Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Multiple Mutations on α, β and γ Domains of Streptokinase Lead to the Generation of Highly Efficient Cysteine Analogues with Promising Features

Author(s): Narges Norouzzadeh Alinodehi, Hamideh Behrooz, Milad Sabaei, Farahnaz Khoshdel Nezamiha and Reza Arabi Mianroodi*

Volume 24, Issue 10, 2023

Published on: 30 December, 2022

Page: [1326 - 1334] Pages: 9

DOI: 10.2174/1389201024666221124151623

Price: $65

Abstract

Background: Streptokinase, one of the most widely used thrombolytic medicines, is a favorable protein for site-specific PEGylation as it lacks any cysteine residues in its amino acid sequence; however, any changes in the protein’s structure should be carefully planned to avoid undesired changes in its function.

Objectives: This study aimed to design and produce novel di/tri-cysteine variants of streptokinase from previously developed cysteine analogues, Arg45, Glu263, and Arg319, as candidates for multiple site-specific PEGylation.

Methods: Using bioinformatics tools and site-directed mutagenesis, we incorporated concurrent mutations at Arg45, Glu263, and Arg319 (carried out in our previous study) to create di/tri-cysteine variants of streptokinase proteins (SK45-319cys, SK263-319cys, and SK45-263-319cys) and evaluated their kinetic activity parameters by a colorimetric method, using H-D-Val-Leu-Lys-pNA.2HCl (S2251) as substrate.

Results: Based on the kinetic results, SK263-319cys with 44% enzyme efficiency increment compared to wild-type SK was the superior protein in terms of activity; as well, SK45-319cys and SK45-263-319cys showed 17 and 22% activity enhancement, respectively. Docking of the mutant streptokinase proteins with μ-plasmin demonstrated that changes in intermolecular interactions caused by amino acid substitution could be the reason for activity difference.

Conclusion: The novel mutant proteins created in this study exhibit remarkable biological activity and may be uniquely suitable for simultaneous PEGylation on two/three domains. As well, PEGylated derivates of these variants might prove to be more proficient proteins, compared to the singlecysteine analogs of streptokinase; because of their more surface coverage and increased molecular weight.

Keywords: Streptokinase, plasminogen, site directed mutagenesis, cysteine, activity, docking.

Graphical Abstract
[1]
Banerjee, A.; Chisti, Y.; Banerjee, U.C. Streptokinase-a clinically useful thrombolytic agent. Biotechnol. Adv., 2004, 22(4), 287-307.
[http://dx.doi.org/10.1016/j.biotechadv.2003.09.004] [PMID: 14697452]
[2]
Malke, H.; Ferretti, J.J. Streptokinase: cloning, expression, and excretion by Escherichia coli. Proc. Natl. Acad. Sci. USA, 1984, 81(11), 3557-3561.
[http://dx.doi.org/10.1073/pnas.81.11.3557] [PMID: 6374659]
[3]
Malke, H.; Gerlach, D.; Köhler, W.; Ferretti, J.J. Expression of a streptokinase gene from Streptococcus equisimilis in Streptococcus san-guis. Mol. Gen. Genet., 1984, 196(2), 360-363.
[http://dx.doi.org/10.1007/BF00328072] [PMID: 6593564]
[4]
Baruah, D.B.; Dash, R.N.; Chaudhari, M.R.; Kadam, S.S. Plasminogen activators: A comparison. Vascul. Pharmacol., 2006, 44(1), 1-9.
[http://dx.doi.org/10.1016/j.vph.2005.09.003] [PMID: 16275118]
[5]
World Health Organization. World Health Organization model list of essential medicines: 21st list 2019; World Health Organization: Geneva, 2019.
[6]
Keramati, M.; Mianroodi, R.; Memarnejadian, A.; Mirzaie, A.; Sazvari, S.; Aslani, M.; Roohvand, F. Towards a superior streptokinase for fibrinolytic therapy of vascular thrombosis. Cardiovasc. Hematol. Agents Med. Chem., 2014, 11(3), 218-229.
[http://dx.doi.org/10.2174/187152571103140120103816] [PMID: 23531210]
[7]
Califf, R.M.; White, H.D.; Van de Werf, F.; Sadowski, Z.; Armstrong, P.W.; Vahanian, A.; Simoons, M.L.; Simes, R.J.; Lee, K.L.; Topol, E.J. One-year results from the global utilization of streptokinase and TPA for occluded coronary arteries (GUSTO-I) Trial. Circulation, 1996, 94(6), 1233-1238.
[http://dx.doi.org/10.1161/01.CIR.94.6.1233] [PMID: 8822974]
[8]
Smith, B.J. Thrombolysis in acute myocardial infarction: analysis of studies comparing accelerated t-PA and streptokinase. Emerg. Med. J., 1999, 16(6), 407-411.
[http://dx.doi.org/10.1136/emj.16.6.407] [PMID: 10572811]
[9]
Chauhan, S.; Meena, S. Pegylation - A Surprising Technology. Internationale Pharmaceutica Sciencia, 2011, 1(2), 18-24.
[10]
Lee, J.I.; Eisenberg, S.P.; Rosendahl, M.S.; Chlipala, E.A.; Brown, J.D.; Doherty, D.H.; Cox, G.N. Site-specific PEGylation enhances the pharmacokinetic properties and antitumor activity of interferon beta-1b. J. Interferon Cytokine Res., 2013, 33(12), 769-777.
[http://dx.doi.org/10.1089/jir.2012.0148] [PMID: 23962003]
[11]
Cox, G.N.; Rosendahl, M.S.; Chlipala, E.A.; Smith, D.J.; Carlson, S.J.; Doherty, D.H. A long-acting, mono-PEGylated human growth hor-mone analog is a potent stimulator of weight gain and bone growth in hypophysectomized rats. Endocrinology, 2007, 148(4), 1590-1597.
[http://dx.doi.org/10.1210/en.2006-1170] [PMID: 17234711]
[12]
Doherty, D.H.; Rosendahl, M.S.; Smith, D.J.; Hughes, J.M.; Chlipala, E.A.; Cox, G.N. Site-specific PEGylation of engineered cysteine analogues of recombinant human granulocyte-macrophage colony-stimulating factor. Bioconjug. Chem., 2005, 16(5), 1291-1298.
[http://dx.doi.org/10.1021/bc050172r] [PMID: 16173810]
[13]
Moosmann, A.; Müller, E.; Böttinger, H. Purification of PEGylated proteins, with the example of PEGylated lysozyme and PEGylated scFv. Methods Mol. Biol., 2014, 1129, 527-538.
[http://dx.doi.org/10.1007/978-1-62703-977-2_37] [PMID: 24648098]
[14]
Sawhney, P.; Katare, K.; Sahni, G. PEGylation of truncated strEPTOKINASE leads to formulation of a useful drug with ameliorated at-tributes. PLoS One, 2016, 11(5), e0155831.
[http://dx.doi.org/10.1371/journal.pone.0155831] [PMID: 27192220]
[15]
Sawhney, P.; Kumar, S.; Maheshwari, N.; Guleria, S.; Dhar, N.; Kashyap, R.; Sahni, G. Site-specific thioL-mediated PEGylation of strep-tokinase leads to improved properties with clinical potential. Curr. Pharm. Des., 2016, 22(38), 5868-5878.
[http://dx.doi.org/10.2174/1381612822666160204120547] [PMID: 26845325]
[16]
Bagheri, S. Site-directed mutation, cloning and expression of streptokinase for producing a new suitable molecule for PEGylation. J. Arak Univ. Med. Sci., 2016, 19(3), 1-10.
[17]
Alinodehi, N.N.; Sadeh, S.; Nezamiha, F.K.; Keramati, M.; Hasanzadeh, M.; Mianroodi, R.A. Evaluation of activity kinetic parameters of SK319cys, as a new cysteine variant of streptokinase: A comparative study. Curr. Pharm. Biotechnol., 2019, 20(1), 76-83.
[http://dx.doi.org/10.2174/1389201020666190208155808] [PMID: 30734674]
[18]
Mahsa, R.; Fahimeh, B.A.; Reza, A.M. Point mutation in amino acid 263 of streptokinase gene as well as cloning and expression of the cysteine containing mutated protein. Nova Biologica Reperta, 2016, 3(3), 249-257.
[19]
Sambrook, J.; Russell, D. Molecular Cloning: a laboratory manual, 3rd ed; Cold Spring Harbor Laboratory press, 2001.
[20]
Arabi, R.; Roohvand, F.; Norouzian, D.; Sardari, S.; Aghasadeghi, M.R.; Khanahmad, H.; Memarnejadian, A.; Motevalli, F. A comparative study on the activity and antigenicity of truncated and full-length forms of streptokinase. Pol. J. Microbiol., 2011, 60(3), 243-251.
[http://dx.doi.org/10.33073/pjm-2011-034] [PMID: 22184932]
[21]
QIAgen GmbH. Ni-NTA Spin Handbook; , 2000.
[22]
Reed, G.L.; Houng, A.K.; Liu, L.; Parhami-Seren, B.; Matsueda, L.H.; Wang, S.; Hedstrom, L. A catalytic switch and the conversion of streptokinase to a fibrin-targeted plasminogen activator. Proc. Natl. Acad. Sci. USA, 1999, 96(16), 8879-8883.
[http://dx.doi.org/10.1073/pnas.96.16.8879] [PMID: 10430864]
[23]
Parhami-Seren, B.; Seavey, M.; Krudysz, J.; Tsantili, P. Structural correlates of a functional streptokinase antigenic epitope: Serine 138 is an essential residue for antibody binding. J. Immunol. Methods, 2003, 272(1-2), 93-105.
[http://dx.doi.org/10.1016/S0022-1759(02)00435-0] [PMID: 12505715]
[24]
Parrado, J.; Conejero-Lara, F.; Smith, R.A.G.; Marshall, J.M.; Ponting, C.P.; Dobson, C.M. The domain organization of streptokinase: Nuclear magnetic resonance, circular dichroism, and functional characterization of proteolytic fragments. Protein Sci., 1996, 5(4), 693-704.
[http://dx.doi.org/10.1002/pro.5560050414] [PMID: 8845759]
[25]
Wang, X.; Lin, X.; Loy, J.A.; Tang, J.; Zhang, X.C. Crystal structure of the catalytic domain of human plasmin complexed with streptoki-nase. Science, 1998, 281(5383), 1662-1665.
[http://dx.doi.org/10.1126/science.281.5383.1662] [PMID: 9733510]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy