Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Understanding the Role of Free Radicals and Antioxidant Enzymes in Human Diseases

Author(s): Zinal Roy, Raveena Bansal, Lubna Siddiqui and Nidhee Chaudhary*

Volume 24, Issue 10, 2023

Published on: 26 December, 2022

Page: [1265 - 1276] Pages: 12

DOI: 10.2174/1389201024666221121160822

Price: $65

Abstract

Antioxidant enzymes being an integral part of the defense mechanism have a crucial role in cellular metabolism, essential for healthy growth and living of the cells. The main function is to scavenge and degrade the free radicals, reactive oxygen species (ROS), and reactive nitrogen species (RNS). Endogenous antioxidant enzymes present in mitochondria, cytosol, and other cellular parts participate in capturing and repairing the oxidative damage to the system. Superoxide dismutase, catalase, and glutathione are antioxidant enzymes considered to be part of the first line of defense and are especially important in scavenging reactive oxygen species such as superoxide anion and hydrogen peroxide. Numerous studies in humans, as well as animal models, are correlated and reported about elevation in the enzymatic activity being involved in inhibiting oxidative damage and controlling the disease progression. Similarly, alterations due to enzymatic damage increase oxidative damage and have a key role in disease progression in diseases like cancer, atherosclerotic diseases, neurodegenerative diseases like Parkinson’s, Alzheimer’s, viral diseases, age-related ailments, etc. However, information about antioxidant enzymes, their specificity, free radicals involved in different diseases, and the oxidation process needs to be explored to a greater extent. This review focuses on our current understanding of the role of free radicals and the potential of various antioxidant enzymes, and their great scope in therapeutics against many dreadful diseases.

Keywords: Free radical, ROS, diseases, drug development, antioxidant, therapy.

Graphical Abstract
[1]
Day, B.J. Catalytic antioxidants: A radical approach to new therapeutics. Drug Discov. Today, 2004, 9(13), 557-566.
[http://dx.doi.org/10.1016/S1359-6446(04)03139-3] [PMID: 15203091]
[2]
Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol., 2003, 552(2), 335-344.
[http://dx.doi.org/10.1113/jphysiol.2003.049478] [PMID: 14561818]
[3]
Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol., 2001, 54(3), 176-186.
[http://dx.doi.org/10.1136/jcp.54.3.176] [PMID: 11253127]
[4]
Krishnamurthy, P.; Wadhwani, A. Antioxidant enzymes and human health; IntechOpen, 2012.
[http://dx.doi.org/10.5772/48109]
[5]
Genestra, M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell. Signal., 2007, 19(9), 1807-1819.
[http://dx.doi.org/10.1016/j.cellsig.2007.04.009] [PMID: 17570640]
[6]
Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007, 87(1), 315-424.
[http://dx.doi.org/10.1152/physrev.00029.2006] [PMID: 17237348]
[7]
Pham-Huy, L.A.; He, H.; Pham, H.C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci., 2008, 4(2), 89-96.
[PMID: 23675073]
[8]
Devasagayam, T.P.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: cur-rent status and future prospects. J. Assoc. Physicians India, 2004, 52, 794-804.
[PMID: 15909857]
[9]
Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med., 2018, 54(4), 287-293.
[http://dx.doi.org/10.1016/j.ajme.2017.09.001]
[10]
Niki, E. Antioxidant defenses in eukariotic cells: An overview. In: Free Radicals: from Basic Science to Medicine. Mol. Cell Biol. Updates; Poli, G.; Albano, E.; Dianzani, M.U., Eds.; Birkhäuser Basel, 1993; pp. 365-373.
[http://dx.doi.org/10.1007/978-3-0348-9116-5_31]
[11]
Stohs, S.; Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med., 1995, 18(2), 321-336.
[http://dx.doi.org/10.1016/0891-5849(94)00159-H] [PMID: 7744317]
[12]
MatÉs, J.M.; Pérez-Gómez, C.; De Castro, I.N. Antioxidant enzymes and human diseases. Clin. Biochem., 1999, 32(8), 595-603.
[http://dx.doi.org/10.1016/S0009-9120(99)00075-2] [PMID: 10638941]
[13]
Benov, L.; Fridovich, I. Growth in iron-enriched medium partially compensates Escherichia coli for the lack of manganese and iron su-peroxide dismutase. J. Biol. Chem., 1998, 273(17), 10313-10316.
[http://dx.doi.org/10.1074/jbc.273.17.10313] [PMID: 9553085]
[14]
Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem., 1995, 64(1), 97-112.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.000525] [PMID: 7574505]
[15]
Dringen, R.; Pawlowski, P.G.; Hirrlinger, J. Peroxide detoxification by brain cells. J. Neurosci. Res., 2005, 79(1-2), 157-165.
[http://dx.doi.org/10.1002/jnr.20280] [PMID: 15573410]
[16]
Rosen, D.R.; Siddique, T.; Patterson, D.; Figlewicz, D.A.; Sapp, P.; Hentati, A.; Donaldson, D.; Goto, J.; O’Regan, J.P.; Deng, H.X.; Rah-mani, Z.; Krizus, A.; McKenna-Yasek, D.; Cayabyab, A.; Gaston, S.M.; Berger, R.; Tanzi, R.E.; Halperin, J.J.; Herzfeldt, B.; Van den Bergh, R.; Hung, W.Y.; Bird, T.; Deng, G.; Mulder, D.W.; Smyth, C.; Laing, N.G.; Soriano, E.; Pericak-Vance, M.A.; Haines, J.; Rouleau, G.A.; Gusella, J.S.; Horvitz, H.R.; Brown, R.H. Jr Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 1993, 362(6415), 59-62.
[http://dx.doi.org/10.1038/362059a0] [PMID: 8446170]
[17]
Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 2010, 48(12), 909-930.
[http://dx.doi.org/10.1016/j.plaphy.2010.08.016] [PMID: 20870416]
[18]
Karuppanapandian, T.; Moon, J.C.; Kim, C.; Manoharan, K.; Kim, W. Reactive oxygen species in plants: Their generation, signal transduc-tion, and scavenging mechanisms. Aust. J. Crop Sci., 2011, 5(6), 709-725.
[19]
Yan, Z.; Spaulding, H.R. Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise. Redox Biol., 2020, 32, 101508.
[http://dx.doi.org/10.1016/j.redox.2020.101508] [PMID: 32220789]
[20]
Matés, M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology, 2000, 153(1-3), 83-104.
[http://dx.doi.org/10.1016/S0300-483X(00)00306-1] [PMID: 11090949]
[21]
Lebovitz, R.M.; Zhang, H.; Vogel, H.; Cartwright, J., Jr; Dionne, L.; Lu, N.; Huang, S.; Matzuk, M.M. Neurodegeneration, myocardial inju-ry, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci., 1996, 93(18), 9782-9787.
[http://dx.doi.org/10.1073/pnas.93.18.9782] [PMID: 8790408]
[22]
Strange, R.W.; Antonyuk, S.; Hough, M.A.; Doucette, P.A.; Rodriguez, J.A.; Hart, P.J.; Hayward, L.J.; Valentine, J.S.; Hasnain, S.S. The structure of holo and metal-deficient wild-type human Cu, Zn superoxide dismutase and its relevance to familial amyotrophic lateral scle-rosis. J. Mol. Biol., 2003, 328(4), 877-891.
[http://dx.doi.org/10.1016/S0022-2836(03)00355-3] [PMID: 12729761]
[23]
Roberts, B.R.; Tainer, J.A.; Getzoff, E.D.; Malencik, D.A.; Anderson, S.R.; Bomben, V.C.; Meyers, K.R.; Karplus, P.A.; Beckman, J.S. Structural characterization of zinc-deficient human superoxide dismutase and implications for ALS. J. Mol. Biol., 2007, 373(4), 877-890.
[http://dx.doi.org/10.1016/j.jmb.2007.07.043] [PMID: 17888947]
[24]
Dayal, S.; Baumbach, G.L.; Arning, E.; Bottiglieri, T.; Faraci, F.M.; Lentz, S.R. Deficiency of superoxide dismutase promotes cerebral vascular hypertrophy and vascular dysfunction in hyperhomocysteinemia. PLoS One, 2017, 12(4), e0175732.
[http://dx.doi.org/10.1371/journal.pone.0175732] [PMID: 28414812]
[25]
Morón, Ú.M.; Castilla-Cortázar, I. Protection against oxidative stress and “IGF-I Deficiency Conditions”. In: Antioxidant Enzyme; El-Missiry, M.A., Ed.; InTech Open, 2012.
[26]
Drevet, J.R. Glutathione peroxidases expression in the mammalian epididymis and vas deferens. Int. J. Androl. Suppl, 2000, 1, 1-12.
[27]
Drevet, J.R. The antioxidant glutathione peroxidase family and spermatozoa: A complex story. Mol. Cell. Endocrinol., 2006, 250(1-2), 70-79.
[http://dx.doi.org/10.1016/j.mce.2005.12.027] [PMID: 16427183]
[28]
Baek, I.J.; Seo, D.S.; Yon, J-M. Lee, Se-Ra.; Jin, Y.; Nahm, S.S.; Jeong, J-H.; Choo, Y-K.; Kang, J-K.; Lee, B.J.; Yun, Y.W.; Nam, S.-Y. Tissue expression and cellular localization of phospholipid hydro peroxide glutathione peroxidase (PHGPx) mRNA in male mice. J. Mol. Histol., 2007, 38, 237-244.
[http://dx.doi.org/10.1007/s10735-007-9092-7] [PMID: 17503194]
[29]
Champe, P.C.; Harvey, R.A.; Ferrier, D.R. Intermediary metabolism. Lippincott’s illustrated reviews. Biochem., 2007, 69, 82-148.
[30]
Radi, R.; Turrens, J.F.; Chang, L.Y.; Bush, K.M.; Crapo, J.D.; Freeman, B.A. Detection of catalase in rat heart mitochondria. J. Biol. Chem., 1991, 266(32), 22028-22034.
[http://dx.doi.org/10.1016/S0021-9258(18)54740-2] [PMID: 1657986]
[31]
Burk, R.F. Selenium in nutrition and health. AJCN, 2007, 86(1)
[32]
Góth, L.; Rass, P.; Páy, A. Catalase enzyme mutations and their association with diseases. Mol. Diagn., 2004, 8(3), 141-149.
[http://dx.doi.org/10.1007/BF03260057] [PMID: 15771551]
[33]
Glorieux, C.; Calderon, P.B. Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment ap-proach. Biol. Chem., 2017, 398(10), 1095-1108.
[http://dx.doi.org/10.1515/hsz-2017-0131] [PMID: 28384098]
[34]
Marklund, S.L. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J., 1984, 222(3), 649-655.
[http://dx.doi.org/10.1042/bj2220649] [PMID: 6487268]
[35]
Chelikani, P.; Fita, I.; Loewen, P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci., 2004, 61(2), 192-208.
[http://dx.doi.org/10.1007/s00018-003-3206-5] [PMID: 14745498]
[36]
Jones, P.; Dunford, H.B. The mechanism of Compound I formation revisited. J. Inorg. Biochem., 2005, 99(12), 2292-2298.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.08.009] [PMID: 16213024]
[37]
Vlasits, J.; Jakopitsch, C.; Schwanninger, M.; Holubar, P.; Obinger, C. Hydrogen peroxide oxidation by catalase-peroxidase follows a non-scrambling mechanism. FEBS Lett., 2007, 581(2), 320-324.
[http://dx.doi.org/10.1016/j.febslet.2006.12.037] [PMID: 17217949]
[38]
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[39]
Nuran Ercal, B.S.P.; Hande Gurer-Orhan, B.S.P.; Nukhet Aykin-Burns, B.S.P. Toxic metals and oxidative stress part I: Mechanisms in-volved in metal-induced oxidative damage. Curr. Top. Med. Chem., 2001, 1(6), 529-539.
[http://dx.doi.org/10.2174/1568026013394831] [PMID: 11895129]
[40]
Zámocký, M.; Koller, F. Understanding the structure and function of catalases: Clues from molecular evolution and in vitro mutagenesis. Prog. Biophys. Mol. Biol., 1999, 72(1), 19-66.
[http://dx.doi.org/10.1016/S0079-6107(98)00058-3] [PMID: 10446501]
[41]
Asaduzzaman Khan, M.; Tania, M.; Zhang, D.; Chen, H. Antioxidant enzymes and cancer. Chin. J. Cancer Res., 2010, 22(2), 87-92.
[http://dx.doi.org/10.1007/s11670-010-0087-7]
[42]
Kang, D.H.; Kang, S.W. Targeting cellular antioxidant enzymes for treating atherosclerotic vascular disease. Biomol. Ther., 2013, 21(2), 89-96.
[http://dx.doi.org/10.4062/biomolther.2013.015] [PMID: 24009865]
[43]
Zhang, Q.; Pi, J.; Woods, C.G.; Andersen, M.E. A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol. Appl. Pharmacol., 2010, 244(1), 84-97.
[http://dx.doi.org/10.1016/j.taap.2009.08.018] [PMID: 19716833]
[44]
Schmidt, E.E. Interplay between cytosolic disulfide reductase systems and the Nrf2/Keap1 pathway. Biochem. Soc. Trans., 2015, 43(4), 632-638.
[http://dx.doi.org/10.1042/BST20150021] [PMID: 26551704]
[45]
Richardson, B.G.; Jain, A.D.; Speltz, T.E.; Moore, T.W. Non-electrophilic modulators of the canonical Keap1/Nrf2 pathway. Bioorg. Med. Chem. Lett., 2015, 25(11), 2261-2268.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.019] [PMID: 25937010]
[46]
Tebay, L.E.; Robertson, H.; Duran, S.T.; Vitale, S.R.; Penning, T.M.; Dinkova-Kostova, A.T.; Hayesa, J.D. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic. Biol. Med., 2015, 88(B), 108-146.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.021]
[47]
Frederiks, W.M.; Bosch, K.S.; Hoeben, K.A.; van Marle, J.; Langbein, S. Renal cell carcinoma and oxidative stress: The lack of peroxi-somes. Acta Histochem., 2010, 112(4), 364-371.
[http://dx.doi.org/10.1016/j.acthis.2009.03.003] [PMID: 19500819]
[48]
Hussain, S.P.; Raja, K.; Amstad, P.A.; Sawyer, M.; Trudel, L.J.; Wogan, G.N.; Hofseth, L.J.; Shields, P.G.; Billiar, T.R.; Trautwein, C.; Höhler, T.; Galle, P.R.; Phillips, D.H.; Markin, R.; Marrogi, A.J.; Harris, C.C. Increased p53 mutation load in nontumorous human liver of Wilson disease and hemochromatosis: Oxyradical overload diseases. Proc. Natl. Acad. Sci. USA, 2000, 97(23), 12770-12775.
[http://dx.doi.org/10.1073/pnas.220416097] [PMID: 11050162]
[49]
Menegon, S.; Columbano, A.; Giordano, S. The dual roles of Nrf2 in cancer. Trends Mol. Med., 2016, 22(7), 578-593.
[http://dx.doi.org/10.1016/j.molmed.2016.05.002] [PMID: 27263465]
[50]
Sengottuvelan, M.; Deeptha, K.; Nalini, N. Resveratrol ameliorates DNA damage, prooxidant and antioxidant imbalance in 1,2-dimethylhydrazine induced rat colon carcinogenesis. Chem. Biol. Interact., 2009, 181(2), 193-201.
[http://dx.doi.org/10.1016/j.cbi.2009.06.004] [PMID: 19523937]
[51]
Elchuri, S.; Oberley, T.D.; Qi, W.; Eisenstein, R.S.; Jackson Roberts, L.; Van Remmen, H.; Epstein, C.J.; Huang, T.T. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene, 2005, 24(3), 367-380.
[http://dx.doi.org/10.1038/sj.onc.1208207] [PMID: 15531919]
[52]
Plymate, S.R.; Haugk, K.H.; Sprenger, C.C.; Nelson, P.S.; Tennant, M.K.; Zhang, Y.; Oberley, L.W.; Zhong, W.; Drivdahl, R.; Oberley, T.D. Increased manganese superoxide dismutase (SOD-2) is part of the mechanism for prostate tumor suppression by Mac25/insulin-like growth factor binding-protein-related protein-1. Oncogene, 2003, 22(7), 1024-1034.
[http://dx.doi.org/10.1038/sj.onc.1206210] [PMID: 12592389]
[53]
Subberwal, M. kumar, S.; Sharma, M.; Aggarwal, S. Brain tumor and role of β-carotene, a- tocopherol, superoxide dismutase and gluta-thione peroxidase. J. Cancer Res. Ther., 2006, 2(1), 24-27.
[http://dx.doi.org/10.4103/0973-1482.19771] [PMID: 17998669]
[54]
Okada, F.; Shionoya, H.; Kobayashi, M.; Kobayashi, T.; Tazawa, H.; Onuma, K.; Iuchi, Y.; Matsubara, N.; Ijichi, T.; Dugas, B.; Hosoka-wa, M. Prevention of inflammation-mediated acquisition of metastatic properties of benign mouse fibrosarcoma cells by administration of an orally available superoxide dismutase. Br. J. Cancer, 2006, 94(6), 854-862.
[http://dx.doi.org/10.1038/sj.bjc.6603016] [PMID: 16508635]
[55]
Falkson, G. de JAGER, M.E. Catalase activity in the epidermis of patients with advanced cancer. Nature, 1964, 202(4928), 203-204.
[http://dx.doi.org/10.1038/202203a0] [PMID: 14156312]
[56]
Petit, E.; Courtin, A.; Kloosterboer, H.J.; Rostène, W.; Forgez, P.; Gompel, A. Progestins induce catalase activities in breast cancer cells through PRB isoform: Correlation with cell growth inhibition. J. Steroid Biochem. Mol. Biol., 2009, 115(3-5), 153-160.
[http://dx.doi.org/10.1016/j.jsbmb.2009.04.002] [PMID: 19383545]
[57]
Ratnasinghe, D.; Tangrea, J.A.; Andersen, M.R.; Barrett, M.J.; Virtamo, J.; Taylor, P.R.; Albanes, D. Glutathione peroxidase codon 198 polymorphism variant increases lung cancer risk. Cancer Res., 2000, 60(22), 6381-6383.
[PMID: 11103801]
[58]
Onumah, O.E.; Jules, G.E.; Zhao, Y.; Zhou, L.; Yang, H.; Guo, Z. Overexpression of catalase delays G0/G1- to S-phase transition during cell cycle progression in mouse aortic endothelial cells. Free Radic. Biol. Med., 2009, 46(12), 1658-1667.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.03.018] [PMID: 19341793]
[59]
Ando, T.; Mimura, K.; Johansson, C.C.; Hanson, M.G.; Mougiakakos, D.; Larsson, C.; Martins da Palma, T.; Sakurai, D.; Norell, H.; Li, M.; Nishimura, M.I.; Kiessling, R. Transduction with the antioxidant enzyme catalase protects human T cells against oxidative stress. J. Immunol., 2008, 181(12), 8382-8390.
[http://dx.doi.org/10.4049/jimmunol.181.12.8382] [PMID: 19050255]
[60]
Liu, J.; Hinkhouse, M.M.; Sun, W.; Weydert, C.J.; Ritchie, J.M.; Oberley, L.W.; Cullen, J.J. Redox regulation of pancreatic cancer cell growth: Role of glutathione peroxidase in the suppression of the malignant phenotype. Hum. Gene Ther., 2004, 15(3), 239-250.
[http://dx.doi.org/10.1089/104303404322886093] [PMID: 15018733]
[61]
Incalza, M.A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol., 2018, 100, 1-19.
[http://dx.doi.org/10.1016/j.vph.2017.05.005] [PMID: 28579545]
[62]
Gupta, S.; Sodhi, S.; Mahajan, V. Correlation of antioxidants with lipid peroxidation and lipid profile in patients suffering from coronary artery disease. Expert Opin. Ther. Targets, 2009, 13(8), 889-894.
[http://dx.doi.org/10.1517/14728220903099668] [PMID: 19606928]
[63]
Lubrano, V.; Di Cecco, P.; Zucchelli, G.C. Role of superoxide dismutase in vascular inflammation and in coronary artery disease. Clin. Exp. Med., 2006, 6(2), 84-88.
[http://dx.doi.org/10.1007/s10238-006-0100-0]
[64]
Kotur-Stevuljevic, J.; Memon, L.; Stefanovic, A.; Spasic, S.; Spasojevic-Kalimanovska, V.; Bogavac-Stanojevic, N.; Kalimanovska-Ostric, D.; Jelić-Ivanovic, Z.; Zunic, G. Correlation of oxidative stress parameters and inflammatory markers in coronary artery disease patients. Clin. Biochem., 2007, 40(3-4), 181-187.
[http://dx.doi.org/10.1016/j.clinbiochem.2006.09.007] [PMID: 17070511]
[65]
Anderson, D.R.; Duryee, M.; Walker, J.; Hall, J.H.; Thiele, G.M.; Klassen, L.; Zimmerman, M.; Gundry, R.L.; Clemens, D.L. Inactivation of manganese superoxide dismutase by irreversible covalent oxidative modification in cardiovascular disease. J. Am. Coll. Cardiol., 2020, 75(11), 1038.
[http://dx.doi.org/10.1016/S0735-1097(20)31665-X]
[66]
Laukkanen, M.O.; Leppänen, P.; Turunen, P.; Porkkala-Sarataho, E.; Salonen, J.T.; Ylä-Herttuala, S. Gene transfer of extracellular super-oxide dismutase to atherosclerotic mice. Antioxid. Redox Signal., 2001, 3(3), 397-402.
[http://dx.doi.org/10.1089/15230860152409040] [PMID: 11491652]
[67]
Sentman, M.L.; Brännström, T.; Westerlund, S.; Laukkanen, M.O.; Ylä-Herttuala, S.; Basu, S.; Marklund, S.L. Extracellular superoxide dismutase deficiency and atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol., 2001, 21(9), 1477-1482.
[http://dx.doi.org/10.1161/hq0901.094248] [PMID: 11557675]
[68]
Yang, H.; Roberts, L.J.; Shi, M.J.; Zhou, L.C.; Ballard, B.R.; Richardson, A.; Guo, Z.M. Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E. Circ. Res., 2004, 95(11), 1075-1081.
[http://dx.doi.org/10.1161/01.RES.0000149564.49410.0d] [PMID: 15528470]
[69]
Stocker, R.; Keaney, J.F., Jr Role of oxidative modifications in atherosclerosis. Physiol. Rev., 2004, 84(4), 1381-1478.
[http://dx.doi.org/10.1152/physrev.00047.2003] [PMID: 15383655]
[70]
Ryter, S.W.; Alam, J.; Choi, A.M.K. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev., 2006, 86(2), 583-650.
[http://dx.doi.org/10.1152/physrev.00011.2005] [PMID: 16601269]
[71]
Chen, X.L.; Dodd, G.; Thomas, S.; Zhang, X.; Wasserman, M.A.; Rovin, B.H.; Kunsch, C. Activation of Nrf2/ARE pathway protects endo-thelial cells from oxidant injury and inhibits inflammatory gene expression. Am. J. Physiol. Heart Circ. Physiol., 2006, 290(5), H1862-H1870.
[http://dx.doi.org/10.1152/ajpheart.00651.2005]
[72]
Pong, K. Oxidative stress in neurodegenerative diseases: Therapeutic implications for superoxide dismutase mimetics. Expert Opin. Biol. Ther., 2003, 3(1), 127-139.
[http://dx.doi.org/10.1517/14712598.3.1.127] [PMID: 12718737]
[73]
Schreibelt, G.; van Horssen, J.; van Rossum, S.; Dijkstra, C.D.; Drukarch, B.; de Vries, H.E. Therapeutic potential and biological role of endogenous antioxidant enzymes in multiple sclerosis pathology. Brain Res. Brain Res. Rev., 2007, 56(2), 322-330.
[http://dx.doi.org/10.1016/j.brainresrev.2007.07.005] [PMID: 17761296]
[74]
Murphy, M.P. Antioxidants as therapies: Can we improve on nature? Free Radic. Biol. Med., 2014, 66, 20-23.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.04.010] [PMID: 23603661]
[75]
Cochemé, H.M.; Murphy, M.P. Can antioxidants be effective therapeutics? Curr. Opin. Investig. Drugs, 2010, 11(4), 426-431.
[PMID: 20336590]
[76]
Sorriento, D.; De Luca, N.; Trimarco, B.; Iaccarino, G. The antioxidant therapy: New insights in the treatment of hypertension. Front. Physiol., 2018, 9(258), 258.
[http://dx.doi.org/10.3389/fphys.2018.00258] [PMID: 29618986]
[77]
Egea, J.; Fabregat, I.; Frapart, Y.M.; Ghezzi, P.; Görlach, A.; Kietzmann, T.; Kubaichuk, K.; Knaus, U.G.; Lopez, M.G.; Olaso-Gonzalez, G.; Petry, A.; Schulz, R.; Vina, J.; Winyard, P.; Abbas, K.; Ademowo, O.S.; Afonso, C.B.; Andreadou, I.; Antelmann, H.; Antunes, F.; Aslan, M.; Bachschmid, M.M.; Barbosa, R.M.; Belousov, V.; Berndt, C.; Bernlohr, D.; Bertrán, E.; Bindoli, A.; Bottari, S.P.; Brito, P.M.; Carrara, G.; Casas, A.I.; Chatzi, A.; Chondrogianni, N.; Conrad, M.; Cooke, M.S.; Costa, J.G.; Cuadrado, A.; My-Chan Dang, P.; De Smet, B.; Debelec-Butuner, B.; Dias, I.H.K.; Dunn, J.D.; Edson, A.J.; El Assar, M.; El-Benna, J.; Ferdinandy, P.; Fernandes, A.S.; Fladmark, K.E.; Förstermann, U.; Giniatullin, R.; Giricz, Z.; Görbe, A.; Griffiths, H.; Hampl, V.; Hanf, A.; Herget, J.; Hernansanz-Agustín, P.; Hillion, M.; Huang, J.; Ilikay, S.; Jansen-Dürr, P.; Jaquet, V.; Joles, J.A.; Kalyanaraman, B.; Kaminskyy, D.; Karbaschi, M.; Kleanthous, M.; Klotz, L.O.; Korac, B.; Korkmaz, K.S.; Koziel, R.; Kračun, D.; Krause, K.H.; Křen, V.; Krieg, T.; Laranjinha, J.; Lazou, A.; Li, H.; Martínez-Ruiz, A.; Matsui, R.; McBean, G.J.; Meredith, S.P.; Messens, J.; Miguel, V.; Mikhed, Y.; Milisav, I.; Milković, L.; Miranda-Vizuete, A.; Mojović, M.; Monsalve, M.; Mouthuy, P.A.; Mulvey, J.; Münzel, T.; Muzykantov, V.; Nguyen, I.T.N.; Oelze, M.; Oliveira, N.G.; Palmeira, C.M.; Papaevgeniou, N.; Pavićević, A.; Pedre, B.; Peyrot, F.; Phylactides, M.; Pircalabioru, G.G.; Pitt, A.R.; Poulsen, H.E.; Prieto, I.; Rigobello, M.P.; Robledinos-Antón, N.; Rodríguez-Mañas, L.; Rolo, A.P.; Rousset, F.; Ruskovska, T.; Saraiva, N.; Sasson, S.; Schröder, K.; Semen, K.; Seredenina, T.; Shakirzyanova, A.; Smith, G.L.; Soldati, T.; Sousa, B.C.; Spickett, C.M.; Stancic, A.; Stasia, M.J.; Steinbrenner, H.; Stepanić, V.; Steven, S.; Tokatlidis, K.; Tuncay, E.; Turan, B.; Ursini, F.; Vacek, J.; Vajnerova, O.; Valentová, K.; Van Breusegem, F.; Varisli, L.; Veal, E.A.; Yalçın, A.S.; Yelisyeyeva, O.; Žarković, N.; Zatloukalová, M.; Zielonka, J.; Touyz, R.M.; Papapetropoulos, A.; Grune, T.; Lamas, S.; Schmidt, H.H.H.W.; Di Lisa, F.; Daiber, A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol., 2017, 13, 94-162.
[http://dx.doi.org/10.1016/j.redox.2017.05.007] [PMID: 28577489]
[78]
Carin, W.; Dennis, B.; Gray, N.; Wright, K.; Spain, R. Lipoic acid and other antioxidants as therapies for multiple sclerosis. Curr. Treat. Options Neurol., 2019, 26, 1-21.
[79]
Kussmaul, L.; Hirst, J. The mechanism of superoxide production by NADH: Ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci., 2006, 103(20), 7607-7612.
[http://dx.doi.org/10.1073/pnas.0510977103] [PMID: 16682634]
[80]
Swank, R.L.; Goodwin, J. Review of MS patient survival on a Swank low saturated fat diet. Nutrition, 2003, 19(2), 161-162.
[http://dx.doi.org/10.1016/S0899-9007(02)00851-1] [PMID: 12591551]
[81]
Huntley, A.; Ernst, E. Complementary and alternative therapies for treating multiple sclerosis symptoms: A systematic review. Complement. Ther. Med., 2000, 8(2), 97-105.
[http://dx.doi.org/10.1054/ctim.2000.0366] [PMID: 10859602]
[82]
Yang, Y.; Wang, Q.; Luo, J.; Jiang, Y.; Zhou, R.; Tong, S.; Wang, Z.; Tong, Q. Superoxide dismutase mimic, MnTE-2-PyP enhances rectal anastomotic strength in rats after preoperative chemo radiotherapy. Oxid. Med. Cell. Longev., 2020, 1-11.
[83]
Stephenie, S.; Chang, Y.P.; Gnanasekaran, A.; Esa, N.M.; Gnanaraj, C. An insight on superoxide dismutase (SOD) from plants for mam-malian health enhancement. J. Funct. Foods, 2020, 68, 103917.
[http://dx.doi.org/10.1016/j.jff.2020.103917]
[84]
Younus, H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci., 2018, 12(3), 88-93.
[PMID: 29896077]
[85]
Couto, N.; Wood, J.; Barber, J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med., 2016, 95, 27-42.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.02.028] [PMID: 26923386]
[86]
Anjum, N.A.; Sharma, P.; Gill, S.S.; Hasanuzzaman, M.; Khan, E.A.; Kachhap, K.; Mohamed, A.A.; Thangavel, P.; Devi, G.D.; Vasudhe-van, P.; Sofo, A.; Khan, N.A.; Misra, A.N.; Lukatkin, A.S.; Singh, H.P.; Pereira, E.; Tuteja, N. Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. Environ. Sci. Pollut. Res. Int., 2016, 23(19), 19002-19029.
[http://dx.doi.org/10.1007/s11356-016-7309-6] [PMID: 27549233]
[87]
Fattman, C.L.; Schaefer, L.M.; Doury, T. Extracellular superoxide dismutase in biology and medicine. Free Radic. Biol. Med., 2003, 3(1), 236-256.
[http://dx.doi.org/10.1016/S0891-5849(03)00275-2]
[88]
Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med., 2017, 104, 144-164.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.004] [PMID: 28088622]
[89]
Saxena, P.; Selvaraj, K.; Khare, S.K.; Chaudhary, N. Superoxide dismutase as multipotent therapeutic antioxidant enzyme: Role in human diseases. Biotechnol. Lett., 2022, 44(1), 1-22.
[http://dx.doi.org/10.1007/s10529-021-03200-3] [PMID: 34734354]
[90]
Balendra, V.; Singh, S.K. Therapeutic potential of astaxanthin and superoxide dismutase in Alzheimer’s disease. Open Biol., 2021, 11(6), 210013.
[http://dx.doi.org/10.1098/rsob.210013] [PMID: 34186009]
[91]
Lee, J.Y.; Kim, M.; Oh, S.B.; Kim, H.Y.; Kim, C.; Kim, T.Y.; Park, Y.H. Superoxide dismutase 3 prevents early stage diabetic retinopathy in streptozotocin-induced diabetic rat model. PLoS One, 2022, 17(1), e0262396.
[http://dx.doi.org/10.1371/journal.pone.0262396] [PMID: 35015779]
[92]
Drozdz-Afelt, J.M.; Koim-Puchowska, B.B.; Kaminski, P. Analysis of oxidative stress indicators in Polish patients with prostate cancer. Environ. Sci. Pollut. Res. Int., 2022, 29(3), 4632-4640.
[http://dx.doi.org/10.1007/s11356-021-15922-y] [PMID: 34409535]
[93]
Al-Saleh, I.; Alrushud, N.; Alnuwaysir, H.; Elkhatib, R.; Shoukri, M.; Aldayel, F.; Bakheet, R.; Almozaini, M. Essential metals, vitamins and antioxidant enzyme activities in COVID-19 patients and their potential associations with the disease severity. Biometals, 2022, 35(1), 125-145.
[http://dx.doi.org/10.1007/s10534-021-00355-4] [PMID: 34993712]
[94]
Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov., 2021, 20(9), 689-709.
[http://dx.doi.org/10.1038/s41573-021-00233-1] [PMID: 34194012]
[95]
Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; Prakash Mishra, A.; Nigam, M.; El Rayess, Y.; Beyrouthy, M.E.; Polito, L.; Iriti, M.; Martins, N.; Martorell, M.; Docea, A.O.; Setzer, W.N.; Calina, D.; Cho, W.C.; Sharifi-Rad, J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic dis-eases. Front. Physiol., 2020, 11, 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[96]
Delgado-Roche, L.; Mesta, F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch. Med. Res., 2020, 51(5), 384-387.
[http://dx.doi.org/10.1016/j.arcmed.2020.04.019] [PMID: 32402576]
[97]
Davies, K.J.A. The Oxygen Paradox, oxidative stress, and ageing. Arch. Biochem. Biophys., 2016, 595, 28-32.
[http://dx.doi.org/10.1016/j.abb.2015.11.015] [PMID: 27095211]
[98]
Yaghoubi, N.; Youssefi, M.; Jabbari Azad, F.; Farzad, F.; Yavari, Z.; Zahedi Avval, F. Total antioxidant capacity as a marker of severity of COVID‐19 infection: Possible prognostic and therapeutic clinical application. J. Med. Virol., 2022, 94(4), 1558-1565.
[http://dx.doi.org/10.1002/jmv.27500] [PMID: 34862613]
[99]
Beltrán-García, J.; Osca-Verdegal, R.; Pallardó, F.V.; Ferreres, J.; Rodríguez, M.; Mulet, S.; Sanchis-Gomar, F.; Carbonell, N.; García-Giménez, J.L. Oxidative Stress and Inflammation in COVID-19-Associated Sepsis: The potential role of antioxidant therapy in avoiding disease progression. Antioxidants, 2020, 9(10), 936.
[http://dx.doi.org/10.3390/antiox9100936] [PMID: 33003552]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy