Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Regulated Cell Death and Potential Interventions in Preterm Infants after Intracerebral Hemorrhage

Author(s): Yanan Wu, Yanyan Sun, Xiaoyang Wang and Changlian Zhu*

Volume 21, Issue 7, 2023

Published on: 15 December, 2022

Page: [1488 - 1503] Pages: 16

DOI: 10.2174/1570159X21666221117155209

Price: $65

Open Access Journals Promotions 2
Abstract

Intracerebral hemorrhage (ICH) in preterm infants is one of the major co-morbidities of preterm birth and is associated with long-term neurodevelopmental deficits. There are currently no widely accepted treatments to prevent ICH or therapies for the neurological sequelae. With studies broadening the scope of cell death, the newly defined concept of regulated cell death has enriched our understanding of the underlying mechanisms of secondary brain injury after ICH and has suggested potential interventions in preterm infants. In this review, we will summarize the current evidence for regulated cell death pathways in preterm infants after ICH, including apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy, and PANoptosis as well as several potential intervention strategies that may protect the immature brain from secondary injury after ICH through regulating regulated cell death.

Keywords: Intracerebral hemorrhage, preterm infant, secondary brain injury, regulated cell death, ferroptosis, PANoptosis.

Graphical Abstract
[1]
Bell, E.F.; Hintz, S.R.; Hansen, N.I.; Bann, C.M.; Wyckoff, M.H.; DeMauro, S.B.; Walsh, M.C.; Vohr, B.R.; Stoll, B.J.; Carlo, W.A.; Van, M.K.P.; Rysavy, M.A.; Patel, R.M.; Merhar, S.L.; Sánchez, P.J.; Laptook, A.R.; Hibbs, A.M.; Cotten, C.M.; D’Angio, C.T.; Winter, S.; Fuller, J.; Das, A. Mortality, in-hospital morbidity, care practices, and 2-year outcomes for extremely preterm infants in the US, 2013-2018. JAMA, 2022, 327(3), 248-263.
[http://dx.doi.org/10.1001/jama.2021.23580] [PMID: 35040888]
[2]
Wang, Y.; Song, J.; Zhang, X.; Kang, W.; Li, W.; Yue, Y.; Zhang, S.; Xu, F.; Wang, X.; Zhu, C. The impact of different degrees of intraventricular hemorrhage on mortality and neurological outcomes in very preterm infants: A prospective cohort study. Front. Neurol., 2022, 13, 853417.
[http://dx.doi.org/10.3389/fneur.2022.853417] [PMID: 35386416]
[3]
Ballabh, P.; de Vries, L.S. White matter injury in infants with intraventricular haemorrhage: Mechanisms and therapies. Nat. Rev. Neurol., 2021, 17(4), 199-214.
[http://dx.doi.org/10.1038/s41582-020-00447-8] [PMID: 33504979]
[4]
Song, J; Nilsson, G; Xu, Y; Zelco, A; Rocha-Ferreira, E; Wang, Y.; Zhang, X.; Zhang, S.; Ek, J.; Hagberg, H.; Zhu, C.; Wang, X. Temporal brain transcriptome analysis reveals key pathological events after germinal matrix hemorrhage in neonatal rats. J. Cereb. Blood Flow. Metab., 2022, 42(9), 1632-1649.
[http://dx.doi.org/10.1177/0271678X221098811] [PMID: 35491813]
[5]
Song, J.; Wang, Y.; Xu, F.; Sun, H.; Zhang, X.; Xia, L.; Zhang, S.; Li, K.; Peng, X.; Li, B.; Zhang, Y.; Kang, W.; Wang, X.; Zhu, C. Erythropoietin improves poor outcomes in preterm infants with intraventricular hemorrhage. CNS Drugs, 2021, 35(6), 681-690.
[http://dx.doi.org/10.1007/s40263-021-00817-w] [PMID: 33959935]
[6]
Sarkar, S.; Bhagat, I.; Dechert, R.; Schumacher, R.; Donn, S. Severe intraventricular hemorrhage in preterm infants: Comparison of risk factors and short-term neonatal morbidities between grade 3 and grade 4 intraventricular hemorrhage. Am. J. Perinatol., 2009, 26(6), 419-424.
[http://dx.doi.org/10.1055/s-0029-1214237] [PMID: 19267317]
[7]
Reardon, T.; Koller, G.; Kortz, M.W.; McCray, E.; Wittenberg, B.; Hankinson, T.C. Pharmacological neuroprotection and clinical trials of novel therapies for neonatal peri-intraventricular hemorrhage: A comprehensive review. Acta Neurol. Belg., 2022, 122(2), 305-314.
[http://dx.doi.org/10.1007/s13760-022-01889-1] [PMID: 35182373]
[8]
Futagi, Y.; Toribe, Y.; Ogawa, K.; Suzuki, Y. Neurodevelopmental outcome in children with intraventricular hemorrhage. Pediatr. Neurol., 2006, 34(3), 219-224.
[http://dx.doi.org/10.1016/j.pediatrneurol.2005.08.011] [PMID: 16504792]
[9]
Gram, M.; Sveinsdottir, S.; Cinthio, M.; Sveinsdottir, K.; Hansson, S.R.; Mörgelin, M.; Åkerström, B.; Ley, D. Extracellular hemoglobin - mediator of inflammation and cell death in the choroid plexus following preterm intraventricular hemorrhage. J. Neuroinflammation, 2014, 11(1), 200.
[http://dx.doi.org/10.1186/s12974-014-0200-9] [PMID: 25441622]
[10]
Garton, T.P.; He, Y.; Garton, H.J.L.; Keep, R.F.; Xi, G.; Strahle, J.M. Hemoglobin-induced neuronal degeneration in the hippocampus after neonatal intraventricular hemorrhage. Brain Res., 2016, 1635, 86-94.
[http://dx.doi.org/10.1016/j.brainres.2015.12.060] [PMID: 26772987]
[11]
Romantsik, O.; Bruschettini, M.; Ley, D. Intraventricular hemorrhage and white matter injury in preclinical and clinical studies. Neoreviews, 2019, 20(11), e636-e652.
[http://dx.doi.org/10.1542/neo.20-11-e636] [PMID: 31676738]
[12]
Xia, F; Keep, RF; Ye, F; Holste, KG; Wan, S; Xi, G The fate of erythrocytes after cerebral hemorrhage. Transl. Stroke Res., 2022, 13(5), 655-664.
[http://dx.doi.org/10.1007/s12975-021-00980-8]
[13]
Cui, J.; Zhao, S.; Li, Y.; Zhang, D.; Wang, B.; Xie, J.; Wang, J. Regulated cell death: Discovery, features and implications for neurodegenerative diseases. Cell Commun. Signal., 2021, 19(1), 120.
[http://dx.doi.org/10.1186/s12964-021-00799-8] [PMID: 34922574]
[14]
Romantsik, O.; Agyemang, A.A.; Sveinsdóttir, S.; Rutardóttir, S.; Holmqvist, B.; Cinthio, M.; Mörgelin, M.; Gumus, G.; Karlsson, H.; Hansson, S.R.; Åkerström, B.; Ley, D.; Gram, M. The heme and radical scavenger α1-microglobulin (A1M) confers early protection of the immature brain following preterm intraventricular hemorrhage. J. Neuroinflammation, 2019, 16(1), 122.
[http://dx.doi.org/10.1186/s12974-019-1486-4] [PMID: 31174551]
[15]
Zhang, Q.; Xiong, K.; Yan, W-T.; Yang, Y-D.; Hu, X-M.; Ning, W-Y.; Liao, L-S.; Lu, S.; Zhao, W-J. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen. Res., 2022, 17(8), 1761-1768.
[http://dx.doi.org/10.4103/1673-5374.331539] [PMID: 35017436]
[16]
Zhu, C.; Gao, J.; Karlsson, N.; Li, Q.; Zhang, Y.; Huang, Z.; Li, H.; Kuhn, H.G.; Blomgren, K. Isoflurane anesthesia induced persistent, progressive memory impairment, caused a loss of neural stem cells, and reduced neurogenesis in young, but not adult, rodents. J. Cereb. Blood Flow Metab., 2010, 30(5), 1017-1030.
[http://dx.doi.org/10.1038/jcbfm.2009.274] [PMID: 20068576]
[17]
Wu, Y.; Song, J.; Wang, Y.; Wang, X.; Culmsee, C.; Zhu, C. The potential role of ferroptosis in neonatal brain injury. Front. Neurosci., 2019, 13, 115.
[http://dx.doi.org/10.3389/fnins.2019.00115] [PMID: 30837832]
[18]
Ikonomidou, C.; Kaindl, A.M. Neuronal death and oxidative stress in the developing brain. Antioxid. Redox Signal., 2011, 14(8), 1535-1550.
[http://dx.doi.org/10.1089/ars.2010.3581] [PMID: 20919934]
[19]
Xue, M.; Bigio, M.R. Injections of blood, thrombin, and plasminogen more severely damage neonatal mouse brain than mature mouse brain. Brain Pathol., 2005, 15(4), 273-280.
[http://dx.doi.org/10.1111/j.1750-3639.2005.tb00111.x] [PMID: 16389939]
[20]
Zhu, C.; Wang, X.; Xu, F.; Bahr, B.A.; Shibata, M.; Uchiyama, Y.; Hagberg, H.; Blomgren, K. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia–ischemia. Cell Death Differ., 2005, 12(2), 162-176.
[http://dx.doi.org/10.1038/sj.cdd.4401545] [PMID: 15592434]
[21]
Wang, X.; Carlsson, Y.; Basso, E.; Zhu, C.; Rousset, C.I.; Rasola, A.; Johansson, B.R.; Blomgren, K.; Mallard, C.; Bernardi, P.; Forte, M.A.; Hagberg, H. Developmental shift of cyclophilin D contribution to hypoxic-ischemic brain injury. J. Neurosci., 2009, 29(8), 2588-2596.
[http://dx.doi.org/10.1523/JNEUROSCI.5832-08.2009] [PMID: 19244535]
[22]
Zhu, C.; Qiu, L.; Wang, X.; Xu, F.; Nilsson, M.; Cooper-Kuhn, C.; Kuhn, H.G.; Blomgren, K. Age-dependent regenerative responses in the striatum and cortex after hypoxia-ischemia. J. Cereb. Blood Flow Metab., 2009, 29(2), 342-354.
[http://dx.doi.org/10.1038/jcbfm.2008.124] [PMID: 18985054]
[23]
Ratanasopa, K.; Strader, M.B.; Alayash, A.I.; Bulow, L. Dissection of the radical reactions linked to fetal hemoglobin reveals enhanced pseudoperoxidase activity. Front. Physiol., 2015, 6, 39.
[http://dx.doi.org/10.3389/fphys.2015.00039] [PMID: 25750627]
[24]
Radi, Z.A.; Stewart, Z.S.; O’Neil, S.P. Accidental and programmed cell death in investigative and toxicologic pathology. Curr. Protoc. Toxicol., 2018, 76(1), e51.
[http://dx.doi.org/10.1002/cptx.51] [PMID: 30040239]
[25]
Galluzzi, L.; Bravo-San, P.J.M.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Alnemri, E.S.; Altucci, L.; Andrews, D.; Annicchiarico-Petruzzelli, M.; Baehrecke, E.H.; Bazan, N.G.; Bertrand, M.J.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Bredesen, D.E.; Brenner, C.; Campanella, M.; Candi, E.; Cecconi, F.; Chan, F.K.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K-M.; Di Daniele, N.; Dixit, V.M.; Dynlacht, B.D.; El-Deiry, W.S.; Fimia, G.M.; Flavell, R.A.; Fulda, S.; Garrido, C.; Gougeon, M-L.; Green, D.R.; Gronemeyer, H.; Hajnoczky, G.; Hardwick, J.M.; Hengartner, M.O.; Ichijo, H.; Joseph, B.; Jost, P.J.; Kaufmann, T.; Kepp, O.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lugli, E.; Madeo, F.; Malorni, W.; Marine, J-C.; Martin, S.J.; Martinou, J-C.; Medema, J.P.; Meier, P.; Melino, S.; Mizushima, N.; Moll, U.; Muñoz-Pinedo, C.; Nuñez, G.; Oberst, A.; Panaretakis, T.; Penninger, J.M.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.; Puthalakath, H.; Rabinovich, G.A.; Ravichandran, K.S.; Rizzuto, R.; Rodrigues, C.M.; Rubinsztein, D.C.; Rudel, T.; Shi, Y.; Simon, H-U.; Stockwell, B.R.; Szabadkai, G.; Tait, S.W.; Tang, H.L.; Tavernarakis, N.; Tsujimoto, Y.; Vanden Berghe, T.; Vandenabeele, P.; Villunger, A.; Wagner, E.F.; Walczak, H.; White, E.; Wood, W.G.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Melino, G.; Kroemer, G. Essential versus accessory aspects of cell death: Recommendations of the NCCD 2015. Cell Death Differ., 2015, 22(1), 58-73.
[http://dx.doi.org/10.1038/cdd.2014.137] [PMID: 25236395]
[26]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[27]
Obeng, E. Apoptosis (programmed cell death) and its signals - A review. Braz. J. Biol., 2021, 81(4), 1133-1143.
[http://dx.doi.org/10.1590/1519-6984.228437] [PMID: 33111928]
[28]
Delavallée, L.; Cabon, L.; Galán-Malo, P.; Lorenzo, H.K.; Susin, S.A. AIF-mediated caspase-independent necroptosis: A new chance for targeted therapeutics. IUBMB Life, 2011, 63(4), 221-232.
[http://dx.doi.org/10.1002/iub.432] [PMID: 21438113]
[29]
Felderhoff-Mueser, U.; Bührer, C.; Groneck, P.; Obladen, M.; Bartmann, P.; Heep, A. Soluble Fas (CD95/Apo-1), soluble Fas ligand, and activated caspase 3 in the cerebrospinal fluid of infants with posthemorrhagic and nonhemorrhagic hydrocephalus. Pediatr. Res., 2003, 54(5), 659-664.
[http://dx.doi.org/10.1203/01.PDR.0000084114.83724.65] [PMID: 12867600]
[30]
Schmitz, T.; Felderhoff-Mueser, U.; Sifringer, M.; Groenendaal, F.; Kampmann, S.; Heep, A. Expression of soluble Fas in the cerebrospinal fluid of preterm infants with posthemorrhagic hydrocephalus and cystic white matter damage. J. Perinat. Med., 2011, 39(1), 83-88.
[http://dx.doi.org/10.1515/jpm.2010.125] [PMID: 20954855]
[31]
Degterev, A.; Huang, Z.; Boyce, M.; Li, Y.; Jagtap, P.; Mizushima, N.; Cuny, G.D.; Mitchison, T.J.; Moskowitz, M.A.; Yuan, J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol., 2005, 1(2), 112-119.
[http://dx.doi.org/10.1038/nchembio711] [PMID: 16408008]
[32]
Berghe, T.V.; Linkermann, A.; Jouan-Lanhouet, S.; Walczak, H.; Vandenabeele, P. Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol., 2014, 15(2), 135-147.
[http://dx.doi.org/10.1038/nrm3737] [PMID: 24452471]
[33]
Yu, Z.; Jiang, N.; Su, W.; Zhuo, Y. Necroptosis: A novel pathway in neuroinflammation. Front. Pharmacol., 2021, 12, 701564.
[http://dx.doi.org/10.3389/fphar.2021.701564] [PMID: 34322024]
[34]
Zhu, X.; Tao, L.; Tejima-Mandeville, E.; Qiu, J.; Park, J.; Garber, K.; Ericsson, M.; Lo, E.H.; Whalen, M.J. Plasmalemma permeability and necrotic cell death phenotypes after intracerebral hemorrhage in mice. Stroke, 2012, 43(2), 524-531.
[http://dx.doi.org/10.1161/STROKEAHA.111.635672] [PMID: 22076006]
[35]
Shen, H; Liu, C; Zhang, D; Yao, X; Zhang, K; Li, H Role for RIP1 in mediating necroptosis in experimental intracerebral hemorrhage model both in vivo and in vitro. Cell Death Dis., 2017, 8(3), e2641.
[http://dx.doi.org/10.1038/cddis.2017.58] [PMID: 28252651]
[36]
Su, X.; Wang, H.; Kang, D.; Zhu, J.; Sun, Q.; Li, T.; Ding, K. Necrostatin-1 ameliorates intracerebral hemorrhage-induced brain injury in mice through inhibiting RIP1/RIP3 pathway. Neurochem. Res., 2015, 40(4), 643-650.
[http://dx.doi.org/10.1007/s11064-014-1510-0] [PMID: 25576092]
[37]
Lule, S.; Wu, L.; Sarro-Schwartz, A.; Edmiston, W.J., III; Izzy, S.; Songtachalert, T.; Ahn, S.H.; Fernandes, N.D.; Jin, G.; Chung, J.Y.; Balachandran, S.; Lo, E.H.; Kaplan, D.; Degterev, A.; Whalen, M.J. Cell-specific activation of RIPK1 and MLKL after intracerebral hemorrhage in mice. J. Cereb. Blood Flow Metab., 2021, 41(7), 1623-1633.
[http://dx.doi.org/10.1177/0271678X20973609] [PMID: 33210566]
[38]
Chu, X.; Wu, X.; Feng, H.; Zhao, H.; Tan, Y.; Wang, L.; Ran, H.; Yi, L.; Peng, Y.; Tong, H.; Liu, R.; Bai, W.; Shi, H.; Li, L.; Huo, D. Coupling between interleukin-1r1 and necrosome complex involves in hemin-induced neuronal necroptosis after intracranial hemorrhage. Stroke, 2018, 49(10), 2473-2482.
[http://dx.doi.org/10.1161/STROKEAHA.117.019253] [PMID: 30355103]
[39]
Su, X.; Wang, H.; Lin, Y.; Chen, F. RIP1 and RIP3 mediate hemin-induced cell death in HT22 hippocampal neuronal cells. Neuropsychiatr. Dis. Treat., 2018, 14, 3111-3119.
[http://dx.doi.org/10.2147/NDT.S181074] [PMID: 30532542]
[40]
Yang, L.; Wang, Y.; Zhang, C.; Chen, T.; Cheng, H. Perampanel, an AMPAR antagonist, alleviates experimental intracerebral hemorrhage-induced brain injury via necroptosis and neuroinflammation. Mol. Med. Rep., 2021, 24(2), 544.
[http://dx.doi.org/10.3892/mmr.2021.12183] [PMID: 34080030]
[41]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[42]
Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden, B.T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ., 2018, 25(3), 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[43]
Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol., 2009, 7(2), 99-109.
[http://dx.doi.org/10.1038/nrmicro2070] [PMID: 19148178]
[44]
Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 128.
[http://dx.doi.org/10.1038/s41392-021-00507-5] [PMID: 33776057]
[45]
Wang, Y.; Gao, W.; Shi, X.; Ding, J.; Liu, W.; He, H.; Wang, K.; Shao, F. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 2017, 547(7661), 99-103.
[http://dx.doi.org/10.1038/nature22393] [PMID: 28459430]
[46]
Ma, Q.; Chen, S.; Hu, Q.; Feng, H.; Zhang, J.H.; Tang, J. NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann. Neurol., 2014, 75(2), 209-219.
[http://dx.doi.org/10.1002/ana.24070] [PMID: 24273204]
[47]
Feng, L.; Chen, Y.; Ding, R.; Fu, Z.; Yang, S.; Deng, X.; Zeng, J. P2X7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: Involvement of peroxynitrite. J. Neuroinflammation, 2015, 12(1), 190.
[http://dx.doi.org/10.1186/s12974-015-0409-2] [PMID: 26475134]
[48]
Chen, S.; Zuo, Y.; Huang, L.; Sherchan, P.; Zhang, J.; Yu, Z.; Peng, J.; Zhang, J.; Zhao, L.; Doycheva, D.; Liu, F.; Zhang, J.H.; Xia, Y.; Tang, J. The MC 4 receptor agonist RO27‐3225 inhibits NLRP1‐dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage. Br. J. Pharmacol., 2019, 176(9), 1341-1356.
[http://dx.doi.org/10.1111/bph.14639] [PMID: 30811584]
[49]
Yan, J.; Xu, W.; Lenahan, C.; Huang, L.; Wen, J.; Li, G.; Hu, X.; Zheng, W.; Zhang, J.H.; Tang, J. CCR5 activation promotes NLRP1-dependent neuronal pyroptosis via CCR5/PKA/CREB pathway after intracerebral hemorrhage. Stroke, 2021, 52(12), 4021-4032.
[http://dx.doi.org/10.1161/STROKEAHA.120.033285] [PMID: 34719258]
[50]
Zhang, Y.; Xu, N.; Ding, Y.; Zhang, Y.; Li, Q.; Flores, J.; Haghighiabyaneh, M.; Doycheva, D.; Tang, J.; Zhang, J.H. Chemerin suppresses neuroinflammation and improves neurological recovery via CaMKK2/AMPK/Nrf2 pathway after germinal matrix hemorrhage in neonatal rats. Brain Behav. Immun., 2018, 70, 179-193.
[http://dx.doi.org/10.1016/j.bbi.2018.02.015] [PMID: 29499303]
[51]
Dohare, P.; Zia, M.T.; Ahmed, E.; Ahmed, A.; Yadala, V.; Schober, A.L.; Ortega, J.A.; Kayton, R.; Ungvari, Z.; Mongin, A.A.; Ballabh, P. AMPA-kainate receptor inhibition promotes neurologic recovery in premature rabbits with intraventricular hemorrhage. J. Neurosci., 2016, 36(11), 3363-3377.
[http://dx.doi.org/10.1523/JNEUROSCI.4329-15.2016] [PMID: 26985043]
[52]
Hirschhorn, T.; Stockwell, B.R. The development of the concept of ferroptosis. Free Radic. Biol. Med., 2019, 133, 130-143.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.043] [PMID: 30268886]
[53]
Gao, G.; Li, J.; Zhang, Y.; Chang, Y.Z. Cellular iron metabolism and regulation. Adv. Exp. Med. Biol., 2019, 1173, 21-32.
[http://dx.doi.org/10.1007/978-981-13-9589-5_2] [PMID: 31456203]
[54]
Dixon, S.J.; Winter, G.E.; Musavi, L.S.; Lee, E.D.; Snijder, B.; Rebsamen, M.; Superti-Furga, G.; Stockwell, B.R. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol., 2015, 10(7), 1604-1609.
[http://dx.doi.org/10.1021/acschembio.5b00245] [PMID: 25965523]
[55]
Hussain, G.; Anwar, H.; Rasul, A.; Imran, A.; Qasim, M.; Zafar, S.; Imran, M.; Kamran, S.K.S.; Aziz, N.; Razzaq, A.; Ahmad, W.; Shabbir, A.; Iqbal, J.; Baig, S.M.; Ali, M.; Gonzalez de Aguilar, J.L.; Sun, T.; Muhammad, A.; Muhammad Umair, A. Lipids as biomarkers of brain disorders. Crit. Rev. Food Sci. Nutr., 2020, 60(3), 351-374.
[http://dx.doi.org/10.1080/10408398.2018.1529653] [PMID: 30614244]
[56]
Weiland, A.; Wang, Y.; Wu, W.; Lan, X.; Han, X.; Li, Q.; Wang, J. Ferroptosis and its role in diverse brain diseases. Mol. Neurobiol., 2019, 56(7), 4880-4893.
[http://dx.doi.org/10.1007/s12035-018-1403-3] [PMID: 30406908]
[57]
Fan, X.; Mu, L. The role of heme oxygenase-1 (HO-1) in the regulation of inflammatory reaction, neuronal cell proliferation and apoptosis in rats after intracerebral hemorrhage (ICH). Neuropsychiatr. Dis. Treat., 2016, 13, 77-85.
[http://dx.doi.org/10.2147/NDT.S120496] [PMID: 28096675]
[58]
Mehdiratta, M.; Kumar, S.; Hackney, D.; Schlaug, G.; Selim, M. Association between serum ferritin level and perihematoma edema volume in patients with spontaneous intracerebral hemorrhage. Stroke, 2008, 39(4), 1165-1170.
[http://dx.doi.org/10.1161/STROKEAHA.107.501213] [PMID: 18292378]
[59]
Chen, B.; Chen, Z.; Liu, M.; Gao, X.; Cheng, Y.; Wei, Y.; Wu, Z.; Cui, D.; Shang, H. Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects. Brain Res. Bull., 2019, 153, 122-132.
[http://dx.doi.org/10.1016/j.brainresbull.2019.08.013] [PMID: 31442590]
[60]
Li, Q.; Han, X.; Lan, X.; Gao, Y.; Wan, J.; Durham, F.; Cheng, T.; Yang, J.; Wang, Z.; Jiang, C.; Ying, M.; Koehler, R.C.; Stockwell, B.R.; Wang, J. Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight, 2017, 2(7), e90777.
[http://dx.doi.org/10.1172/jci.insight.90777] [PMID: 28405617]
[61]
Zille, M.; Karuppagounder, S.S.; Chen, Y.; Gough, P.J.; Bertin, J.; Finger, J.; Milner, T.A.; Jonas, E.A.; Ratan, R.R. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke, 2017, 48(4), 1033-1043.
[http://dx.doi.org/10.1161/STROKEAHA.116.015609] [PMID: 28250197]
[62]
Zhang, Z.; Wu, Y.; Yuan, S.; Zhang, P.; Zhang, J.; Li, H.; Li, X.; Shen, H.; Wang, Z.; Chen, G. Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Res., 2018, 1701, 112-125.
[http://dx.doi.org/10.1016/j.brainres.2018.09.012] [PMID: 30205109]
[63]
Alim, I.; Caulfield, J.T.; Chen, Y.; Swarup, V.; Geschwind, D.H.; Ivanova, E.; Seravalli, J.; Ai, Y.; Sansing, L.H.; Ste Marie, E.J.; Hondal, R.J.; Mukherjee, S.; Cave, J.W.; Sagdullaev, B.T.; Karuppagounder, S.S.; Ratan, R.R. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell, 2019, 177(5), 1262-1279.e25.
[http://dx.doi.org/10.1016/j.cell.2019.03.032] [PMID: 31056284]
[64]
Karuppagounder, S.S.; Alin, L.; Chen, Y.; Brand, D.; Bourassa, M.W.; Dietrich, K.; Wilkinson, C.M.; Nadeau, C.A.; Kumar, A.; Perry, S.; Pinto, J.T.; Darley-Usmar, V.; Sanchez, S.; Milne, G.L.; Pratico, D.; Holman, T.R.; Carmichael, S.T.; Coppola, G.; Colbourne, F.; Ratan, R.R. N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E 2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann. Neurol., 2018, 84(6), 854-872.
[http://dx.doi.org/10.1002/ana.25356] [PMID: 30294906]
[65]
Han, R.; Wan, J.; Han, X.; Ren, H.; Falck, J.R.; Munnuri, S.; Yang, Z.J.; Koehler, R.C. 20-HETE participates in intracerebral hemorrhage-induced acute injury by promoting cell ferroptosis. Front. Neurol., 2021, 12, 763419.
[http://dx.doi.org/10.3389/fneur.2021.763419] [PMID: 34867747]
[66]
Savman, K.; Nilsson, U.A.; Blennow, M.; Kjellmer, I.; Whitelaw, A. Non-protein-bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatr. Res., 2001, 49(2), 208-212.
[http://dx.doi.org/10.1203/00006450-200102000-00013] [PMID: 11158515]
[67]
Bassan, H. Intracranial hemorrhage in the preterm infant: Understanding it, preventing it. Clin. Perinatol., 2009, 36(4), 737-762. v.
[http://dx.doi.org/10.1016/j.clp.2009.07.014] [PMID: 19944833]
[68]
Strahle, J.M.; Garton, T.; Bazzi, A.A.; Kilaru, H.; Garton, H.J.L.; Maher, C.O.; Muraszko, K.M.; Keep, R.F.; Xi, G. Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage. Neurosurgery, 2014, 75(6), 696-706.
[http://dx.doi.org/10.1227/NEU.0000000000000524] [PMID: 25121790]
[69]
Inder, T.; Mocatta, T.; Darlow, B.; Spencer, C.; Volpe, J.J.; Winterbourn, C. Elevated free radical products in the cerebrospinal fluid of VLBW infants with cerebral white matter injury. Pediatr. Res., 2002, 52(2), 213-218.
[http://dx.doi.org/10.1203/00006450-200208000-00013] [PMID: 12149498]
[70]
Lei, J.; Chen, Z.; Song, S.; Sheng, C.; Song, S.; Zhu, J. Insight into the role of ferroptosis in non-neoplastic neurological diseases. Front. Cell. Neurosci., 2020, 14, 231.
[http://dx.doi.org/10.3389/fncel.2020.00231] [PMID: 32848622]
[71]
Saha, S.; Panigrahi, D.P.; Patil, S.; Bhutia, S.K. Autophagy in health and disease: A comprehensive review. Biomed. Pharmacother., 2018, 104, 485-495.
[http://dx.doi.org/10.1016/j.biopha.2018.05.007] [PMID: 29800913]
[72]
Xie, Y.; Kang, R.; Sun, X.; Zhong, M.; Huang, J.; Klionsky, D.J.; Tang, D. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy, 2015, 11(1), 28-45.
[http://dx.doi.org/10.4161/15548627.2014.984267] [PMID: 25484070]
[73]
Parzych, K.R.; Klionsky, D.J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox Signal., 2014, 20(3), 460-473.
[http://dx.doi.org/10.1089/ars.2013.5371] [PMID: 23725295]
[74]
Lamark, T.; Svenning, S.; Johansen, T. Regulation of selective autophagy: The p62/SQSTM1 paradigm. Essays Biochem., 2017, 61(6), 609-624.
[http://dx.doi.org/10.1042/EBC20170035] [PMID: 29233872]
[75]
Denton, D.; Kumar, S. Autophagy-dependent cell death. Cell Death Differ., 2019, 26(4), 605-616.
[http://dx.doi.org/10.1038/s41418-018-0252-y] [PMID: 30568239]
[76]
Kroemer, G.; Levine, B. Autophagic cell death: The story of a misnomer. Nat. Rev. Mol. Cell Biol., 2008, 9(12), 1004-1010.
[http://dx.doi.org/10.1038/nrm2529] [PMID: 18971948]
[77]
Wu, C.; Yan, X.; Liao, Y.; Liao, L.; Huang, S.; Zuo, Q.; Zhou, L.; Gao, L.; Wang, Y.; Lin, J.; Li, S.; Wang, K.; Ge, X.; Song, H.; Yang, R.; Lu, F. Increased perihematomal neuron autophagy and plasma thrombin–antithrombin levels in patients with intracerebral hemorrhage. Medicine (Baltimore), 2019, 98(39), e17130.
[http://dx.doi.org/10.1097/MD.0000000000017130] [PMID: 31574813]
[78]
Yang, Z.; Zhou, C.; Shi, H.; Zhang, N.; Tang, B.; Ji, N. Heme induces BECN1/ATG5-mediated autophagic cell death via er stress in neurons. Neurotox. Res., 2020, 38(4), 1037-1048.
[http://dx.doi.org/10.1007/s12640-020-00275-0] [PMID: 32840757]
[79]
Shen, X.; Ma, L.; Dong, W.; Wu, Q.; Gao, Y.; Luo, C.; Zhang, M.; Chen, X.; Tao, L. Autophagy regulates intracerebral hemorrhage induced neural damage via apoptosis and NF-κB pathway. Neurochem. Int., 2016, 96, 100-112.
[http://dx.doi.org/10.1016/j.neuint.2016.03.004] [PMID: 26964766]
[80]
Liang, Y.; Deng, Y.; Zhao, J.; Liu, L.; Wang, J.; Chen, P.; Zhang, Q.; Sun, C.; Wang, Y.; Xiang, Y.; He, Z. Ferritinophagy is involved in experimental subarachnoid hemorrhage-induced neuronal ferroptosis. Neurochem. Res., 2022, 47(3), 692-700.
[http://dx.doi.org/10.1007/s11064-021-03477-w] [PMID: 34743269]
[81]
Duan, X.C.; Wang, W.; Feng, D.X.; Yin, J.; Zuo, G.; Chen, D.D.; Chen, Z.Q.; Li, H.Y.; Wang, Z.; Chen, G. Roles of autophagy and endoplasmic reticulum stress in intracerebral hemorrhage-induced secondary brain injury in rats. CNS Neurosci. Ther., 2017, 23(7), 554-566.
[http://dx.doi.org/10.1111/cns.12703] [PMID: 28544790]
[82]
Hu, S.; Xi, G.; Jin, H.; He, Y.; Keep, R.F.; Hua, Y. Thrombin-induced autophagy: A potential role in intracerebral hemorrhage. Brain Res., 2011, 1424, 60-66.
[http://dx.doi.org/10.1016/j.brainres.2011.09.062] [PMID: 22015349]
[83]
Malireddi, R.K.S.; Karki, R.; Sundaram, B.; Kancharana, B.; Lee, S.; Samir, P.; Kanneganti, T.D. Inflammatory cell death, panoptosis, mediated by cytokines in diverse cancer lineages inhibits tumor growth. Immunohorizons, 2021, 5(7), 568-580.
[http://dx.doi.org/10.4049/immunohorizons.2100059] [PMID: 34290111]
[84]
Karki, R.; Sharma, B.R.; Tuladhar, S.; Williams, E.P.; Zalduondo, L.; Samir, P.; Zheng, M.; Sundaram, B.; Banoth, B.; Malireddi, R.K.S.; Schreiner, P.; Neale, G.; Vogel, P.; Webby, R.; Jonsson, C.B.; Kanneganti, T.D. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 Infection and cytokine shock syndromes. Cell, 2021, 184(1), 149-168.e17.
[http://dx.doi.org/10.1016/j.cell.2020.11.025] [PMID: 33278357]
[85]
Yan, W.T.; Zhao, W.J.; Hu, X.M.; Ban, X.X.; Ning, W.Y.; Wan, H. PANoptosis-like cell death kills retinal neurons following OGD/R and aHIOP injury. Neural Regen. Res., 2023, 18, 357-363.
[http://dx.doi.org/10.4103/1673-5374.346545] [PMID: 35900430]
[86]
Zhou, R.; Ying, J.; Qiu, X.; Yu, L.; Yue, Y.; Liu, Q.; Shi, J.; Li, X.; Qu, Y.; Mu, D. A new cell death program regulated by toll-like receptor 9 through p38 mitogen-activated protein kinase signaling pathway in a neonatal rat model with sepsis associated encephalopathy. Chin. Med. J. (Engl.), 2022. Publish Ahead of Print
[http://dx.doi.org/10.1097/CM9.0000000000002010] [PMID: 35261352]
[87]
Samir, P.; Malireddi, R.K.S.; Kanneganti, T.D. The PANoptosome: A deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front. Cell. Infect. Microbiol., 2020, 10, 238.
[http://dx.doi.org/10.3389/fcimb.2020.00238] [PMID: 32582562]
[88]
Zhang, Y.; Khan, S.; Liu, Y.; Zhang, R.; Li, H.; Wu, G.; Tang, Z.; Xue, M.; Yong, V.W. Modes of brain cell death following intracerebral hemorrhage. Front. Cell. Neurosci., 2022, 16, 799753.
[http://dx.doi.org/10.3389/fncel.2022.799753] [PMID: 35185473]
[89]
Gao, Y.; Ma, L.; Luo, C.; Wang, T.; Zhang, M.; Shen, X.; Meng, H.; Ji, M.; Wang, Z.; Chen, X.; Tao, L. IL-33 exerts neuroprotective effect in mice intracerebral hemorrhage model through suppressing inflammation/apoptotic/autophagic pathway. Mol. Neurobiol., 2017, 54(5), 3879-3892.
[http://dx.doi.org/10.1007/s12035-016-9947-6] [PMID: 27405469]
[90]
Chang, P.; Dong, W.; Zhang, M.; Wang, Z.; Wang, Y.; Wang, T.; Gao, Y.; Meng, H.; Luo, B.; Luo, C.; Chen, X.; Tao, L. Anti-necroptosis chemical necrostatin-1 can also suppress apoptotic and autophagic pathway to exert neuroprotective effect in mice intracerebral hemorrhage model. J. Mol. Neurosci., 2014, 52(2), 242-249.
[http://dx.doi.org/10.1007/s12031-013-0132-3] [PMID: 24122153]
[91]
Schwarzer, R.; Laurien, L.; Pasparakis, M. New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8. Curr. Opin. Cell Biol., 2020, 63, 186-193.
[http://dx.doi.org/10.1016/j.ceb.2020.02.004] [PMID: 32163825]
[92]
Fritsch, M.; Günther, S.D.; Schwarzer, R.; Albert, M.C.; Schorn, F.; Werthenbach, J.P.; Schiffmann, L.M.; Stair, N.; Stocks, H.; Seeger, J.M.; Lamkanfi, M.; Krönke, M.; Pasparakis, M.; Kashkar, H. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature, 2019, 575(7784), 683-687.
[http://dx.doi.org/10.1038/s41586-019-1770-6] [PMID: 31748744]
[93]
Lamade, A.M.; Wu, L.; Dar, H.H.; Mentrup, H.L.; Shrivastava, I.H.; Epperly, M.W.; St Croix, C.M.; Tyurina, Y.Y.; Anthonymuthu, T.S.; Yang, Q.; Kapralov, A.A.; Huang, Z.; Mao, G.; Amoscato, A.A.; Hier, Z.E.; Artyukhova, M.A.; Shurin, G.; Rosenbaum, J.C.; Gough, P.J.; Bertin, J.; VanDemark, A.P.; Watkins, S.C.; Mollen, K.P.; Bahar, I.; Greenberger, J.S.; Kagan, V.E.; Whalen, M.J.; Bayır, H. Inactivation of RIP3 kinase sensitizes to 15LOX/PEBP1-mediated ferroptotic death. Redox Biol., 2022, 50, 102232.
[http://dx.doi.org/10.1016/j.redox.2022.102232] [PMID: 35101798]
[94]
Siffel, C.; Kistler, K.D.; Sarda, S.P. Global incidence of intraventricular hemorrhage among extremely preterm infants: A systematic literature review. J. Perinat. Med., 2021, 49(9), 1017-1026.
[http://dx.doi.org/10.1515/jpm-2020-0331] [PMID: 33735943]
[95]
Xiang, Y.Q.; Zheng, W.; Wang, S.B.; Yang, X.H.; Cai, D.B.; Ng, C.H.; Ungvari, G.S.; Kelly, D.L.; Xu, W.Y.; Xiang, Y.T. Adjunctive minocycline for schizophrenia: A meta-analysis of randomized controlled trials. Eur. Neuropsychopharmacol., 2017, 27(1), 8-18.
[http://dx.doi.org/10.1016/j.euroneuro.2016.11.012] [PMID: 27919523]
[96]
Guo, J.; Chen, Q.; Tang, J.; Zhang, J.; Tao, Y.; Li, L.; Zhu, G.; Feng, H.; Chen, Z. Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage. Brain Res., 2015, 1594, 115-124.
[http://dx.doi.org/10.1016/j.brainres.2014.10.046] [PMID: 25451129]
[97]
Tang, J.; Chen, Q.; Guo, J.; Yang, L.; Tao, Y.; Li, L.; Miao, H.; Feng, H.; Chen, Z.; Zhu, G. Minocycline attenuates neonatal germinal-matrix-hemorrhage-induced neuroinflammation and brain edema by activating cannabinoid receptor 2. Mol. Neurobiol., 2016, 53(3), 1935-1948.
[http://dx.doi.org/10.1007/s12035-015-9154-x] [PMID: 25833102]
[98]
Wu, Z.; Zou, X.; Zhu, W.; Mao, Y.; Chen, L.; Zhao, F. Minocycline is effective in intracerebral hemorrhage by inhibition of apoptosis and autophagy. J. Neurol. Sci., 2016, 371, 88-95.
[http://dx.doi.org/10.1016/j.jns.2016.10.025] [PMID: 27871457]
[99]
Malhotra, K.; Chang, J.J.; Khunger, A.; Blacker, D.; Switzer, J.A.; Goyal, N.; Hernandez, A.V.; Pasupuleti, V.; Alexandrov, A.V.; Tsivgoulis, G. Minocycline for acute stroke treatment: A systematic review and meta-analysis of randomized clinical trials. J. Neurol., 2018, 265(8), 1871-1879.
[http://dx.doi.org/10.1007/s00415-018-8935-3] [PMID: 29948247]
[100]
Klebe, D.; Krafft, P.R.; Hoffmann, C.; Lekic, T.; Flores, J.J.; Rolland, W.; Zhang, J.H. Acute and delayed deferoxamine treatment attenuates long-term sequelae after germinal matrix hemorrhage in neonatal rats. Stroke, 2014, 45(8), 2475-2479.
[http://dx.doi.org/10.1161/STROKEAHA.114.005079] [PMID: 24947291]
[101]
Selim, M.; Foster, L.D.; Moy, C.S.; Xi, G.; Hill, M.D.; Morgenstern, L.B.; Greenberg, S.M.; James, M.L.; Singh, V.; Clark, W.M.; Norton, C.; Palesch, Y.Y.; Yeatts, S.D.; Dolan, M.; Yeh, E.; Sheth, K.; Kunze, K.; Muehlschlegel, S.; Nieto, I.; Claassen, J.; Falo, C.; Huang, D.; Beckwith, A.; Messe, S.; Yates, M.; O’Phelan, K.; Escobar, A.; Becker, K.; Tanzi, P.; Gonzales, N.; Tremont, C.; Venkatasubramanian, C.; Thiessen, R.; Save, S.; Verrault, S.; Collard, K.; DeGeorgia, M.; Cwiklinski, V.; Thompson, B.; Wasilewski, L.; Andrews, C.; Burfeind, R.; Torbey, M.; Hamed, M.; Butcher, K.; Sivakumar, L.; Varelas, N.; Mays-Wilson, K.; Leira, E.; Olalde, H.; Silliman, S.; Calhoun, R.; Dangayach, N.; Renvill, R.; Malhotra, R.; Kordesch, K.; Lord, A.; Calahan, T.; Geocadin, R.; Parish, M.; Frey, J.; Harrigan, M.; Leifer, D.; Mathias, R.; Schneck, M.; Bernier, T.; Gonzales-Arias, S.; Elysee, J.; Lopez, G.; Volgi, J.; Brown, R.; Jasak, S.; Phillips, S.; Jarrett, J.; Gomes, J.; McBride, M.; Aldrich, F.; Aldrich, C.; Kornbluth, J.; Bettle, M.; Goldstein, J.; Tirrell, G.; Shaw, Q.; Jonczak, K. Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): A multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol., 2019, 18(5), 428-438.
[http://dx.doi.org/10.1016/S1474-4422(19)30069-9] [PMID: 30898550]
[102]
Zeng, L.; Zhu, Y.; Hu, X.; Qin, H.; Tang, J.; Hu, Z.; Chen, C. Efficacy of melatonin in animal models of intracerebral hemorrhage: A systematic review and meta-analysis. Aging (Albany NY), 2021, 13(2), 3010-3030.
[http://dx.doi.org/10.18632/aging.202457] [PMID: 33503014]
[103]
Tang, J.; Chen, R.; Wang, L.; Yu, L.; Zuo, D.; Cui, G.; Gong, X. Melatonin attenuates thrombin-induced inflammation in BV2 cells and then protects HT22 cells from apoptosis. Inflammation, 2020, 43(5), 1959-1970.
[http://dx.doi.org/10.1007/s10753-020-01270-5] [PMID: 32705396]
[104]
Wang, Z.; Zhou, F.; Dou, Y.; Tian, X.; Liu, C.; Li, H.; Shen, H.; Chen, G. Melatonin alleviates intracerebral hemorrhage-induced secondary brain injury in rats via suppressing apoptosis, inflammation, oxidative stress, dna damage, and mitochondria injury. Transl. Stroke Res., 2018, 9(1), 74-91.
[http://dx.doi.org/10.1007/s12975-017-0559-x] [PMID: 28766251]
[105]
Lekic, T.; Manaenko, A.; Rolland, W.; Virbel, K.; Hartman, R.; Tang, J.; Zhang, J.H. Neuroprotection by melatonin after germinal matrix hemorrhage in neonatal rats. Acta Neurochir. Suppl. (Wien), 2011, 111, 201-206.
[http://dx.doi.org/10.1007/978-3-7091-0693-8_34] [PMID: 21725756]
[106]
Tyrlikova, I.; Brazdil, M.; Rektor, I.; Tyrlik, M. Perampanel as monotherapy and adjunctive therapy for focal onset seizures, focal to bilateral tonic-clonic seizures and as adjunctive therapy of generalized onset tonic-clonic seizures. Expert Rev. Neurother., 2019, 19(1), 5-16.
[http://dx.doi.org/10.1080/14737175.2019.1555474] [PMID: 30560703]
[107]
Peng, X.; Song, J.; Li, B.; Zhu, C.; Wang, X. Umbilical cord blood stem cell therapy in premature brain injury: Opportunities and challenges. J. Neurosci. Res., 2020, 98(5), 815-825.
[http://dx.doi.org/10.1002/jnr.24548] [PMID: 31797400]
[108]
Zhuang, W.Z.; Lin, Y.H.; Su, L.J.; Wu, M.S.; Jeng, H.Y.; Chang, H.C.; Huang, Y.H.; Ling, T.Y. Mesenchymal stem/stromal cell-based therapy: Mechanism, systemic safety and biodistribution for precision clinical applications. J. Biomed. Sci., 2021, 28(1), 28.
[http://dx.doi.org/10.1186/s12929-021-00725-7] [PMID: 33849537]
[109]
Vaes, J.E.G.; Kammen, C.M.; Trayford, C.; Toorn, A.; Ruhwedel, T.; Benders, M.J.N.L.; Dijkhuizen, R.M.; Möbius, W.; Rijt, S.H.; Nijboer, C.H. Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity. Glia, 2021, 69(3), 655-680.
[http://dx.doi.org/10.1002/glia.23919] [PMID: 33045105]
[110]
Nair, S.; Rocha-Ferreira, E.; Fleiss, B.; Nijboer, C.H.; Gressens, P.; Mallard, C.; Hagberg, H. Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. J. Neurochem., 2021, 158(1), 59-73.
[http://dx.doi.org/10.1111/jnc.15267] [PMID: 33314066]
[111]
Ahn, S.Y.; Chang, Y.S.; Sung, S.I.; Park, W.S. Mesenchymal Stem cells for severe intraventricular hemorrhage in preterm infants: Phase i dose-escalation clinical trial. Stem Cells Transl. Med., 2018, 7(12), 847-856.
[http://dx.doi.org/10.1002/sctm.17-0219] [PMID: 30133179]
[112]
Romantsik, O.; Bruschettini, M.; Moreira, A.; Thébaud, B.; Ley, D. Stem cell‐based interventions for the prevention and treatment of germinal matrix‐intraventricular haemorrhage in preterm infants. Cochrane Database Syst Rev, 2023, 2(2), CD013201.
[http://dx.doi.org/10.1002/14651858.CD013201.pub2]
[113]
Mayock, D.E.; Xie, Z.; Comstock, B.A.; Heagerty, P.J.; Juul, S.E. Preterm epo neuroprotection trial C. high-dose erythropoietin in extremely low gestational age neonates does not alter risk of retinopathy of prematurity. Neonatology, 2020, 117(5), 650-657.
[http://dx.doi.org/10.1159/000511262] [PMID: 33113526]
[114]
Zhu, C.; Kang, W.; Xu, F.; Cheng, X.; Zhang, Z.; Jia, L.; Ji, L.; Guo, X.; Xiong, H.; Simbruner, G.; Blomgren, K.; Wang, X. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics, 2009, 124(2), e218-e226.
[http://dx.doi.org/10.1542/peds.2008-3553] [PMID: 19651565]
[115]
Fauchere, JC; Koller, BM; Tschopp, A; Dame, C; Ruegger, C; Bucher, HU Safety of early high-dose recombinant erythropoietin for neuroprotection in very preterm infants. J. Pediatr., 2015, 167(1), 52-57.
[http://dx.doi.org/10.1016/j.jpeds.2015.02.052] [PMID: 25863661]
[116]
Song, J.; Sun, H.; Xu, F.; Kang, W.; Gao, L.; Guo, J.; Zhang, Y.; Xia, L.; Wang, X.; Zhu, C. Recombinant human erythropoietin improves neurological outcomes in very preterm infants. Ann. Neurol., 2016, 80(1), 24-34.
[http://dx.doi.org/10.1002/ana.24677] [PMID: 27130143]
[117]
Juul, S.E.; Pet, G.C. Erythropoietin and neonatal neuroprotection. Clin. Perinatol., 2015, 42(3), 469-481.
[http://dx.doi.org/10.1016/j.clp.2015.04.004] [PMID: 26250911]
[118]
Juul, S.E.; Comstock, B.A.; Wadhawan, R.; Mayock, D.E.; Courtney, S.E.; Robinson, T.; Ahmad, K.A.; Bendel-Stenzel, E.; Baserga, M.; LaGamma, E.F.; Downey, L.C.; Rao, R.; Fahim, N.; Lampland, A.; Frantz, I.D., III; Khan, J.Y.; Weiss, M.; Gilmore, M.M.; Ohls, R.K.; Srinivasan, N.; Perez, J.E.; McKay, V.; Vu, P.T.; Lowe, J.; Kuban, K.; O’Shea, T.M.; Hartman, A.L.; Heagerty, P.J. A Randomized trial of erythropoietin for neuroprotection in preterm infants. N. Engl. J. Med., 2020, 382(3), 233-243.
[http://dx.doi.org/10.1056/NEJMoa1907423] [PMID: 31940698]
[119]
Natalucci, G.; Latal, B.; Koller, B.; Rüegger, C.; Sick, B.; Held, L.; Bucher, H.U.; Fauchère, J.C. Effect of early prophylactic high-dose recombinant human erythropoietin in very preterm infants on neurodevelopmental outcome at 2 years: A randomized clinical trial. JAMA, 2016, 315(19), 2079-2085.
[http://dx.doi.org/10.1001/jama.2016.5504] [PMID: 27187300]
[120]
Zhao, D.; Chen, J.; Zhang, Y.; Liao, H.B.; Zhang, Z.F.; Zhuang, Y.; Pan, M.X.; Tang, J.C.; Liu, R.; Lei, Y.; Wang, S.; Qin, X.P.; Feng, Y.G.; Chen, Y.; Wan, Q. Glycine confers neuroprotection through PTEN/AKT signal pathway in experimental intracerebral hemorrhage. Biochem. Biophys. Res. Commun., 2018, 501(1), 85-91.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.171] [PMID: 29698679]
[121]
Yang, Y.; Deng, G.; Wang, P.; Lv, G.; Mao, R.; Sun, Y.; Wang, B.; Liu, X.; Bian, L.; Zhou, D. A Selenium nanocomposite protects the mouse brain from oxidative injury following intracerebral hemorrhage. Int. J. Nanomed., 2021, 16, 775-788.
[http://dx.doi.org/10.2147/IJN.S293681] [PMID: 33574665]
[122]
Hijioka, M.; Anan, J.; Ishibashi, H.; Kurauchi, Y.; Hisatsune, A.; Seki, T.; Koga, T.; Yokomizo, T.; Shimizu, T.; Katsuki, H. Inhibition of leukotriene b4 action mitigates intracerebral hemorrhage-associated pathological events in mice. J. Pharmacol. Exp. Ther., 2017, 360(3), 399-408.
[http://dx.doi.org/10.1124/jpet.116.238824] [PMID: 28035009]
[123]
Tuo, Q.Z.; Masaldan, S.; Southon, A.; Mawal, C.; Ayton, S.; Bush, A.I.; Lei, P.; Belaidi, A.A. Characterization of selenium compounds for anti-ferroptotic activity in neuronal cells and after cerebral ischemia-reperfusion injury. Neurotherapeutics, 2021, 18(4), 2682-2691.
[http://dx.doi.org/10.1007/s13311-021-01111-9] [PMID: 34498224]
[124]
Hu, L.; Zhang, H.; Wang, B.; Ao, Q.; Shi, J.; He, Z. MicroRNA-23b alleviates neuroinflammation and brain injury in intracerebral hemorrhage by targeting inositol polyphosphate multikinase. Int. Immunopharmacol., 2019, 76, 105887.
[http://dx.doi.org/10.1016/j.intimp.2019.105887] [PMID: 31536904]
[125]
Hu, L.; Zhang, H.; Wang, B.; Ao, Q.; He, Z. MicroRNA-152 attenuates neuroinflammation in intracerebral hemorrhage by inhibiting thioredoxin interacting protein (TXNIP)-mediated NLRP3 inflammasome activation. Int. Immunopharmacol., 2020, 80, 106141.
[http://dx.doi.org/10.1016/j.intimp.2019.106141] [PMID: 31982825]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy