 35101972]
[20]
Paldy, E.; Simonetti, M.; Worzfeld, T.; Bali, K.K.; Vicuña, L.; Offermanns, S.; Kuner, R. Semaphorin 4C Plexin-B2 signaling in peripheral sensory neurons is pronociceptive in a model of inflammatory pain. Nat. Commun., 2017, 8(1), 176.
[http://dx.doi.org/10.1038/s41467-017-00341-w] [PMID: 28765520]
[21]
Southwell, A.L.; Franciosi, S.; Villanueva, E.B.; Xie, Y.; Winter, L.A.; Veeraraghavan, J.; Jonason, A.; Felczak, B.; Zhang, W.; Kovalik, V.; Waltl, S.; Hall, G.; Pouladi, M.A.; Smith, E.S.; Bowers, W.J.; Zauderer, M.; Hayden, M.R. Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease. Neurobiol. Dis., 2015, 76, 46-56.
[http://dx.doi.org/10.1016/j.nbd.2015.01.002] [PMID: 25662335]
[22]
Zhou, Y.; Guo, S.; Botchway, B.O.A.; Zhang, Y.; Jin, T.; Liu, X. Muscone can improve spinal cord injury by activating the angiogenin/plexin-B2 Axis. Mol. Neurobiol., 2022, 59(9), 5891-5901.
[http://dx.doi.org/10.1007/s12035-022-02948-7] [PMID: 35809154]
[23]
Jordão, M.J.C.; Sankowski, R.; Brendecke, S.M.; Sagar; Locatelli, G.; Tai, Y.H.; Tay, T.L.; Schramm, E.; Armbruster, S.; Hagemeyer, N.; Groß, O.; Mai, D.; Çiçek, Ö.; Falk, T.; Kerschensteiner, M.; Grün, D.; Prinz, M. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science, 2019, 363(6425), eaat7554.
[http://dx.doi.org/10.1126/science.aat7554] [PMID: 30679343]
[24]
Ajami, B.; Samusik, N.; Wieghofer, P.; Ho, P.P.; Crotti, A.; Bjornson, Z.; Prinz, M.; Fantl, W.J.; Nolan, G.P.; Steinman, L. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat. Neurosci., 2018, 21(4), 541-551.
[http://dx.doi.org/10.1038/s41593-018-0100-x] [PMID: 29507414]
[25]
Goldmann, T.; Wieghofer, P.; Jordão, M.J.C.; Prutek, F.; Hagemeyer, N.; Frenzel, K.; Amann, L.; Staszewski, O.; Kierdorf, K.; Krueger, M.; Locatelli, G.; Hochgerner, H.; Zeiser, R.; Epelman, S.; Geissmann, F.; Priller, J.; Rossi, F.M.V.; Bechmann, I.; Kerschensteiner, M.; Linnarsson, S.; Jung, S.; Prinz, M. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol., 2016, 17(7), 797-805.
[http://dx.doi.org/10.1038/ni.3423] [PMID: 27135602]
[26]
O’Neil, S.M.; Hans, E.E.; Jiang, S.; Wangler, L.M.; Godbout, J.P. Astrocyte immunosenescence and deficits in interleukin 10 signaling in the aged brain disrupt the regulation of microglia following innate immune activation. Glia, 2022, 70(5), 913-934.
[http://dx.doi.org/10.1002/glia.24147] [PMID: 35061297]
[27]
Rong, Y.; Ji, C.; Wang, Z.; Ge, X.; Wang, J.; Ye, W.; Tang, P.; Jiang, D.; Fan, J.; Yin, G.; Liu, W.; Cai, W. Small extracellular vesicles encapsulating CCL2 from activated astrocytes induce microglial activation and neuronal apoptosis after traumatic spinal cord injury. J. Neuroinflammation, 2021, 18(1), 196.
[http://dx.doi.org/10.1186/s12974-021-02268-y] [PMID: 34511129]
[28]
Kim, S.; Son, Y. Astrocytes stimulate microglial proliferation and M2 polarization in vitro through crosstalk between astrocytes and microglia. Int. J. Mol. Sci., 2021, 22(16), 8800.
[http://dx.doi.org/10.3390/ijms22168800] [PMID: 34445510]
[29]
Canedo, T.; Portugal, C.C.; Socodato, R.; Almeida, T.O.; Terceiro, A.F.; Bravo, J.; Silva, A.I.; Magalhães, J.D.; Guerra-Gomes, S.; Oliveira, J.F.; Sousa, N.; Magalhães, A.; Relvas, J.B.; Summavielle, T. Astrocyte-derived TNF and glutamate critically modulate microglia activation by methamphetamine. Neuropsychopharmacology, 2021, 46(13), 2358-2370.
[http://dx.doi.org/10.1038/s41386-021-01139-7] [PMID: 34400780]
[30]
Shi, S.X.; Li, Y.J.; Shi, K.; Wood, K.; Ducruet, A.F.; Liu, Q.IL (Interleukin)-15 bridges astrocyte-microglia crosstalk and exacerbates brain injury following intracerebral hemorrhage. Stroke, 2020, 51(3), 967-974.
[http://dx.doi.org/10.1161/STROKEAHA.119.028638] [PMID: 32019481]
[31]
Wang, T.; Sun, Q.; Yang, J.; Wang, G.; Zhao, F.; Chen, Y.; Jin, Y. Reactive astrocytes induced by 2-chloroethanol modulate microglia polarization through IL-1β, TNF-α, and iNOS upregulation. Food Chem. Toxicol., 2021, 157, 112550.
[http://dx.doi.org/10.1016/j.fct.2021.112550] [PMID: 34517076]
[32]
Yoshizaki, S.; Tamaru, T.; Hara, M.; Kijima, K.; Tanaka, M.; Konno, D.; Matsumoto, Y.; Nakashima, Y.; Okada, S. Microglial inflammation after chronic spinal cord injury is enhanced by reactive astrocytes via the fibronectin/β1 integrin pathway. J. Neuroinflammation, 2021, 18(1), 12.
[http://dx.doi.org/10.1186/s12974-020-02059-x] [PMID: 33407620]
[33]
Rueda-Carrasco, J.; Martin-Bermejo, M.J.; Pereyra, G.; Mateo, M.I.; Borroto, A.; Brosseron, F.; Kummer, M.P.; Schwartz, S.; López-Atalaya, J.P.; Alarcon, B.; Esteve, P.; Heneka, M.T.; Bovolenta, P. SFRP1 modulates astrocyte‐to‐microglia crosstalk in acute and chronic neuroinflammation. EMBO Rep., 2021, 22(11), e51696.
[http://dx.doi.org/10.15252/embr.202051696] [PMID: 34569685]
[34]
Ouali Alami, N.; Schurr, C.; Olde Heuvel, F.; Tang, L.; Li, Q.; Tasdogan, A.; Kimbara, A.; Nettekoven, M.; Ottaviani, G.; Raposo, C.; Röver, S.; Rogers-Evans, M.; Rothenhäusler, B.; Ullmer, C.; Fingerle, J.; Grether, U.; Knuesel, I.; Boeckers, T.M.; Ludolph, A.; Wirth, T.; Roselli, F.; Baumann, B. NF‐κB activation in astrocytes drives a stage‐specific beneficial neuroimmunological response in ALS. EMBO J., 2018, 37(16), e98697.
[http://dx.doi.org/10.15252/embj.201798697] [PMID: 29875132]
[35]
Kano, S.; Choi, E.Y.; Dohi, E.; Agarwal, S.; Chang, D.J.; Wilson, A.M.; Lo, B.D.; Rose, I.V.L.; Gonzalez, S.; Imai, T.; Sawa, A. Glutathione S -transferases promote proinflammatory astrocyte-microglia communication during brain inflammation. Sci. Signal., 2019, 12(569), eaar2124.
[http://dx.doi.org/10.1126/scisignal.aar2124] [PMID: 30783009]
[36]
Li, J.; Wang, H.; Du, C.; Jin, X.; Geng, Y.; Han, B.; Ma, Q.; Li, Q.; Wang, Q.; Guo, Y.; Wang, M.; Yan, B. hUC-MSCs ameliorated CUMS-induced depression by modulating complement C3 signaling-mediated microglial polarization during astrocyte-microglia crosstalk. Brain Res. Bull., 2020, 163, 109-119.
[http://dx.doi.org/10.1016/j.brainresbull.2020.07.004] [PMID: 32681971]
[37]
Chen, T.; Lennon, V.A.; Liu, Y.U.; Bosco, D.B.; Li, Y.; Yi, M.H.; Zhu, J.; Wei, S.; Wu, L.J. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J. Clin. Invest., 2020, 130(8)
[http://dx.doi.org/10.1172/JCI134816] [PMID: 32568214]
[38]
Lian, H.; Litvinchuk, A.; Chiang, A.C.A.; Aithmitti, N.; Jankowsky, J.L.; Zheng, H. Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J. Neurosci., 2016, 36(2), 577-589.
[http://dx.doi.org/10.1523/JNEUROSCI.2117-15.2016] [PMID: 26758846]
[39]
Tang, J.; Jila, S.; Luo, T.; Zhang, B.; Miao, H.; Feng, H.; Chen, Z.; Zhu, G. C3/C3aR inhibition alleviates GMH-IVH-induced hydrocephalus by preventing microglia-astrocyte interactions in neonatal rats. Neuropharmacology, 2022, 205, 108927.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108927] [PMID: 34921829]
[40]
Wei, Y.; Chen, T.; Bosco, D.B.; Xie, M.; Zheng, J.; Dheer, A.; Ying, Y.; Wu, Q.; Lennon, V.A.; Wu, L.J. The complement C3‐C3AR pathway mediates microglia-astrocyte interaction following status epilepticus. Glia, 2021, 69(5), 1155-1169.
[http://dx.doi.org/10.1002/glia.23955] [PMID: 33314324]
[41]
Zhang, L.Y.; Pan, J.; Mamtilahun, M.; Zhu, Y.; Wang, L.; Venkatesh, A.; Shi, R.; Tu, X.; Jin, K.; Wang, Y.; Zhang, Z.; Yang, G.Y. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics, 2020, 10(1), 74-90.
[http://dx.doi.org/10.7150/thno.35841] [PMID: 31903107]
[42]
Hartmann, K.; Sepulveda-Falla, D.; Rose, I.V.L.; Madore, C.; Muth, C.; Matschke, J.; Butovsky, O.; Liddelow, S.; Glatzel, M.; Krasemann, S. Complement 3+-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathol. Commun., 2019, 7(1), 83.
[http://dx.doi.org/10.1186/s40478-019-0735-1] [PMID: 31118110]
[43]
Moinfar, Z.; Zamvil, S.S. Microglia complement astrocytes in neuromyelitis optica. J. Clin. Invest., 2020, 130(8), 3961-3964.
[PMID: 32568215]
[44]
Bhusal, A.; Nam, Y.; Seo, D.; Rahman, M.H.; Hwang, E.M.; Kim, S.C.; Lee, W.H.; Suk, K. Cathelicidin‐related antimicrobial peptide promotes neuroinflammation through astrocyte-microglia communication in experimental autoimmune encephalomyelitis. Glia, 2022, 70(10), 1902-1926.
[http://dx.doi.org/10.1002/glia.24227] [PMID: 35670184]
[45]
McAlpine, C.S.; Park, J.; Griciuc, A.; Kim, E.; Choi, S.H.; Iwamoto, Y.; Kiss, M.G.; Christie, K.A.; Vinegoni, C.; Poller, W.C.; Mindur, J.E.; Chan, C.T.; He, S.; Janssen, H.; Wong, L.P.; Downey, J.; Singh, S.; Anzai, A.; Kahles, F.; Jorfi, M.; Feruglio, P.F.; Sadreyev, R.I.; Weissleder, R.; Kleinstiver, B.P.; Nahrendorf, M.; Tanzi, R.E.; Swirski, F.K. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature, 2021, 595(7869), 701-706.
[http://dx.doi.org/10.1038/s41586-021-03734-6] [PMID: 34262178]
[46]
He, D.; Xu, H.; Zhang, H.; Tang, R.; Lan, Y.; Xing, R.; Li, S.; Christian, E.; Hou, Y.; Lorello, P.; Caldarone, B.; Ding, J.; Nguyen, L.; Dionne, D.; Thakore, P.; Schnell, A.; Huh, J.R.; Rozenblatt-Rosen, O.; Regev, A.; Kuchroo, V.K. Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity, 2022, 55(1), 159-173.e9.
[http://dx.doi.org/10.1016/j.immuni.2021.12.001] [PMID: 34982959]
[47]
Vainchtein, I.D.; Chin, G.; Cho, F.S.; Kelley, K.W.; Miller, J.G.; Chien, E.C.; Liddelow, S.A.; Nguyen, P.T.; Nakao-Inoue, H.; Dorman, L.C.; Akil, O.; Joshita, S.; Barres, B.A.; Paz, J.T.; Molofsky, A.B.; Molofsky, A.V. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science, 2018, 359(6381), 1269-1273.
[http://dx.doi.org/10.1126/science.aal3589] [PMID: 29420261]
[48]
Kim, J.H.; Afridi, R.; Han, J.; Jung, H.G.; Kim, S.C.; Hwang, E.M.; Shim, H.S.; Ryu, H.; Choe, Y.; Hoe, H.S.; Suk, K. Gamma subunit of complement component 8 is a neuroinflammation inhibitor. Brain, 2021, 144(2), 528-552.
[http://dx.doi.org/10.1093/brain/awaa425] [PMID: 33382892]
[49]
Jing, W.; Tuxiu, X.; Xiaobing, L.; Guijun, J.; Lulu, K.; Jie, J.; Lu, Y.; Liying, Z.; Xiaoxing, X.; Jingjun, L. LncRNA GAS5/miR-137 is a hypoxia-responsive axis involved in cardiac arrest and cardiopulmonary cerebral resuscitation. Front. Immunol., 2022, 12, 790750.
[http://dx.doi.org/10.3389/fimmu.2021.790750] [PMID: 35087519]
[50]
Long, X.; Yao, X.; Jiang, Q.; Yang, Y.; He, X.; Tian, W.; Zhao, K.; Zhang, H. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J. Neuroinflammation, 2020, 17(1), 89.
[http://dx.doi.org/10.1186/s12974-020-01761-0] [PMID: 32192523]
[51]
Rostami, J.; Mothes, T.; Kolahdouzan, M.; Eriksson, O.; Moslem, M.; Bergström, J.; Ingelsson, M.; O’Callaghan, P.; Healy, L.M.; Falk, A.; Erlandsson, A. Crosstalk between astrocytes and microglia results in increased degradation of α-synuclein and amyloid-β aggregates. J. Neuroinflammation, 2021, 18(1), 124.
[http://dx.doi.org/10.1186/s12974-021-02158-3] [PMID: 34082772]
[52]
Pekna, M.; Pekny, M. The complement system: A powerful modulator and effector of astrocyte function in the healthy and diseased central nervous system. Cells, 2021, 10(7), 1812.
[http://dx.doi.org/10.3390/cells10071812] [PMID: 34359981]
[53]
Peng, A.Y.T.; Agrawal, I.; Ho, W.Y.; Yen, Y.C.; Pinter, A.J.; Liu, J.; Phua, Q.X.C.; Koh, K.B.; Chang, J.C.; Sanford, E.; Man, J.H.K.; Wong, P.; Gutmann, D.H.; Tucker-Kellogg, G.; Ling, S.C. Loss of TDP-43 in astrocytes leads to motor deficits by triggering A1-like reactive phenotype and triglial dysfunction. Proc. Natl. Acad. Sci. USA, 2020, 117(46), 29101-29112.
[http://dx.doi.org/10.1073/pnas.2007806117] [PMID: 33127758]
[54]
Zhang, M.; Liang, W.; Gong, W.; Yoshimura, T.; Chen, K.; Wang, J.M. The critical role of the antimicrobial peptide LL-37/CRAMP in protection of colon microbiota balance, mucosal homeostasis, anti-inflammatory responses, and resistance to carcinogenesis. Crit. Rev. Immunol., 2019, 39(2), 83-92.
[http://dx.doi.org/10.1615/CritRevImmunol.2019030225] [PMID: 31679249]
[55]
Xu, X.; Cai, X.; Zhu, Y.; He, W.; Wu, Q.; Shi, X.; Fang, Y.; Pei, Z. MFG-E8 inhibits Aβ-induced microglial production of cathelicidin-related antimicrobial peptide: A suitable target against Alzheimer’s disease. Cell. Immunol., 2018, 331, 59-66.
[http://dx.doi.org/10.1016/j.cellimm.2018.05.008] [PMID: 29861070]
[56]
Dörr, A.; Kress, E.; Podschun, R.; Pufe, T.; Tauber, S.C.; Brandenburg, L.O. Intrathecal application of the antimicrobial peptide CRAMP reduced mortality and neuroinflammation in an experimental model of pneumococcal meningitis. J. Infect., 2015, 71(2), 188-199.
[http://dx.doi.org/10.1016/j.jinf.2015.04.006] [PMID: 25896094]
[57]
Lee, M.; Shi, X.; Barron, A.E.; McGeer, E.; McGeer, P.L. Human antimicrobial peptide LL-37 induces glial-mediated neuroinflammation. Biochem. Pharmacol., 2015, 94(2), 130-141.
[http://dx.doi.org/10.1016/j.bcp.2015.02.003] [PMID: 25686659]
[58]
Brandenburg, L.O.; Varoga, D.; Nicolaeva, N.; Leib, S.L.; Podschun, R.; Wruck, C.J.; Wilms, H.; Lucius, R.; Pufe, T. Expression and regulation of antimicrobial peptide rCRAMP after bacterial infection in primary rat meningeal cells. J. Neuroimmunol., 2009, 217(1-2), 55-64.
[http://dx.doi.org/10.1016/j.jneuroim.2009.10.004] [PMID: 19879657]
[59]
Brandenburg, L.O.; Varoga, D.; Nicolaeva, N.; Leib, S.L.; Wilms, H.; Podschun, R.; Wruck, C.J.; Schröder, J.M.; Pufe, T.; Lucius, R. Role of glial cells in the functional expression of LL-37/rat cathelin-related antimicrobial peptide in meningitis. J. Neuropathol. Exp. Neurol., 2008, 67(11), 1041-1054.
[http://dx.doi.org/10.1097/NEN.0b013e31818b4801] [PMID: 18957897]
[60]
Bergman, P.; Termén, S.; Johansson, L.; Nyström, L.; Arenas, E.; Jonsson, A.B.; Hökfelt, T.; Gudmundsson, G.H.; Agerberth, B. The antimicrobial peptide rCRAMP is present in the central nervous system of the rat. J. Neurochem., 2005, 93(5), 1132-1140.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03081.x] [PMID: 15934934]
[61]
Kress, E.; Merres, J.; Albrecht, L.J.; Hammerschmidt, S.; Pufe, T.; Tauber, S.C.; Brandenburg, L.O. CRAMP deficiency leads to a pro-inflammatory phenotype and impaired phagocytosis after exposure to bacterial meningitis pathogens. Cell Commun. Signal., 2017, 15(1), 32.
[http://dx.doi.org/10.1186/s12964-017-0190-1] [PMID: 28915816]
[62]
Smith, K.J.; Minns, D.; McHugh, B.J.; Holloway, R.K.; O’Connor, R.; Williams, A.; Melrose, L.; McPherson, R.; Miron, V.E.; Davidson, D.J.; Findlay, E.G. The antimicrobial peptide cathelicidin is critical for the development of Th17 responses in severe inflammatory disease. bioRxiv, 2022, 2022.2001.2027.477976.
[http://dx.doi.org/10.1101/2022.01.27.477976]
[63]
Komuczki, J.; Tuzlak, S.; Friebel, E.; Hartwig, T.; Spath, S.; Rosenstiel, P.; Waisman, A.; Opitz, L.; Oukka, M.; Schreiner, B.; Pelczar, P.; Becher, B. Fate-Mapping of GM-CSF expression identifies a discrete subset of inflammation-driving T helper cells regulated by cytokines IL-23 and IL-1β. Immunity, 2019, 50(5), 1289-1304.e6.
[http://dx.doi.org/10.1016/j.immuni.2019.04.006] [PMID: 31079916]
[64]
Dokalis, N.; Prinz, M. Astrocytic NF‐κB brings the best and worst out of microglia. EMBO J., 2018, 37(16), e100130.
[http://dx.doi.org/10.15252/embj.2018100130] [PMID: 30037825]
[65]
Barbosa, M.; Gomes, C.; Sequeira, C.; Gonçalves-Ribeiro, J.; Pina, C.C.; Carvalho, L.A.; Moreira, R.; Vaz, S.H.; Vaz, A.R.; Brites, D. Recovery of depleted miR-146a in ALS cortical astrocytes reverts cell aberrancies and prevents paracrine pathogenicity on microglia and motor neurons. Front. Cell Dev. Biol., 2021, 9, 634355.
[http://dx.doi.org/10.3389/fcell.2021.634355] [PMID: 33968923]
[66]
Negahdaripour, M.; Owji, H.; Eskandari, S.; Zamani, M.; Vakili, B.; Nezafat, N. Small extracellular vesicles (sEVs): Discovery, functions, applications, detection methods and various engineered forms. Expert Opin. Biol. Ther., 2021, 21(3), 371-394.
[http://dx.doi.org/10.1080/14712598.2021.1825677] [PMID: 32945228]
[67]
Zhu, S-X.; Zhou, S-L.; Xie, H-M.; Su, X.; Zhang, F-Y.; Dai, C-L.; Wu, R-H.; Li, Y.; Han, X-X.; Feng, X-M.; Yu, B. Profile of the RNA in exosomes from astrocytes and microglia using deep sequencing: Implications for neurodegeneration mechanisms. Neural Regen. Res., 2022, 17(3), 608-617.
[http://dx.doi.org/10.4103/1673-5374.320999] [PMID: 34380901]
[68]
Wang, J.; Ma, P.; Kim, D.H.; Liu, B.F.; Demirci, U. Towards microfluidic-based exosome isolation and detection for tumor therapy. Nano Today, 2021, 37, 101066.
[http://dx.doi.org/10.1016/j.nantod.2020.101066] [PMID: 33777166]
[69]
Witwer, K.W.; Théry, C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J. Extracell. Vesicles, 2019, 8(1), 1648167.
[http://dx.doi.org/10.1080/20013078.2019.1648167] [PMID: 31489144]
[70]
Pei, X.; Li, Y.; Zhu, L.; Zhou, Z. Astrocyte-derived exosomes suppress autophagy and ameliorate neuronal damage in experimental ischemic stroke. Exp. Cell Res., 2019, 382(2), 111474.
[http://dx.doi.org/10.1016/j.yexcr.2019.06.019] [PMID: 31229506]
[71]
Xu, L.; Cao, H.; Xie, Y.; Zhang, Y.; Du, M.; Xu, X.; Ye, R.; Liu, X. Exosome-shuttled miR-92b-3p from ischemic preconditioned astrocytes protects neurons against oxygen and glucose deprivation. Brain Res., 2019, 1717, 66-73.
[http://dx.doi.org/10.1016/j.brainres.2019.04.009] [PMID: 30986407]
[72]
Rostami, J.; Holmqvist, S.; Lindström, V.; Sigvardson, J.; Westermark, G.T.; Ingelsson, M.; Bergström, J.; Roybon, L.; Erlandsson, A. Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. J. Neurosci., 2017, 37(49), 11835-11853.
[http://dx.doi.org/10.1523/JNEUROSCI.0983-17.2017] [PMID: 29089438]
[73]
Lana, D.; Ugolini, F.; Wenk, G.L.; Giovannini, M.G.; Zecchi-Orlandini, S.; Nosi, D. Microglial distribution, branching, and clearance activity in aged rat hippocampus are affected by astrocyte meshwork integrity: Evidence of a novel cell‐cell interglial interaction. FASEB J., 2019, 33(3), 4007-4020.
[http://dx.doi.org/10.1096/fj.201801539R] [PMID: 30496700]
[74]
Kim, S.; Steelman, A.J.; Koito, H.; Li, J. Astrocytes promote TNF-mediated toxicity to oligodendrocyte precursors. J. Neurochem., 2011, 116(1), 53-66.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07084.x] [PMID: 21044081]
[75]
Kraft, A.D.; McPherson, C.A.; Harry, G.J. Heterogeneity of microglia and TNF signaling as determinants for neuronal death or survival. Neurotoxicology, 2009, 30(5), 785-793.
[http://dx.doi.org/10.1016/j.neuro.2009.07.001] [PMID: 19596372]
[76]
Song, J.H.; Bellail, A.; Tse, M.C.; Yong, V.W.; Hao, C. Human astrocytes are resistant to Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. J. Neurosci., 2006, 26(12), 3299-3308.
[http://dx.doi.org/10.1523/JNEUROSCI.5572-05.2006] [PMID: 16554480]
[77]
Dietrich, P.Y.; Walker, P.R.; Saas, P. Death receptors on reactive astrocytes. Neurology, 2003, 60(4), 548-554.
[http://dx.doi.org/10.1212/01.WNL.0000042049.74547.7F] [PMID: 12607528]
[78]
Lee, S.J.; Zhou, T.; Choi, C.; Wang, Z.; Benveniste, E.N. Differential regulation and function of Fas expression on glial cells. J. Immunol., 2000, 164(3), 1277-1285.
[http://dx.doi.org/10.4049/jimmunol.164.3.1277] [PMID: 10640741]
[79]
Polyzos, A.A.; Lee, D.Y.; Datta, R.; Hauser, M.; Budworth, H.; Holt, A.; Mihalik, S.; Goldschmidt, P.; Frankel, K.; Trego, K.; Bennett, M.J.; Vockley, J.; Xu, K.; Gratton, E.; McMurray, C.T. Metabolic reprogramming in astrocytes distinguishes region-specific neuronal susceptibility in huntington mice. Cell Metab., 2019, 29(6), 1258-1273.e11.
[http://dx.doi.org/10.1016/j.cmet.2019.03.004] [PMID: 30930170]
[80]
Garland, E.F.; Hartnell, I.J.; Boche, D. Microglia and astrocyte function and communication: What do we know in humans? Front. Neurosci., 2022, 16, 824888.
[http://dx.doi.org/10.3389/fnins.2022.824888] [PMID: 35250459]
[81]
Lanjewar, S.N.; Sloan, S.A. Growing Glia: Cultivating human stem cell models of gliogenesis in health and disease. Front. Cell Dev. Biol., 2021, 9, 649538.
[http://dx.doi.org/10.3389/fcell.2021.649538] [PMID: 33842475]

© 2024 Bentham Science Publishers | Privacy Policy