Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Colloquy between Microbiota and the Immune System in Colon Cancer: Repercussions on the Cancer Therapy

Author(s): Soumya Pal, Adesh K. Saini, Ankur Kaushal, Shagun Gupta, Naseem A. Gaur, Anil K. Chhillar, Anil K. Sharma, Vijai K. Gupta and Reena V. Saini*

Volume 28, Issue 43, 2022

Published on: 08 December, 2022

Page: [3478 - 3485] Pages: 8

DOI: 10.2174/1381612829666221122115906

Price: $65

Abstract

Colorectal cancer is the second leading cause of cancer deaths worldwide and has engrossed researchers' attention toward its detection and prevention at early stages. Primarily associated with genetic and environmental risk factors, the disease has also shown its emergence due to dysbiosis in microbiota. The microbiota not only plays a role in modulating the metabolisms of metastatic tissue but also has a keen role in cancer therapy. The immune cells are responsible for secreting various chemokines and cytokines, and activating pattern recognition receptors by different microbes can lead to the trail by which these cells regulate cancer. Furthermore, mixed immune reactions involving NK cells, tumor-associated macrophages, and lymphocytes have shown their connection with the microbial counterpart of the disease. The microbes like Bacteroides fragilis, Fusobacterium nucleatum, and Enterococcus faecalis and their metabolites have engendered inflammatory reactions in the tumor microenvironment. Hence the interplay between immune cells and various microbes is utilized to study the changing metastasis stage. Targeting either immune cells or microbiota could not serve as a key to tackling this deadly disorder. However, harnessing their complementation towards the disease can be a powerful weapon for developing therapy and diagnostic/prognostic markers. In this review, we have discussed various immune reactions and microbiome interplay in CRC, intending to evaluate the effectiveness of chemotherapy and immunotherapy and their parallel relationship.

Keywords: Colorectal cancer, microbiota, immunotherapy, tumor microenvironment, immune cells, microbes.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet 2014; 383(9927): 1490-502.
[http://dx.doi.org/10.1016/S0140-6736(13)61649-9] [PMID: 24225001]
[3]
Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: A meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol 2012; 10(6): 639-45.
[http://dx.doi.org/10.1016/j.cgh.2012.01.010] [PMID: 22289873]
[4]
Vasen HFA, Tomlinson I, Castells A. Clinical management of hereditary colorectal cancer syndromes. Nat Rev Gastroenterol Hepatol 2015; 12(2): 88-97.
[http://dx.doi.org/10.1038/nrgastro.2014.229] [PMID: 25582351]
[5]
Bingham SA. Diet and colorectal cancer prevention. Biochem Soc Trans 2000; 28(2): 12-6.
[http://dx.doi.org/10.1042/bst0280012] [PMID: 10816091]
[6]
Hall AB, Tolonen AC, Xavier RJ. Human genetic variation and the gut microbiome in disease. Nat Rev Genet 2017; 18(11): 690-9.
[http://dx.doi.org/10.1038/nrg.2017.63] [PMID: 28824167]
[7]
McDowell R, Perrott S, Murchie P, Cardwell C, Hughes C, Samuel L. Oral antibiotic use and early-onset colorectal cancer: Findings from a case-control study using a national clinical database. Br J Cancer 2022; 126(6): 957-67.
[http://dx.doi.org/10.1038/s41416-021-01665-7] [PMID: 34921228]
[8]
Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol 2017; 15(8): 465-78.
[http://dx.doi.org/10.1038/nrmicro.2017.44] [PMID: 28529325]
[9]
Whisner CM, Athena Aktipis C. The role of the microbiome in cancer initiation and progression: How microbes and cancer cells utilize excess energy and promote one another’s growth. Curr Nutr Rep 2019; 8(1): 42-51.
[http://dx.doi.org/10.1007/s13668-019-0257-2] [PMID: 30758778]
[10]
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464(7285): 59-65.
[http://dx.doi.org/10.1038/nature08821] [PMID: 20203603]
[11]
Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013; 342(6161): 967-70.
[http://dx.doi.org/10.1126/science.1240527] [PMID: 24264989]
[12]
Rebersek M. Gut microbiome and its role in colorectal cancer. BMC Cancer 2021; 21(1): 1325.
[http://dx.doi.org/10.1186/s12885-021-09054-2] [PMID: 34895176]
[13]
Li J, Zhang A, Wu F, Wang X. Alterations in the gut microbiota and their metabolites in colorectal cancer: Recent progress and future prospects. Front Oncol 2022; 12: 841552.
[http://dx.doi.org/10.3389/fonc.2022.841552] [PMID: 35223525]
[14]
Colombo F, Illescas O, Noci S, et al. Gut microbiota composition in colorectal cancer patients is genetically regulated. Sci Rep 2022; 12(1): 11424.
[http://dx.doi.org/10.1038/s41598-022-15230-6] [PMID: 35794137]
[15]
Kim J, Lee HK. Potential role of the gut microbiome in colorectal cancer progression. Front Immunol 2022; 12: 807648.
[http://dx.doi.org/10.3389/fimmu.2021.807648] [PMID: 35069592]
[16]
Akbar N, Khan NA, Muhammad JS, Siddiqui R. The role of gut microbiome in cancer genesis and cancer prevention. Health Sci Rep 2022; 2: 100010.
[http://dx.doi.org/10.1016/j.hsr.2021.100010]
[17]
Yu J, Feng Q, Wong SH, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017; 66(1): 70-8.
[http://dx.doi.org/10.1136/gutjnl-2015-309800] [PMID: 26408641]
[18]
Datorre JG, de Carvalho AC, Guimarães DP, Reis RM. The role of Fusobacterium nucleatum in colorectal carcinogenesis. Pathobiology 2021; 88(2): 127-40.
[http://dx.doi.org/10.1159/000512175] [PMID: 33291114]
[19]
Markman JL, Shiao SL. Impact of the immune system and immunotherapy in colorectal cancer. J Gastrointest Oncol 2015; 6(2): 208-23.
[http://dx.doi.org/10.3978/j.issn.2078-6891.2014.077] [PMID: 25830040]
[20]
Browning M, Petronzelli F, Bicknell D, et al. Mechanisms of loss of HLA class I expression on colorectal tumor cells. Tissue Antigens 1996; 47(5): 364-71.
[http://dx.doi.org/10.1111/j.1399-0039.1996.tb02571.x] [PMID: 8795136]
[21]
Rocca YS, Roberti MP, Arriaga JM, et al. Altered phenotype in peripheral blood and tumor-associated NK cells from colorectal cancer patients. Innate Immun 2013; 19(1): 76-85.
[http://dx.doi.org/10.1177/1753425912453187] [PMID: 22781631]
[22]
Gessani S, Belardelli F. Immune dysfunctions and immunotherapy in colorectal cancer: The role of dendritic cells. Cancers (Basel) 2019; 11(10): 1491.
[http://dx.doi.org/10.3390/cancers11101491] [PMID: 31623355]
[23]
Chen J, Pitmon E, Wang K. Microbiome, inflammation and colorectal cancer. Semin Immunol 2017; 32: 43-53.
[http://dx.doi.org/10.1016/j.smim.2017.09.006] [PMID: 28982615]
[24]
Maréchal R, De Schutter J, Nagy N, et al. Putative contribution of CD56 positive cells in cetuximab treatment efficacy in first-line metastatic colorectal cancer patients. BMC Cancer 2010; 10(1): 340.
[http://dx.doi.org/10.1186/1471-2407-10-340] [PMID: 20591136]
[25]
Jobin G, Rodriguez-Suarez R, Betito K. Association between natural killer cell activity and colorectal cancer in high-risk subjects undergoing colonoscopy. Gastroenterology 2017; 153(4): 980-7.
[http://dx.doi.org/10.1053/j.gastro.2017.06.009] [PMID: 28625834]
[26]
Coppola A, Arriga R, Lauro D, et al. NK cell inflammation in the clinical outcome of colorectal carcinoma. Front Med 2015; 2: 33.
[http://dx.doi.org/10.3389/fmed.2015.00033] [PMID: 26131447]
[27]
Tang Y, Xie M, Li K, Li J, Cai Z, Hu B. Prognostic value of peripheral blood natural killer cells in colorectal cancer. BMC Gastroenterol 2020; 20(1): 31.
[http://dx.doi.org/10.1186/s12876-020-1177-8] [PMID: 32028908]
[28]
Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer 2009; 9(1): 57-63.
[http://dx.doi.org/10.1038/nrc2541] [PMID: 19052556]
[29]
Achek A, Yesudhas D, Choi S. Toll-like receptors: Promising therapeutic targets for inflammatory diseases. Arch Pharm Res 2016; 39(8): 1032-49.
[http://dx.doi.org/10.1007/s12272-016-0806-9] [PMID: 27515048]
[30]
Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 2021; 6(1): 291.
[http://dx.doi.org/10.1038/s41392-021-00687-0] [PMID: 34344870]
[31]
Huang B, Zhao J, Unkeless JC, Feng ZH, Xiong H. TLR signaling by tumor and immune cells: A double-edged sword. Oncogene 2008; 27(2): 218-24.
[http://dx.doi.org/10.1038/sj.onc.1210904] [PMID: 18176603]
[32]
Wang EL, Qian ZR, Nakasono M, et al. High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer 2010; 102(5): 908-15.
[http://dx.doi.org/10.1038/sj.bjc.6605558] [PMID: 20145615]
[33]
Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313(5795): 1960-4.
[http://dx.doi.org/10.1126/science.1129139] [PMID: 17008531]
[34]
Idos GE, Kwok J, Bonthala N, Kysh L, Gruber SB, Qu C. The prognostic implications of tumor infiltrating lymphocytes in colorectal cancer: A systematic review and meta-analysis. Sci Rep 2020; 10(1): 3360.
[http://dx.doi.org/10.1038/s41598-020-60255-4] [PMID: 32099066]
[35]
Laghi L, Bianchi P, Miranda E, et al. CD3+ cells at the invasive margin of deeply invading (pT3–T4) colorectal cancer and risk of post-surgical metastasis: A longitudinal study. Lancet Oncol 2009; 10(9): 877-84.
[http://dx.doi.org/10.1016/S1470-2045(09)70186-X] [PMID: 19656725]
[36]
Salama P, Phillips M, Grieu F, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 2009; 27(2): 186-92.
[http://dx.doi.org/10.1200/JCO.2008.18.7229] [PMID: 19064967]
[37]
Nosho K, Baba Y, Tanaka N, et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: Cohort study and literature review. J Pathol 2010; 222(4): 350-66.
[http://dx.doi.org/10.1002/path.2774] [PMID: 20927778]
[38]
Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L. The origin and function of tumor-associated macrophages. Immunol Today 1992; 13(7): 265-70.
[http://dx.doi.org/10.1016/0167-5699(92)90008-U] [PMID: 1388654]
[39]
Forssell J, Öberg Å, Henriksson ML, Stenling R, Jung A, Palmqvist R. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res 2007; 13(5): 1472-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2073] [PMID: 17332291]
[40]
Edin S, Wikberg ML, Dahlin AM, et al. The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One 2012; 7(10): e47045.
[http://dx.doi.org/10.1371/journal.pone.0047045] [PMID: 23077543]
[41]
Grivennikov SI, Wang K, Mucida D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012; 491(7423): 254-8.
[http://dx.doi.org/10.1038/nature11465] [PMID: 23034650]
[42]
Suzuki H, Ogawa H, Miura K, et al. IL-23 directly enhances the proliferative and invasive activities of colorectal carcinoma. Oncol Lett 2012; 4(2): 199-204.
[http://dx.doi.org/10.3892/ol.2012.739] [PMID: 22844353]
[43]
Wu J, Wang Y, Xu X, et al. Transcriptional activation of FN1 and IL11 by HMGA2 promotes the malignant behavior of colorectal cancer. Carcinogenesis 2016; 37(5): 511-21.
[http://dx.doi.org/10.1093/carcin/bgw029] [PMID: 26964871]
[44]
Hyun YS, Han DS, Lee AR, Eun CS, Youn J, Kim HY. Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis 2012; 33(4): 931-6.
[http://dx.doi.org/10.1093/carcin/bgs106] [PMID: 22354874]
[45]
Kuen DS, Kim BS, Chung Y. IL-17-producing cells in tumor immunity: Friends or foes? Immune Netw 2020; 20(1): e6.
[http://dx.doi.org/10.4110/in.2020.20.e6] [PMID: 32158594]
[46]
Sharp SP, Avram D, Stain SC, Lee EC. Local and systemic Th17 immune response associated with advanced stage colon cancer. J Surg Res 2017; 208: 180-6.
[http://dx.doi.org/10.1016/j.jss.2016.09.038] [PMID: 27993206]
[47]
Chang PH, Pan YP, Fan CW, et al. Pretreatment serum interleukin-1 β, interleukin-6, and tumor necrosis factor- α levels predict the progression of colorectal cancer. Cancer Med 2016; 5(3): 426-33.
[http://dx.doi.org/10.1002/cam4.602] [PMID: 26799163]
[48]
Ray AL, Berggren KL, Restrepo Cruz S, Gan GN, Beswick EJ. Inhibition of MK2 suppresses IL-1β, IL-6, and TNF-α-dependent colorectal cancer growth. Int J Cancer 2018; 142(8): 1702-11.
[http://dx.doi.org/10.1002/ijc.31191] [PMID: 29197088]
[49]
Tuomisto AE, Mäkinen MJ, Väyrynen JP. Systemic inflammation in colorectal cancer: Underlying factors, effects, and prognostic significance. World J Gastroenterol 2019; 25(31): 4383-404.
[http://dx.doi.org/10.3748/wjg.v25.i31.4383] [PMID: 31496619]
[50]
Sánchez-Alcoholado L, Ramos-Molina B, Otero A, et al. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers 2020; 12(6): 1406.
[http://dx.doi.org/10.3390/cancers12061406] [PMID: 32486066]
[51]
Nakatsu G, Li X, Zhou H, et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun 2015; 6(1): 8727.
[http://dx.doi.org/10.1038/ncomms9727] [PMID: 26515465]
[52]
Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol 2014; 10(11): 766.
[http://dx.doi.org/10.15252/msb.20145645] [PMID: 25432777]
[53]
Gao Z, Guo B, Gao R, Zhu Q, Wu W, Qin H. Probiotics modify human intestinal mucosa-associated microbiota in patients with colorectal cancer. Mol Med Rep 2015; 12(4): 6119-27.
[http://dx.doi.org/10.3892/mmr.2015.4124] [PMID: 26238090]
[54]
Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M. Secondary bile acids and short chain fatty acids in the colon: A focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int J Mol Sci 2019; 20(5): 1214.
[http://dx.doi.org/10.3390/ijms20051214] [PMID: 30862015]
[55]
Cross AJ, Moore SC, Boca S, et al. A prospective study of serum metabolites and colorectal cancer risk. Cancer 2014; 120(19): 3049-57.
[http://dx.doi.org/10.1002/cncr.28799] [PMID: 24894841]
[56]
Brennan CA, Garrett WS. Fusobacterium nucleatum — symbiont, opportunist and oncobacterium. Nat Rev Microbiol 2019; 17(3): 156-66.
[http://dx.doi.org/10.1038/s41579-018-0129-6] [PMID: 30546113]
[57]
Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 2017; 358(6369): 1443-8.
[http://dx.doi.org/10.1126/science.aal5240] [PMID: 29170280]
[58]
Liu Y, Baba Y, Ishimoto T, et al. Progress in characterizing the linkage between Fusobacterium nucleatum and gastrointestinal cancer. J Gastroenterol 2019; 54(1): 33-41.
[http://dx.doi.org/10.1007/s00535-018-1512-9] [PMID: 30244399]
[59]
Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013; 14(2): 195-206.
[http://dx.doi.org/10.1016/j.chom.2013.07.012] [PMID: 23954158]
[60]
Chen Y, Peng Y, Yu J, et al. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget 2017; 8(19): 31802-14.
[http://dx.doi.org/10.18632/oncotarget.15992] [PMID: 28423670]
[61]
Kaplan CW, Ma X, Paranjpe A, et al. Fusobacterium nucleatum outer membrane proteins Fap2 and RadD induce cell death in human lymphocytes. Infect Immun 2010; 78(11): 4773-8.
[http://dx.doi.org/10.1128/IAI.00567-10] [PMID: 20823215]
[62]
Abed J, Emgård JEM, Zamir G, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed gal-GalNAc. Cell Host Microbe 2016; 20(2): 215-25.
[http://dx.doi.org/10.1016/j.chom.2016.07.006] [PMID: 27512904]
[63]
Wu J, Li Q, Fu X. Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity. Transl Oncol 2019; 12(6): 846-51.
[http://dx.doi.org/10.1016/j.tranon.2019.03.003] [PMID: 30986689]
[64]
Tang B, Wang K, Jia Y, et al. Fusobacterium nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 cells. PLoS One 2016; 11(11): e0165701.
[http://dx.doi.org/10.1371/journal.pone.0165701] [PMID: 27828984]
[65]
Wang S, Liu Y, Li J, et al. Fusobacterium nucleatum acts as a pro-carcinogenic bacterium in colorectal cancer: From association to causality. Front Cell Dev Biol 2021; 9: 710165.
[http://dx.doi.org/10.3389/fcell.2021.710165] [PMID: 34490259]
[66]
Szabo C, Coletta C, Chao C, et al. Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci USA 2013; 110(30): 12474-9.
[http://dx.doi.org/10.1073/pnas.1306241110] [PMID: 23836652]
[67]
Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol 2016; 70(1): 395-411.
[http://dx.doi.org/10.1146/annurev-micro-102215-095513] [PMID: 27607555]
[68]
Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 2013; 13(11): 759-71.
[http://dx.doi.org/10.1038/nrc3611] [PMID: 24154716]
[69]
Raisch J, Rolhion N, Dubois A, Darfeuille-Michaud A, Bringer MA. Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression. Lab Invest 2015; 95(3): 296-307.
[http://dx.doi.org/10.1038/labinvest.2014.161] [PMID: 25545478]
[70]
Born WK, Reardon CL, O’Brien RL. The function of γδ T cells in innate immunity. Curr Opin Immunol 2006; 18(1): 31-8.
[http://dx.doi.org/10.1016/j.coi.2005.11.007] [PMID: 16337364]
[71]
Rastogi YR, Saini AK, Thakur VK, Saini RV. New insights into molecular links between microbiota and gastrointestinal cancers: A literature review. Int J Mol Sci 2020; 21(9): 3212.
[http://dx.doi.org/10.3390/ijms21093212] [PMID: 32370077]
[72]
Kashyap S, Pal S, Chandan G, et al. Understanding the cross-talk between human microbiota and gastrointestinal cancer for developing potential diagnostic and prognostic biomarkers. Semin Cancer Biol 2021; S1044-579X(21): 00121-8.
[http://dx.doi.org/10.1016/j.semcancer.2021.04.020]
[73]
Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015; 42(2): 344-55.
[http://dx.doi.org/10.1016/j.immuni.2015.01.010] [PMID: 25680274]
[74]
Yin H, Miao Z, Wang L, et al. Fusobacterium nucleatum promotes liver metastasis in colorectal cancer by regulating the hepatic immune niche and altering gut microbiota. Aging (Albany NY) 2022; 14(4): 1941-58.
[http://dx.doi.org/10.18632/aging.203914] [PMID: 35212644]
[75]
Mima K, Sukawa Y, Nishihara R, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol 2015; 1(5): 653-61.
[http://dx.doi.org/10.1001/jamaoncol.2015.1377] [PMID: 26181352]
[76]
Yang Y, Xu C, Wu D, et al. γδ T cells: Crosstalk between microbiota, chronic inflammation, and colorectal cancer. Front Immunol 2018; 9: 1483.
[http://dx.doi.org/10.3389/fimmu.2018.01483] [PMID: 29997627]
[77]
Wu P, Wu D, Ni C, et al. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 2014; 40(5): 785-800.
[http://dx.doi.org/10.1016/j.immuni.2014.03.013] [PMID: 24816404]
[78]
Glatzel A, Wesch D, Schiemann F, Brandt E, Janssen O, Kabelitz D. Patterns of chemokine receptor expression on peripheral blood gamma delta T lymphocytes: Strong expression of CCR5 is a selective feature of V delta 2/V gamma 9 gamma delta T cells. J Immunol 2002; 168(10): 4920-9.
[http://dx.doi.org/10.4049/jimmunol.168.10.4920] [PMID: 11994442]
[79]
Mao Y, Yin S, Zhang J, et al. A new effect of IL-4 on human γδ T cells: Promoting regulatory Vδ1 T cells via IL-10 production and inhibiting function of Vδ2 T cells. Cell Mol Immunol 2016; 13(2): 217-28.
[http://dx.doi.org/10.1038/cmi.2015.07] [PMID: 25942601]
[80]
Bandaru SS, Boyilla R, Merchant N, Nagaraju GP, El-Rayes BF. Targeting T regulatory cells: Their role in colorectal carcinoma progression and current clinical trials. Pharmacol Res 2022; 178: 106197.
[http://dx.doi.org/10.1016/j.phrs.2022.106197] [PMID: 35358681]
[81]
Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. New insights into the cancer-microbiome-immune axis: Decrypting a decade of discoveries. Front Immunol 2021; 12: 622064.
[http://dx.doi.org/10.3389/fimmu.2021.622064] [PMID: 33708214]
[82]
Li R, Zhou R, Wang H, et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ 2019; 26(11): 2447-63.
[http://dx.doi.org/10.1038/s41418-019-0312-y] [PMID: 30850734]
[83]
Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40(1): 128-39.
[http://dx.doi.org/10.1016/j.immuni.2013.12.007] [PMID: 24412617]
[84]
Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012; 149(6): 1192-205.
[http://dx.doi.org/10.1016/j.cell.2012.05.012] [PMID: 22682243]
[85]
Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860-7.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[86]
Yang Y, Li L, Xu C, et al. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis. Gut 2021; 70(8): 1495-506.
[http://dx.doi.org/10.1136/gutjnl-2020-320777] [PMID: 33122176]
[87]
Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013; 14(2): 207-15.
[http://dx.doi.org/10.1016/j.chom.2013.07.007] [PMID: 23954159]
[88]
Villéger R, Lopès A, Veziant J, et al. Microbial markers in colorectal cancer detection and/or prognosis. World J Gastroenterol 2018; 24(22): 2327-47.
[http://dx.doi.org/10.3748/wjg.v24.i22.2327] [PMID: 29904241]
[89]
Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013; 342(6161): 971-6.
[http://dx.doi.org/10.1126/science.1240537] [PMID: 24264990]
[90]
Mohamed A, Menon H, Chulkina M, Yee NS, Pinchuk IV. Drug–microbiota interaction in colon cancer therapy: Impact of antibiotics. Biomedicines 2021; 9(3): 259.
[http://dx.doi.org/10.3390/biomedicines9030259] [PMID: 33807878]
[91]
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017; 170(3): 548-563.e16.
[http://dx.doi.org/10.1016/j.cell.2017.07.008] [PMID: 28753429]
[92]
Abreu MT, Peek RM Jr. Gastrointestinal malignancy and the microbiome. Gastroenterology 2014; 146(6): 1534-1546.e3.
[http://dx.doi.org/10.1053/j.gastro.2014.01.001] [PMID: 24406471]
[93]
Shen K, Cao Z, Zhu R, You L, Zhang T. The dual functional role of MicroRNA-18a (miR-18a) in cancer development. Clin Transl Med 2019; 8(1): 32.
[http://dx.doi.org/10.1186/s40169-019-0250-9] [PMID: 31873828]
[94]
Zou S, Fang L, Lee MH. Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol Rep (Oxf) 2018; 6(1): 1-12.
[http://dx.doi.org/10.1093/gastro/gox031] [PMID: 29479437]
[95]
Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 2015; 350(6264): 1084-9.
[http://dx.doi.org/10.1126/science.aac4255] [PMID: 26541606]
[96]
Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350(6264): 1079-84.
[http://dx.doi.org/10.1126/science.aad1329] [PMID: 26541610]
[97]
Daillère R, Vétizou M, Waldschmitt N, et al. Enterococcus hirae and Barnesiella intestinihominis cacilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 2016; 45(4): 931-43.
[http://dx.doi.org/10.1016/j.immuni.2016.09.009] [PMID: 27717798]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy