Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Chemical Kindling as an Experimental Model to Assess the Conventional Drugs in the Treatment of Post-traumatic Epilepsy

Author(s): Simin Namvar Aghdash* and Golsa Foroughi

Volume 22, Issue 10, 2023

Published on: 27 December, 2022

Page: [1417 - 1428] Pages: 12

DOI: 10.2174/1871527322666221128155813

Price: $65

Abstract

Background: Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality today, which will surpass many infectious diseases in the coming years/decades. Posttraumatic epilepsy (PTE) is one of the most common debilitating consequences of TBI. PTE is a secondary, acquired epilepsy that causes recurrent, spontaneous seizures more than a week after TBI. The extent of head injury in individuals who develop PTE is unknown; however, trauma is thought to account for 20% of symptomatic epilepsy worldwide. Understanding the mechanisms of epilepsy following TBI is crucial for the discovery of new anticonvulsant drugs for the treatment of PTE, as well as for improving the quality of life of patients with PTE.

Objective: This review article explains the rationale for the usage of a chemical model to access new treatments for post-traumatic epilepsy.

Results: There are multiple methods to control and manage PTE. The essential and available remedy for the management of epilepsy is the use of antiepileptic drugs. Antiepileptic drugs (AEDs) decrease the frequency of seizures without affecting the disease's causality. Antiepileptic drugs are administrated for the prevention and treatment of PTE; however, 30% of epilepsy patients are drug-resistant, and AED side effects are significant in PTE patients. There are different types of animal models, such as the liquid percussion model, intracortical ferric chloride injection, and cortical subincision model, to study PTE and neurophysiological mechanisms underlying the development of epilepsy after head injury. However, these animal models do not easily mimic the pathological events occurring in epilepsy. Therefore, animal models of PTE are an inappropriate tool for screening new and putatively effective AEDs. Chemical kindling is the most common animal model used to study epilepsy. There is a strong similarity between the kindling model and different types of human epilepsy.

Conclusion: Today, researchers use experimental animal models to evaluate new anticonvulsant drugs. The chemical kindling models, such as pentylenetetrazol, bicuculline, and picrotoxin-induced seizures, are important experimental models to analyze the impact of putative antiepileptic drugs.

Keywords: Traumatic brain injury, post-traumatic epilepsy, chemical kindling models, picrotoxin-induced seizures, animal models, antiepileptic drugs.

Graphical Abstract
[1]
Pitkänen A, Kemppainen S, Ndode-Ekane XE, et al. Posttraumatic epilepsy - disease or comorbidity? Epilepsy Behav 2014; 38: 19-24.
[http://dx.doi.org/10.1016/j.yebeh.2014.01.013] [PMID: 24529830]
[2]
Peloso PM, von Holst H, Borg J. Mild traumatic brain injuries presenting to Swedish hospitals in 1987-2000. J Rehabil Med 2004; 1(S43): 22-7.
[PMID: 15083869]
[3]
McKinlay A, Grace RC, Horwood LJ, Fergusson DM, Ridder EM, MacFarlane MR. Prevalence of traumatic brain injury among children, adolescents and young adults: Prospective evidence from a birth cohort. Brain Inj 2008; 22(2): 175-81.
[http://dx.doi.org/10.1080/02699050801888824] [PMID: 18240046]
[4]
Menon DK, Schwab K, Wright DW, Maas AI. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil 2010; 91(11): 1637-40.
[http://dx.doi.org/10.1016/j.apmr.2010.05.017] [PMID: 21044706]
[5]
Jha KA, Rasiah PK, Gentry J, et al. Mesenchymal stem cell secretome protects against oxidative stress-induced ocular blast visual pa-thologies. Exp Eye Res 2022; 215(15): 108930.
[http://dx.doi.org/10.1016/j.exer.2022.108930] [PMID: 35016886]
[6]
Heegaard W, Biros M. Traumatic brain injury. Emerg Med Clin North Am 2007; 25(3): 655-78. [viii
[http://dx.doi.org/10.1016/j.emc.2007.07.001] [PMID: 17826211]
[7]
Valente SM, Fisher D. Traumatic brain injury. J Nurse Pract 2011; 7(10): 863-70.
[http://dx.doi.org/10.1016/j.nurpra.2011.09.016]
[8]
Pingue V, Mele C, Nardone A. Post-traumatic seizures and antiepileptic therapy as predictors of the functional outcome in patients with traumatic brain injury. Sci Rep 2021; 11(1): 4708.
[http://dx.doi.org/10.1038/s41598-021-84203-y] [PMID: 33633297]
[9]
Lowenstein DH. Epilepsy after head injury: An overview. Epilepsia 2009; 50(S2): 4-9.
[http://dx.doi.org/10.1111/j.1528-1167.2008.02004.x] [PMID: 19187288]
[10]
Annegers JF, Grabow JD, Groover RV, Laws ER Jr, Elveback LR, Kurland LT. Seizures after head trauma: A population study. Neurology 1980; 30(7): 683-9.
[http://dx.doi.org/10.1212/WNL.30.7.683] [PMID: 7190235]
[11]
Lamar CD, Hurley RA, Rowland JA, Taber KH. Post-traumatic epilepsy: review of risks, pathophysiology, and potential biomarkers. J Neuropsychiatry Clin Neurosci 2014; 26(2): iv-113.
[http://dx.doi.org/10.1176/appi.neuropsych.260201] [PMID: 24763802]
[12]
Jennett B. Early traumatic epilepsy. Incidence and significance after nonmissile injuries. Arch Neurol 1974; 30(5): 394-8.
[http://dx.doi.org/10.1001/archneur.1974.00490350052008] [PMID: 4207011]
[13]
Temkin NR, Haglund MM, Winn HR. Causes, prevention, and treatment of post-traumatic epilepsy. New Horiz 1995; 3(3): 518-22.
[PMID: 7496762]
[14]
Agrawal A, Timothy J, Pandit L, Manju M. Post-traumatic epilepsy: An overview. Clin Neurol Neurosurg 2006; 108(5): 433-9.
[http://dx.doi.org/10.1016/j.clineuro.2005.09.001] [PMID: 16225987]
[15]
Ding K, Gupta PK, Diaz-Arrastia R. Epilepsy after Traumatic Brain InjuryTranslational Research in Traumatic Brain Injury. Boca Raton, FL: CRC Press/Taylor and Francis Group 2016.
[16]
Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol 2018; 16(8): 1224-38.
[http://dx.doi.org/10.2174/1570159X15666170613083606] [PMID: 28606040]
[17]
Pitkänen A, Mcintosh TK. Animal models of post-traumatic epilepsy. J Neurotrauma 2006; 23(2): 241-61.
[http://dx.doi.org/10.1089/neu.2006.23.241] [PMID: 16503807]
[18]
Larkin M, Meyer RM, Szuflita NS, Severson MA, Levine ZT. Post-traumatic, drug-resistant epilepsy and review of seizure control out-comes from blinded, randomized controlled trials of brain stimulation treatments for drug-resistant epilepsy. Cureus 2016; 8(8): e744.
[http://dx.doi.org/10.7759/cureus.744] [PMID: 27672534]
[19]
Herman ST. Epilepsy after brain insult: Targeting epileptogenesis. Neurology 2002; 59(S5): S21-6.
[http://dx.doi.org/10.1212/WNL.59.9_suppl_5.S21] [PMID: 12428028]
[20]
Irimia A, Van Horn JD. Epileptogenic focus localization in treatment-resistant post-traumatic epilepsy. J Clin Neurosci 2015; 22(4): 627-31.
[http://dx.doi.org/10.1016/j.jocn.2014.09.019] [PMID: 25542591]
[21]
Moriwaki A, Hattori Y, Nishida N, Hori Y. Electrocorticographic characterization of chronic iron-induced epilepsy in rats. Neurosci Lett 1990; 110(1-2): 72-6.
[http://dx.doi.org/10.1016/0304-3940(90)90789-C] [PMID: 2325892]
[22]
Mosini AC, Calió ML, Foresti ML, Valeriano RPS, Garzon E, Mello LE. Modeling of post-traumatic epilepsy and experimental research aimed at its prevention. Braz J Med Biol Res 2021; 54(2): e10656.
[http://dx.doi.org/10.1590/1414-431x202010656] [PMID: 33331416]
[23]
Yokoi I, Toma J, Liu J, Kabuto H, Mori A. Adenosines scavenged hydroxyl radicals and prevented posttraumatic epilepsy. Free Radic Biol Med 1995; 19(4): 473-9.
[http://dx.doi.org/10.1016/0891-5849(95)00050-8] [PMID: 7590396]
[24]
Coppola A, Moshe SL. Animal models. Handbook of clinical neurology In: Epilepsy. 2012; 107: pp. 63-98.
[http://dx.doi.org/10.1016/B978-0-444-52898-8.00004-5]
[25]
Dixon CE, Lyeth BG, Povlishock JT, et al. A fluid percussion model of experimental brain injury in the rat. J Neurosurg 1987; 67(1): 110-9.
[http://dx.doi.org/10.3171/jns.1987.67.1.0110] [PMID: 3598659]
[26]
Lifshitz J, Chen J, Xu ZC, Xu X-M, Zhang JH. Animal Models of Acute Neurological Injuries. Humana Press 2008; pp. 369-84.
[27]
Thompson HJ, Lifshitz J, Marklund N, et al. Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 2005; 22(1): 42-75.
[http://dx.doi.org/10.1089/neu.2005.22.42] [PMID: 15665602]
[28]
Alder J, Fujioka W, Lifshitz J, Crockett DP, Thakker-Varia S. Lateral fluid percussion: model of traumatic brain injury in mice. J Vis Exp 2011; 22(54): e3063.
[http://dx.doi.org/10.3791/3063] [PMID: 21876530]
[29]
D’Ambrosio R, Fairbanks JP, Fender JS, Born DE, Doyle DL, Miller JW. Post-traumatic epilepsy following fluid percussion injury in the rat. Brain 2004; 127(2): 304-14.
[http://dx.doi.org/10.1093/brain/awh038] [PMID: 14607786]
[30]
Prince DA, Tseng GF. Epileptogenesis in chronically injured cortex: in vitro studies. J Neurophysiol 1993; 69(4): 1276-91.
[http://dx.doi.org/10.1152/jn.1993.69.4.1276] [PMID: 8492163]
[31]
Jin X, Chai Z, Ma C. Cortical stimulation for treatment of neurological disorders of hyperexcitability: a role of homeostatic plasticity. Neural Regen Res 2019; 14(1): 34-8.
[http://dx.doi.org/10.4103/1673-5374.243696] [PMID: 30531066]
[32]
Frey LC. Epidemiology of posttraumatic epilepsy: A critical review. Epilepsia 2003; 44(S10): 11-7.
[http://dx.doi.org/10.1046/j.1528-1157.44.s10.4.x] [PMID: 14511389]
[33]
Ping X, Jin X. Chronic posttraumatic epilepsy following neocortical undercut lesion in mice. PLoS One 2016; 11(6): e0158231.
[http://dx.doi.org/10.1371/journal.pone.0158231] [PMID: 27348225]
[34]
Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV. Traumatic brain injury and posttraumatic epilepsy. In: Jasper's basic mechanisms of the epilepsies. 4th eds. Oxford University Press, USA, 2012.
[35]
Mckee AC, Daneshvar DH. The neuropathology of traumatic brain injury. Handb Clin Neurol 2015; 127: 45-66.
[http://dx.doi.org/10.1016/B978-0-444-52892-6.00004-0] [PMID: 25702209]
[36]
Dienel GA. Lactate shuttling and lactate use as fuel after traumatic brain injury: metabolic considerations. J Cereb Blood Flow Metab 2014; 34(11): 1736-48.
[http://dx.doi.org/10.1038/jcbfm.2014.153] [PMID: 25204393]
[37]
Tehse J, Taghibiglou C. The overlooked aspect of excitotoxicity: Glutamate-independent excitotoxicity in traumatic brain injuries. Eur J Neurosci 2019; 49(9): 1157-70.
[PMID: 30554430]
[38]
Weber JT. Altered calcium signaling following traumatic brain injury. Front Pharmacol 2012; 3: 60.
[http://dx.doi.org/10.3389/fphar.2012.00060] [PMID: 22518104]
[39]
Jarrahi A, Braun M, Ahluwalia M, et al. Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020; 8(10): 389.
[http://dx.doi.org/10.3390/biomedicines8100389] [PMID: 33003373]
[40]
Paudel YN, Semple BD, Jones NC, Othman I, Shaikh MF. High mobility group box 1 (HMGB 1) as a novel frontier in epileptogenesis: from pathogenesis to therapeutic approaches. J Neurochem 2019; 151(5): 542-57.
[http://dx.doi.org/10.1111/jnc.14663] [PMID: 30644560]
[41]
Cerutti C, Ridley AJ. Endothelial cell-cell adhesion and signaling. Exp Cell Res 2017; 358(1): 31-8.
[http://dx.doi.org/10.1016/j.yexcr.2017.06.003] [PMID: 28602626]
[42]
Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Exp Neurol 2016; 275(Pt 3): 305-15.
[http://dx.doi.org/10.1016/j.expneurol.2015.03.020] [PMID: 25828533]
[43]
Scallan J, Huxley VH, Korthuis RJ. Capillary fluid exchange: regulation, functions, and pathology. In: Colloquium Lectures on Integrated Systems Physiology-\nl\hspace* 18pt From Molecules to Function. Morgan & Claypool Publishers 2010; 2: pp. 1-94.
[44]
Wu Y, Wu H, Guo X, Pluimer B, Zhao Z. Blood–brain barrier dysfunction in mild traumatic brain injury: evidence from preclinical mu-rine models. Front Physiol 2020; 11: 1030.
[http://dx.doi.org/10.3389/fphys.2020.01030] [PMID: 32973558]
[45]
Oberheim NA, Takano T, Han X, et al. Uniquely hominid features of adult human astrocytes. J Neurosci 2009; 29(10): 3276-87.
[http://dx.doi.org/10.1523/JNEUROSCI.4707-08.2009] [PMID: 19279265]
[46]
Halassa MM, Haydon PG. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 2010; 72(1): 335-55.
[http://dx.doi.org/10.1146/annurev-physiol-021909-135843] [PMID: 20148679]
[47]
Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron 2014; 81(4): 728-39.
[http://dx.doi.org/10.1016/j.neuron.2014.02.007] [PMID: 24559669]
[48]
Ye ZC, Sontheimer H. Cytokine modulation of glial glutamate uptake. Neuroreport 1996; 7(13): 2181-5.
[http://dx.doi.org/10.1097/00001756-199609020-00025] [PMID: 8930985]
[49]
Zhu G, Okada M, Yoshida S, et al. Effects of interleukin-1β on hippocampal glutamate and GABA releases associated with Ca2+-induced Ca2+ releasing systems. Epilepsy Res 2006; 71(2-3): 107-16.
[http://dx.doi.org/10.1016/j.eplepsyres.2006.05.017] [PMID: 16806825]
[50]
Hu S, Sheng WS, Ehrlich LC, Peterson PK, Chao CC. Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation 2000; 7(3): 153-9.
[http://dx.doi.org/10.1159/000026433] [PMID: 10754403]
[51]
Loane DJ, Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp Neurol 2016; 275(Pt 3): 316-27.
[http://dx.doi.org/10.1016/j.expneurol.2015.08.018] [PMID: 26342753]
[52]
Kim CC, Nakamura MC, Hsieh CL. Brain trauma elicits non-canonical macrophage activation states. J Neuroinflammation 2016; 13(1): 117.
[http://dx.doi.org/10.1186/s12974-016-0581-z] [PMID: 27220367]
[53]
Loane DJ, Kumar A, Stoica BA, Cabatbat R, Faden AI. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol 2014; 73(1): 14-29.
[http://dx.doi.org/10.1097/NEN.0000000000000021] [PMID: 24335533]
[54]
Beschorner R, Nguyen TD, Gözalan F, et al. CD14 expression by activated parenchymal microglia/macrophages and infiltrating mono-cytes following human traumatic brain injury. Acta Neuropathol 2002; 103(6): 541-9.
[http://dx.doi.org/10.1007/s00401-001-0503-7] [PMID: 12012085]
[55]
Engel S, Schluesener H, Mittelbronn M, et al. Dynamics of microglial activation after human traumatic brain injury are revealed by de-layed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathol 2000; 100(3): 313-22.
[http://dx.doi.org/10.1007/s004019900172] [PMID: 10965802]
[56]
Ramlackhansingh AF, Brooks DJ, Greenwood RJ, et al. Inflammation after trauma: Microglial activation and traumatic brain injury. Ann Neurol 2011; 70(3): 374-83.
[http://dx.doi.org/10.1002/ana.22455] [PMID: 21710619]
[57]
Chhor V, Moretti R, Le Charpentier T, et al. Role of microglia in a mouse model of paediatric traumatic brain injury. Brain Behav Immun 2017; 63: 197-209.
[http://dx.doi.org/10.1016/j.bbi.2016.11.001] [PMID: 27818218]
[58]
Abraham J, Fox PD, Condello C, Bartolini A, Koh S. Minocycline attenuates microglia activation and blocks the long-term epileptogenic effects of early-life seizures. Neurobiol Dis 2012; 46(2): 425-30.
[http://dx.doi.org/10.1016/j.nbd.2012.02.006] [PMID: 22366182]
[59]
Bye N, Habgood MD, Callaway JK, et al. Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol 2007; 204(1): 220-33.
[http://dx.doi.org/10.1016/j.expneurol.2006.10.013] [PMID: 17188268]
[60]
Webster KM, Sun M, Crack P, O’Brien TJ, Shultz SR, Semple BD. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation 2017; 4(1): 1-17.
[http://dx.doi.org/10.1186/s12974-016-0786-1]
[61]
Eslami M, Ghanbari E, Sayyah M, et al. Traumatic brain injury accelerates kindling epileptogenesis in rats. Neurol Res 2016; 38(3): 269-74.
[http://dx.doi.org/10.1179/1743132815Y.0000000086] [PMID: 26315855]
[62]
Hall SE, Rayner G, Wilson SJ. Cognitive rehabilitation of traumatic brain injury and post-traumatic epilepsy. Post-traumatic Epilepsy 2021; (Part 1): 104-27.
[http://dx.doi.org/10.1017/9781108644594.010]
[63]
Semple BD, Zamani A, Rayner G, Shultz SR, Jones NC. Affective, neurocognitive and psychosocial disorders associated with traumatic brain injury and post-traumatic epilepsy. Neurobiol Dis 2019; 123: 27-41.
[http://dx.doi.org/10.1016/j.nbd.2018.07.018] [PMID: 30059725]
[64]
Kwak EH, Wi S, Kim M, et al. Factors affecting cognition and emotion in patients with traumatic brain injury. NeuroRehabilitation 2020; 46(3): 369-79.
[http://dx.doi.org/10.3233/NRE-192893] [PMID: 32310194]
[65]
Ramezani S, Reihanian Z, Hosseini Nejad M, Yousefzadeh-Chabok S. Neuropsychological and neuropsychiatric deficits following trau-matic brain injury: Common patterns and neuropathological mechanisms. Iranian J Neurosurgery 2018; 4(4): 185-98.
[66]
Tanaka M, Spekker E, Szabó Á, Polyák H, Vécsei L. Modelling the neurodevelopmental pathogenesis in neuropsychiatric disorders. Bioactive kynurenines and their analogues as neuroprotective agents—in celebration of 80th birthday of Professor Peter Riederer. J Neural Transm 2022; 129(5-6): 627-42.
[http://dx.doi.org/10.1007/s00702-022-02513-5] [PMID: 35624406]
[67]
Hebbrecht K, Morrens M, Giltay EJ, van Nuijs ALN, Sabbe B, van den Ameele S. The role of kynurenines in cognitive dysfunction in bipolar disorder. Neuropsychobiology 2022; 81(3): 184-91.
[http://dx.doi.org/10.1159/000520152] [PMID: 34883494]
[68]
Yan EB, Frugier T, Lim CK, et al. Activation of the kynurenine pathway and increased production of the excitotoxin quinolinic acid following traumatic brain injury in humans. J Neuroinflammation 2015; 12(1): 110.
[http://dx.doi.org/10.1186/s12974-015-0328-2] [PMID: 26025142]
[69]
Tanaka M, Tóth F, Polyák H, Szabó Á, Mándi Y, Vécsei L. Immune influencers in action: Metabolites and enzymes of the tryptophan-kynurenine metabolic pathway. Biomedicines 2021; 9(7): 734.
[http://dx.doi.org/10.3390/biomedicines9070734] [PMID: 34202246]
[70]
Juengst SB, Wagner AK, Ritter AC, et al. Post-traumatic epilepsy associations with mental health outcomes in the first two years after moderate to severe TBI: A TBI Model Systems analysis. Epilepsy Behav 2017; 73: 240-6.
[http://dx.doi.org/10.1016/j.yebeh.2017.06.001] [PMID: 28658654]
[71]
Bhalerao SU, Geurtjens C, Thomas GR, Kitamura CR, Zhou C, Marlborough M. Understanding the neuropsychiatric consequences asso-ciated with significant traumatic brain injury. Brain Inj 2013; 27(7-8): 767-74.
[http://dx.doi.org/10.3109/02699052.2013.793396] [PMID: 23789861]
[72]
Reid WM, Hamm RJ. Post-injury atomoxetine treatment improves cognition following experimental traumatic brain injury. J Neurotrauma 2008; 25(3): 248-56.
[http://dx.doi.org/10.1089/neu.2007.0389] [PMID: 18352838]
[73]
Geraci A, Surian L, Ferraro M, Cantagallo A. Theory of Mind in patients with ventromedial or dorsolateral prefrontal lesions following traumatic brain injury. Brain Inj 2010; 24(7-8): 978-87.
[http://dx.doi.org/10.3109/02699052.2010.487477] [PMID: 20545452]
[74]
Hunt RF, Boychuk JA, Smith BN. Neural circuit mechanisms of post-traumatic epilepsy. Front Cell Neurosci 2013; 7(89): 89.
[PMID: 23785313]
[75]
Beghi E. Overview of studies to prevent posttraumatic epilepsy. Epilepsia 2003; 44(s10): 21-6.
[http://dx.doi.org/10.1046/j.1528-1157.44.s10.1.x] [PMID: 14511391]
[76]
Zimmermann LL, Martin RM, Girgis F. Treatment options for posttraumatic epilepsy. Curr Opin Neurol 2017; 30(6): 580-6.
[http://dx.doi.org/10.1097/WCO.0000000000000505] [PMID: 29049053]
[77]
Englot DJ, Rolston JD, Wang DD, Hassnain KH, Gordon CM, Chang EF. Efficacy of vagus nerve stimulation in posttraumatic versus nontraumatic epilepsy. J Neurosurg 2012; 117(5): 970-7.
[http://dx.doi.org/10.3171/2012.8.JNS122] [PMID: 22978542]
[78]
VanHaerents S, Chang BS, Rotenberg A, Pascual-Leone A, Shafi MM. Noninvasive brain stimulation in epilepsy. J Clin Neurophysiol 2020; 37(2): 118-30.
[http://dx.doi.org/10.1097/WNP.0000000000000573] [PMID: 32142022]
[79]
Borgomaneri S, Battaglia S, Avenanti A, Pellegrino G. Don’t hurt me no more: State-dependent transcranial magnetic stimulation for the treatment of specific phobia. J Affect Disord 2021; 286: 78-9.
[http://dx.doi.org/10.1016/j.jad.2021.02.076] [PMID: 33714173]
[80]
Alasvand Zarasvand M, Mirnajafi-Zadeh J, Fathollahi Y, Palizvan MR. Anticonvulsant effect of bilateral injection of N6-cyclohexyladenosine into the CA1 region of the hippocampus in amygdala-kindled rats. Epilepsy Res 2001; 47(1-2): 141-9.
[http://dx.doi.org/10.1016/S0920-1211(01)00300-X] [PMID: 11673028]
[81]
McCandless DW. FineSmith R.B. Chemically induced models of seizures. In: Boulton A.A., Baker G.B., Butterworth R.F. (eds) Animal models of neurological disease, II. Neuromethods, 1992, vol 22. Humana Press. p. 133-51.
[82]
Sato M, Racine RJ, McIntyre DC. Kindling: Basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol 1990; 76(5): 459-72.
[http://dx.doi.org/10.1016/0013-4694(90)90099-6] [PMID: 1699739]
[83]
Luthman J, Humpel C. Pentylenetetrazol kindling decreases N-methyl-d-aspartate and kainate but increases gamma-aminobutyric acid-A receptor binding in discrete rat brain areas. Neurosci Lett 1997; 239(1): 9-12.
[http://dx.doi.org/10.1016/S0304-3940(97)00880-X] [PMID: 9547172]
[84]
Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: Rewiring the brain. Prog Neurobiol 2004; 73(1): 1-60.
[http://dx.doi.org/10.1016/j.pneurobio.2004.03.009] [PMID: 15193778]
[85]
Kumar A, Nidhi S, Manveen B, Sumitra S. A review on chemical induced kindling models of epilepsy. J Vet Med Res 2016; 3(3): 1-6.
[86]
Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 1969; 25(3): 295-330.
[http://dx.doi.org/10.1016/0014-4886(69)90128-9] [PMID: 4981856]
[87]
McNamara JO. Kindling model of epilepsy. Adv Neurol 1986; 44: 303-18.
[PMID: 2871721]
[88]
Fisher RS. Animal models of the epilepsies. Brain Res Brain Res Rev 1989; 14(3): 245-78.
[http://dx.doi.org/10.1016/0165-0173(89)90003-9] [PMID: 2679941]
[89]
Mason CR, Cooper RM. A permanent change in convulsive threshold in normal and brain-damaged rats with repeated small doses of pentylenetetrazol. Epilepsia 1972; 13(5): 663-74.
[http://dx.doi.org/10.1111/j.1528-1157.1972.tb04401.x] [PMID: 4563784]
[90]
Cremer CM, Palomero-Gallagher N, Bidmon HJ, Schleicher A, Speckmann EJ, Zilles K. Pentylenetetrazole-induced seizures affect bind-ing site densities for GABA, glutamate and adenosine receptors in the rat brain. Neuroscience 2009; 163(1): 490-9.
[http://dx.doi.org/10.1016/j.neuroscience.2009.03.068] [PMID: 19345722]
[91]
Corda MG, Orlandi M, Lecca D, Carboni G, Frau V, Giorgi O. Pentylenetetrazol-induced kindling in rats: Effect of GABA function inhibitors. Pharmacol Biochem Behav 1991; 40(2): 329-33.
[http://dx.doi.org/10.1016/0091-3057(91)90562-G] [PMID: 1805236]
[92]
Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci 2012; (1): 37.
[PMID: 23042503]
[93]
Omrani A, Ghadami MR, Fathi N, Tahmasian M, Fathollahi Y, Touhidi A. Naloxone improves impairment of spatial performance in-duced by pentylenetetrazol kindling in rats. Neuroscience 2007; 145(3): 824-31.
[http://dx.doi.org/10.1016/j.neuroscience.2006.12.049] [PMID: 17289274]
[94]
Maier NRF, Sacks J, Glaser NM. Studies of abnormal behavior in the rat: VIII. The influence of metrazol on seizures occurring during auditory stimulation. J Comp Psychol 1941; 32(2): 379-88.
[http://dx.doi.org/10.1037/h0057296]
[95]
Karimzadeh F, Jafarian M, Gharakhani M, et al. Behavioural and histopathological assessment of the effects of periodic fasting on pen-tylenetetrazol-induced seizures in rats. Nutr Neurosci 2013; 16(4): 147-52.
[http://dx.doi.org/10.1179/1476830512Y.0000000039] [PMID: 23321001]
[96]
Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 2011; 20(5): 359-68.
[http://dx.doi.org/10.1016/j.seizure.2011.01.003] [PMID: 21292505]
[97]
Erkec ÖE, Arihan O. Pentylenetetrazole kindling epilepsy model. Epilepsi. Journal of the Turkish Epilepsi Society 2015; 21(1): 6-12.
[98]
Ben-Ari Y, Tremblay E, Riche D, Ghilini G, Naquet R. Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: Metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 1981; 6(7): 1361-91.
[http://dx.doi.org/10.1016/0306-4522(81)90193-7] [PMID: 7266871]
[99]
Medina AE, Manhães AC, Schmidt SL. Sex differences in sensitivity to seizures elicited by pentylenetetrazol in mice. Pharmacol Biochem Behav 2001; 68(3): 591-6.
[http://dx.doi.org/10.1016/S0091-3057(01)00466-X] [PMID: 11325416]
[100]
Yonekawa WD, Kupferberg HJ, Woodbury DM. Relationship between pentylenetetrazol-induced seizures and brain pentylenetetrazol levels in mice. J Pharmacol Exp Ther 1980; 214(3): 589-93.
[PMID: 7400961]
[101]
Johnston GAR. Advantages of an antagonist: Bicuculline and other GABA antagonists. Br J Pharmacol 2013; 169(2): 328-36.
[http://dx.doi.org/10.1111/bph.12127] [PMID: 23425285]
[102]
Piredda S, Lim CR, Gale K. Intracerebral site of convulsant action of bicuculline. Life Sci 1985; 36(13): 1295-8.
[http://dx.doi.org/10.1016/0024-3205(85)90275-9] [PMID: 3982215]
[103]
Giuliano A, Michael J, Robert A, Daroff B. Epilepsy, Experimental Models from Encyclopedia of the Neurological Sciences. Academic Press 2003; pp. 205-9.
[104]
Pong SF, Graham LT Jr. N-methyl bicuculline, a convulsant more potent than bicuculline. Brain Res 1972; 42(2): 486-90.
[http://dx.doi.org/10.1016/0006-8993(72)90547-1] [PMID: 4403197]
[105]
Mareš P, Chino M, Kubová H, Mathern P, Veliký M. Convulsant action of systemically administered glutamate and bicuculline methio-dide in immature rats. Epilepsy Res 2000; 42(2-3): 183-9.
[http://dx.doi.org/10.1016/S0920-1211(00)00179-0] [PMID: 11074190]
[106]
Söderfeldt B, Kalimo H, Olsson Y, Siesjö BK. Bicuculline-induced epileptic brain injury. Transient and persistent cell changes in rat cerebral cortex in the early recovery period. Acta Neuropathol 1983; 62(1-2): 87-95.
[PMID: 6659880]
[107]
Kupferberg H. Animal models used in the screening of antiepileptic drugs. Epilepsia 2001; 42(S4): 7-12.
[http://dx.doi.org/10.1046/j.1528-1157.2001.00002.x] [PMID: 11564118]
[108]
Pressly B, Vasylieva N, Barnych B, et al. Comparison of the toxicokinetics of the convulsants picrotoxinin and tetramethylenedisul-fotetramine (TETS) in mice. Arch Toxicol 2020; 94(6): 1995-2007.
[http://dx.doi.org/10.1007/s00204-020-02728-z] [PMID: 32239239]
[109]
Wang DS, Buckinx R, Lecorronc H, Mangin JM, Rigo JM, Legendre P. Mechanisms for picrotoxinin and picrotin blocks of α2 homomer-ic glycine receptors. J Biol Chem 2007; 282(22): 16016-35.
[http://dx.doi.org/10.1074/jbc.M701502200] [PMID: 17405877]
[110]
L’Amoreaux WJ, Marsillo A, El Idrissi A. Pharmacological characterization of GABAA receptors in taurine-fed mice. J Biomed Sci 2010; 17(S1): S14.
[http://dx.doi.org/10.1186/1423-0127-17-S1-S14] [PMID: 20804588]
[111]
Olsen RW. Picrotoxin-like channel blockers of GABA A receptors. Proc Natl Acad Sci 2006; 103(16): 6081-2.
[http://dx.doi.org/10.1073/pnas.0601121103] [PMID: 16606858]
[112]
Hinton T, Johnston GA. Antagonists of Ionotropic Receptors for the Inhibitory Neurotransmitter GABA: Therapeutic Indications. Intech open 2018.
[113]
Masiulis S, Desai R, Uchański T, et al. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature 2019; 565(7740): 454-9.
[http://dx.doi.org/10.1038/s41586-018-0832-5] [PMID: 30602790]
[114]
Macdonald RL, Gallagher MJ. Properties and regulation of GABA and Glycine receptor channels. biomedical sciences 2014.
[115]
Olsen RW. GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology 2018; 136(Pt A): 10-22.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.036] [PMID: 29407219]
[116]
Mante PK, Adongo DW, Woode E, Kukuia KKE, Ameyaw EO. Anticonvulsant effect of Antiaris toxicaria (Pers.) Lesch.(Moraceae) aqueous extract in rodents. ISRN Pharmacol 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/519208] [PMID: 24167736]
[117]
Coppola A, Moshé SL. Animal models. In: Handbook of Clinical Neurology. Elsevier 2012; 107: pp. 63-98.
[118]
Bunch L, Krogsgaard-Larsen P. Subtype selective kainic acid receptor agonists: Discovery and approaches to rational design. Med Res Rev 2009; 29(1): 3-28.
[http://dx.doi.org/10.1002/med.20133] [PMID: 18623169]
[119]
Lévesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev 2013; 37(10): 2887-99.
[http://dx.doi.org/10.1016/j.neubiorev.2013.10.011] [PMID: 24184743]
[120]
Kienzler-Norwood F, Costard L, Sadangi C, et al. A novel animal model of acquired human temporal lobe epilepsy based on the simul-taneous administration of kainic acid and lorazepam. Epilepsia 2017; 58(2): 222-30.
[http://dx.doi.org/10.1111/epi.13579] [PMID: 28157273]
[121]
Luo L, Jin Y, Kim ID, Lee JK. Glycyrrhizin attenuates kainic Acid-induced neuronal cell death in the mouse hippocampus. Exp Neurobiol 2013; 22(2): 107-15.
[http://dx.doi.org/10.5607/en.2013.22.2.107] [PMID: 23833559]
[122]
Kang KK, Kim YI, Seo MS, Sung SE, Choi JH, Lee S, et al. A comparative study of the phenotype with kainic acid-induced seizure in DBA/2 mice from three different sources. Lab Anim Res 2020; 36(1): 1-7.
[http://dx.doi.org/10.1186/s42826-019-0031-z] [PMID: 32206608]
[123]
Aghdash SN. Herbal Medicine in the Treatment of Epilepsy. Curr Drug Targets 2021; 22(3): 356-67.
[http://dx.doi.org/10.2174/1389450121999201001152221] [PMID: 33023444]
[124]
Christensen J. The epidemiology of posttraumatic epilepsy. In: Seminars in Neurology 2015; 35: pp. 218-222.
[http://dx.doi.org/10.1055/s-0035-1552923]
[125]
Xu T, Yu X, Ou S, et al. Risk factors for posttraumatic epilepsy: A systematic review and meta-analysis. Epilepsy Behav 2017; 67: 1-6.
[http://dx.doi.org/10.1016/j.yebeh.2016.10.026] [PMID: 28076834]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy