Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Diverse Network of Brain Histamine in Feeding: Dissect its Functions in a Circuit-Specific Way

Author(s): Lingyu Xu, Wenkai Lin, Yanrong Zheng, Yi Wang and Zhong Chen*

Volume 22, Issue 2, 2024

Published on: 22 March, 2023

Page: [241 - 259] Pages: 19

DOI: 10.2174/1570159X21666221117153755

Price: $65

Open Access Journals Promotions 2
Abstract

Feeding is an intrinsic and important behavior regulated by complex molecular, cellular and circuit-level mechanisms, one of which is the brain histaminergic network. In the past decades, many studies have provided a foundation of knowledge about the relationship between feeding and histamine receptors, which are deemed to have therapeutic potential but are not successful in treating feeding- related diseases. Indeed, the histaminergic circuits underlying feeding are poorly understood and characterized. This review describes current knowledge of histamine in feeding at the receptor level. Further, we provide insight into putative histamine-involved feeding circuits based on the classic feeding circuits. Understanding the histaminergic network in a circuit-specific way may be therapeutically relevant for increasing the drug specificity and precise treatment in feeding-related diseases.

Keywords: Histamine, histamine receptor ligands, neural circuit, feeding, drug target, brain histaminergic network.

Graphical Abstract
[1]
Schwartz, J.C.; Arrang, J.M.; Garbarg, M.; Pollard, H.; Ruat, M. Histaminergic transmission in the mammalian brain. Physiol. Rev., 1991, 71(1), 1-51.
[http://dx.doi.org/10.1152/physrev.1991.71.1.1] [PMID: 1846044]
[2]
Panula, P.; Yang, H.Y.; Costa, E. Histamine-containing neurons in the rat hypothalamus. Proc. Natl. Acad. Sci. USA, 1984, 81(8), 2572-2576.
[http://dx.doi.org/10.1073/pnas.81.8.2572] [PMID: 6371818]
[3]
Volonté, C.; Apolloni, S.; Amadio, S. The histamine and multiple sclerosis alliance: Pleiotropic actions and functional validation. Curr. Top. Behav. Neurosci., 2021, 59, 1-23.
[http://dx.doi.org/10.1007/7854_2021_240] [PMID: 34432258]
[4]
Sharma, A.; Muresanu, D.F.; Patnaik, R.; Menon, P.K.; Tian, Z.R.; Sahib, S.; Castellani, R.J.; Nozari, A.; Lafuente, J.V.; Buzoianu, A.D.; Skaper, S.D.; Bryukhovetskiy, I.; Manzhulo, I.; Wiklund, L.; Sharma, H.S. Histamine H3 and H4 receptors modulate Parkinson’s disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy.Prog. Brain Res; , 2021, 266, pp. 1-73.
[http://dx.doi.org/10.1016/bs.pbr.2021.06.003] [PMID: 34689857]
[5]
Fang, Q.; Xicoy, H.; Shen, J.; Luchetti, S.; Dai, D.; Zhou, P.; Qi, X.R.; Martens, G.J.M.; Huitinga, I.; Swaab, D.F.; Liu, C.; Shan, L. Histamine-4 receptor antagonist ameliorates Parkinson-like pathology in the striatum. Brain Behav. Immun., 2021, 92, 127-138.
[http://dx.doi.org/10.1016/j.bbi.2020.11.036] [PMID: 33249171]
[6]
Zheng, Y.; Chen, Z. Targeting histamine and histamine receptors for the precise regulation of feeding. Curr. Top. Behav. Neurosci., 2021, 59, 1-33.
[http://dx.doi.org/10.1007/7854_2021_258] [PMID: 34622397]
[7]
Shulpekova, Y.O.; Nechaev, V.M.; Popova, I.R.; Deeva, T.A.; Kopylov, A.T.; Malsagova, K.A.; Kaysheva, A.L.; Ivashkin, V.T. Food intolerance: The role of histamine. Nutrients, 2021, 13(9), 3207.
[http://dx.doi.org/10.3390/nu13093207] [PMID: 34579083]
[8]
Haas, H.L.; Sergeeva, O.A.; Selbach, O. Histamine in the nervous system. Physiol. Rev., 2008, 88(3), 1183-1241.
[http://dx.doi.org/10.1152/physrev.00043.2007] [PMID: 18626069]
[9]
Fukudo, S.; Kano, M.; Sato, Y.; Muratsubaki, T.; Kanazawa, M.; Tashiro, M.; Yanai, K. Histamine neuroimaging in stress-related disorders. Curr. Top. Behav. Neurosci., 2021, 59, 1-17.
[http://dx.doi.org/10.1007/7854_2021_262] [PMID: 35156186]
[10]
Passani, M.B.; Blandina, P.; Torrealba, F. The histamine H3 receptor and eating behavior. J. Pharmacol. Exp. Ther., 2011, 336(1), 24-29.
[http://dx.doi.org/10.1124/jpet.110.171306] [PMID: 20864503]
[11]
Passani, M.B.; Blandina, P. Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol. Sci., 2011, 32(4), 242-249.
[http://dx.doi.org/10.1016/j.tips.2011.01.003] [PMID: 21324537]
[12]
Lei, X.G.; Ruan, J.Q.; Lai, C.; Sun, Z.; Yang, X. Efficacy and safety of phentermine/topiramate in adults with overweight or obesity: A systematic review and meta‐analysis. Obesity (Silver Spring), 2021, 29(6), 985-994.
[http://dx.doi.org/10.1002/oby.23152] [PMID: 33864346]
[13]
Tak, Y.J.; Lee, S.Y. Long-term efficacy and safety of anti-obesity treatment: Where do we stand? Curr. Obes. Rep., 2021, 10(1), 14-30.
[http://dx.doi.org/10.1007/s13679-020-00422-w] [PMID: 33410104]
[14]
Hu, W.W.; Chen, Z. Role of histamine and its receptors in cerebral ischemia. ACS Chem. Neurosci., 2012, 3(4), 238-247.
[http://dx.doi.org/10.1021/cn200126p] [PMID: 22860191]
[15]
Hu, W.; Chen, Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol. Ther., 2017, 175, 116-132.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.039] [PMID: 28223162]
[16]
Black, J.W.; Duncan, W.A.M.; Durant, C.J.; Ganellin, C.R.; Parsons, E.M. Definition and antagonism of histamine H 2 -receptors. Nature, 1972, 236(5347), 385-390.
[http://dx.doi.org/10.1038/236385a0] [PMID: 4401751]
[17]
Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature, 1983, 302(5911), 832-837.
[http://dx.doi.org/10.1038/302832a0] [PMID: 6188956]
[18]
Nguyen, T.; Shapiro, D.A.; George, S.R.; Setola, V.; Lee, D.K.; Cheng, R.; Rauser, L.; Lee, S.P.; Lynch, K.R.; Roth, B.L.; O’Dowd, B.F. Discovery of a novel member of the histamine receptor family. Mol. Pharmacol., 2001, 59(3), 427-433.
[http://dx.doi.org/10.1124/mol.59.3.427] [PMID: 11179435]
[19]
Kobayashi, T.; Inoue, I.; Jenkins, N.A.; Gilbert, D.J.; Copeland, N.G.; Watanabe, T. Cloning, RNA expression, and chromosomal location of a mouse histamine H2 receptor gene. Genomics, 1996, 37(3), 390-394.
[http://dx.doi.org/10.1006/geno.1996.0575] [PMID: 8938453]
[20]
Martinez-Mir, M.I.; Pollard, H.; Moreau, J.; Arrang, J.M.; Ruat, M.; Traiffort, E.; Schwartz, J.C.; Palacios, J.M. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res., 1990, 526(2), 322-327.
[http://dx.doi.org/10.1016/0006-8993(90)91240-H] [PMID: 1979518]
[21]
Terao, A.; Steininger, T.L.; Morairty, S.R.; Kilduff, T.S. Age-related changes in histamine receptor mRNA levels in the mouse brain. Neurosci. Lett., 2004, 355(1-2), 81-84.
[http://dx.doi.org/10.1016/j.neulet.2003.10.061] [PMID: 14729240]
[22]
Deshetty, U.M.; Tamatam, A.; Bhattacharjee, M.; Perumal, E.; Natarajan, G.; Khanum, F. Ameliorative effect of hesperidin against motion sickness by modulating histamine and histamine H1 receptor expression. Neurochem. Res., 2020, 45(2), 371-384.
[http://dx.doi.org/10.1007/s11064-019-02923-0] [PMID: 31782104]
[23]
Provensi, G.; Fabbri, R.; Munari, L.; Costa, A.; Baldi, E.; Bucherelli, C.; Blandina, P.; Passani, M.B. Histaminergic neurotransmission as a gateway for the cognitive effect of oleoylethanolamide in contextual fear conditioning. Int. J. Neuropsychopharmacol., 2017, 20(5), 392-399.
[http://dx.doi.org/10.1093/ijnp/pyw110] [PMID: 28339575]
[24]
Reiner, P.B.; Kamondi, A. Mechanisms of antihistamine-induced sedation in the human brain: H1 receptor activation reduces a background leakage potassium current. Neuroscience, 1994, 59(3), 579-588.
[http://dx.doi.org/10.1016/0306-4522(94)90178-3] [PMID: 8008209]
[25]
Korotkova, T.M.; Sergeeva, O.A.; Ponomarenko, A.A.; Haas, H.L. Histamine excites noradrenergic neurons in locus coeruleus in rats. Neuropharmacology, 2005, 49(1), 129-134.
[http://dx.doi.org/10.1016/j.neuropharm.2005.03.001] [PMID: 15992588]
[26]
Lin, J.S.; Hou, Y.; Sakai, K.; Jouvet, M. Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J. Neurosci., 1996, 16(4), 1523-1537.
[http://dx.doi.org/10.1523/JNEUROSCI.16-04-01523.1996] [PMID: 8778302]
[27]
Zhou, F.W.; Xu, J.J.; Zhao, Y.; LeDoux, M.S.; Zhou, F.M. Opposite functions of histamine H1 and H2 receptors and H3 receptor in substantia nigra pars reticulata. J. Neurophysiol., 2006, 96(3), 1581-1591.
[http://dx.doi.org/10.1152/jn.00148.2006] [PMID: 16738217]
[28]
Xu, C.; Michelsen, K.A.; Wu, M.; Morozova, E.; Panula, P.; Alreja, M. Histamine innervation and activation of septohippocampal GABAergic neurones: Involvement of local ACh release. J. Physiol., 2004, 561(3), 657-670.
[http://dx.doi.org/10.1113/jphysiol.2004.071712] [PMID: 15486020]
[29]
Manahan-Vaughan, D.; Reymann, K.G.; Brown, R.E. In vivo electrophysiological investigations into the role of histamine in the dentate gyrus of the rat. Neuroscience, 1998, 84(3), 783-790.
[http://dx.doi.org/10.1016/S0306-4522(97)00540-X] [PMID: 9579783]
[30]
Ruat, M.; Traiffort, E.; Bouthenet, M.L.; Schwartz, J.C.; Hirschfeld, J.; Buschauer, A.; Schunack, W. Reversible and irreversible labeling and autoradiographic localization of the cerebral histamine H2 receptor using [125I]iodinated probes. Proc. Natl. Acad. Sci. USA, 1990, 87(5), 1658-1662.
[http://dx.doi.org/10.1073/pnas.87.5.1658] [PMID: 2308927]
[31]
Vizuete, M.L.; Traiffort, E.; Bouthenet, M.L.; Ruat, M.; Souil, E.; Tardivel-Lacombe, J.; Schwartz, J.C. Detailed mapping of the histamine H2 receptor and its gene transcripts in guinea-pig brain. Neuroscience, 1997, 80(2), 321-343.
[http://dx.doi.org/10.1016/S0306-4522(97)00010-9] [PMID: 9284338]
[32]
Provensi, G.; Blandina, P.; Passani, M.B. The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology, 2016, 106, 3-12.
[http://dx.doi.org/10.1016/j.neuropharm.2015.07.002] [PMID: 26164344]
[33]
Haas, H.; Panula, P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci., 2003, 4(2), 121-130.
[http://dx.doi.org/10.1038/nrn1034] [PMID: 12563283]
[34]
Arrang, J.M.; Garbarg, M.; Lancelo, J-C.; Lecomte, J.M.; Pollard, H.; Robba, M.; Schunack, W.; Schwartz, J.C. Highly potent and selective ligands for histamine H3-receptors. Nature, 1987, 327(6118), 117-123.
[http://dx.doi.org/10.1038/327117a0] [PMID: 3033516]
[35]
Yamamoto, Y.; Mochizuki, T.; Okakura-Mochizuki, K.; Uno, A.; Yamatodani, A. Thioperamide, a histamine H3 receptor antagonist, increases GABA release from the rat hypothalamus. Methods Find. Exp. Clin. Pharmacol., 1997, 19(5), 289-298.
[PMID: 9379777]
[36]
Blandina, P.; Giorgetti, M.; Cecchi, M.; Leurs, R.; Timmerman, H.; Giovannini, M.G. Histamine H3 receptor inhibition of K+-evoked release of acetylcholine from rat cortex in vivo. Inflamm. Res., 1996, 45(S1)(Suppl. 1), S54-S55.
[http://dx.doi.org/10.1007/BF03354086] [PMID: 8696930]
[37]
Schlicker, E.; Kathmann, M.; Detzner, M.; Exner, H.J.; Göthert, M. H3 receptor-mediated inhibition of noradrenaline release: An investigation into the involvement of Ca2+ and K+ ions, G protein and adenylate cyclase. Naunyn Schmiedebergs Arch. Pharmacol., 1994, 350(1), 34-41.
[http://dx.doi.org/10.1007/BF00180008] [PMID: 7935852]
[38]
Chazot, P.L.; Hann, V.; Wilson, C.; Lees, G.; Thompson, C.L. Immunological identification of the mammalian H3 histamine receptor in the mouse brain. Neuroreport, 2001, 12(2), 259-262.
[http://dx.doi.org/10.1097/00001756-200102120-00016] [PMID: 11209931]
[39]
Pillot, C.; Heron, A.; Cochois, V.; Tardivel-Lacombe, J.; Ligneau, X.; Schwartz, J.C.; Arrang, J.M. A detailed mapping of the histamine H3 receptor and its gene transcripts in rat brain. Neuroscience, 2002, 114(1), 173-193.
[http://dx.doi.org/10.1016/S0306-4522(02)00135-5] [PMID: 12207964]
[40]
Strakhova, M.I.; Nikkel, A.L.; Manelli, A.M.; Hsieh, G.C.; Esbenshade, T.A.; Brioni, J.D.; Bitner, R.S. Localization of histamine H4 receptors in the central nervous system of human and rat. Brain Res., 2009, 1250, 41-48.
[http://dx.doi.org/10.1016/j.brainres.2008.11.018] [PMID: 19046950]
[41]
Gbahou, F.; Rouleau, A.; Morisset, S.; Parmentier, R.; Crochet, S.; Lin, J.S.; Ligneau, X.; Tardivel-Lacombe, J.; Stark, H.; Schunack, W.; Ganellin, C.R.; Schwartz, J.C.; Arrang, J.M. Protean agonism at histamine H 3 receptors in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2003, 100(19), 11086-11091.
[http://dx.doi.org/10.1073/pnas.1932276100] [PMID: 12960366]
[42]
Clineschmidt, B.V.; Lotti, V.J. Histamine: Intraventricular injection suppresses ingestive behavior of the cat. Arch. Int. Pharmacodyn. Ther., 1973, 206(2), 288-298.
[PMID: 4778620]
[43]
Mika, K.; Szafarz, M.; Bednarski, M.; Kuder, K.; Szczepańska, K.; Pociecha, K.; Pomierny, B.; Kieć-Kononowicz, K.; Sapa, J.; Kotańska, M. Metabolic benefits of novel histamine H3 receptor ligands in the model of excessive eating: The importance of intrinsic activity and pharmacokinetic properties. Biomed. Pharmacother., 2021, 142, 111952.
[http://dx.doi.org/10.1016/j.biopha.2021.111952] [PMID: 34325303]
[44]
Kumar, A.; Pasam, V.R.; Thakur, R.K.; Singh, M.; Singh, K.; Shukla, M.; Yadav, A.; Dogra, S.; Sona, C.; Umrao, D.; Jaiswal, S.; Ahmad, H.; Rashid, M.; Singh, S.K.; Wahajuddin, M.; Dwivedi, A.K.; Siddiqi, M.I.; Lal, J.; Tripathi, R.P.; Yadav, P.N. Novel tetrahydroquinazolinamines as selective histamine 3 receptor antagonists for the treatment of obesity. J. Med. Chem., 2019, 62(9), 4638-4655.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00241] [PMID: 30998358]
[45]
Cohn, C.K.; Ball, G.G.; Hirsch, J. Histamine: Effect on selfstimulation. Science, 1973, 180(4087), 757-758.
[http://dx.doi.org/10.1126/science.180.4087.757]
[46]
Machidori, H.; Sakata, T.; Yoshimatsu, H.; Ookuma, K.; Fujimoto, K.; Kurokawa, M.; Yamatodani, A.; Wada, H. Zucker obese rats: Defect in brain histamine control of feeding. Brain Res., 1992, 590(1-2), 180-186.
[http://dx.doi.org/10.1016/0006-8993(92)91093-T] [PMID: 1330211]
[47]
Ookuma, K.; Sakata, T.; Fukagawa, K.; Yoshimatsu, H.; Kurokawa, M.; Machidori, H.; Fujimoto, K. Neuronal histamine in the hypothalamus suppresses food intake in rats. Brain Res., 1993, 628(1-2), 235-242.
[http://dx.doi.org/10.1016/0006-8993(93)90960-U] [PMID: 8313152]
[48]
Kasaoka, S.; Tsuboyama-Kasaoka, N.; Kawahara, Y.; Inoue, S.; Tsuji, M.; Ezaki, O.; Kato, H.; Tsuchiya, T.; Okuda, H.; Nakajima, S. Histidine supplementation suppresses food intake and fat accumulation in rats. Nutrition, 2004, 20(11-12), 991-996.
[http://dx.doi.org/10.1016/j.nut.2004.08.006] [PMID: 15561489]
[49]
Sakata, T.; Yoshimatsu, H.; Kurokawa, M. Hypothalamic neuronal histamine: Implications of its homeostatic control of energy metabolism. Nutrition, 1997, 13(5), 403-411.
[http://dx.doi.org/10.1016/S0899-9007(97)91277-6] [PMID: 9225331]
[50]
Yoshimoto, R.; Miyamoto, Y.; Shimamura, K.; Ishihara, A.; Takahashi, K.; Kotani, H.; Chen, A.S.; Chen, H.Y.; MacNeil, D.J.; Kanatani, A.; Tokita, S. Therapeutic potential of histamine H3 receptor agonist for the treatment of obesity and diabetes mellitus. Proc. Natl. Acad. Sci. USA, 2006, 103(37), 13866-13871.
[http://dx.doi.org/10.1073/pnas.0506104103] [PMID: 16954192]
[51]
Masaki, T.; Yoshimatsu, H. The hypothalamic H1 receptor: A novel therapeutic target for disrupting diurnal feeding rhythm and obesity. Trends Pharmacol. Sci., 2006, 27(5), 279-284.
[http://dx.doi.org/10.1016/j.tips.2006.03.008] [PMID: 16584790]
[52]
Masaki, T.; Chiba, S.; Yasuda, T.; Noguchi, H.; Kakuma, T.; Watanabe, T.; Sakata, T.; Yoshimatsu, H. Involvement of hypothalamic histamine H1 receptor in the regulation of feeding rhythm and obesity. Diabetes, 2004, 53(9), 2250-2260.
[http://dx.doi.org/10.2337/diabetes.53.9.2250] [PMID: 15331534]
[53]
Masaki, T.; Yoshimatsu, H.; Chiba, S.; Watanabe, T.; Sakata, T. Targeted disruption of histamine H1-receptor attenuates regulatory effects of leptin on feeding, adiposity, and UCP family in mice. Diabetes, 2001, 50(2), 385-391.
[http://dx.doi.org/10.2337/diabetes.50.2.385] [PMID: 11272151]
[54]
Morimoto, T.; Yamamoto, Y.; Mobarakeh, J.I.; Yanai, K.; Watanabe, T.; Watanabe, T.; Yamatodani, A. Involvement of the histaminergic system in leptin-induced suppression of food intake. Physiol. Behav., 1999, 67(5), 679-683.
[http://dx.doi.org/10.1016/S0031-9384(99)00123-7] [PMID: 10604837]
[55]
Yoshimatsu, H.; Itateyama, E.; Kondou, S.; Tajima, D.; Himeno, K.; Hidaka, S.; Kurokawa, M.; Sakata, T. Hypothalamic neuronal histamine as a target of leptin in feeding behavior. Diabetes, 1999, 48(12), 2286-2291.
[http://dx.doi.org/10.2337/diabetes.48.12.2286] [PMID: 10580415]
[56]
Mollet, A.; Lutz, T.A.; Meier, S.; Riediger, T.; Rushing, P.A.; Scharrer, E. Histamine H 1 receptors mediate the anorectic action of the pancreatic hormone amylin. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2001, 281(5), R1442-R1448.
[http://dx.doi.org/10.1152/ajpregu.2001.281.5.R1442] [PMID: 11641114]
[57]
Mollet, A.; Meier, S.; Riediger, T.; Lutz, T.A. Histamine H1 receptors in the ventromedial hypothalamus mediate the anorectic action of the pancreatic hormone amylin. Peptides, 2003, 24(1), 155-158.
[http://dx.doi.org/10.1016/S0196-9781(02)00288-7] [PMID: 12576097]
[58]
Davidowa, H. Histamine H1-receptors differentially mediate the action of amylin on hypothalamic neurons in control and in overweight rats. Behav. Brain Res., 2007, 182(1), 28-35.
[http://dx.doi.org/10.1016/j.bbr.2007.05.001] [PMID: 17586064]
[59]
Gotoh, K.; Masaki, T.; Chiba, S.; Ando, H.; Shimasaki, T.; Mitsutomi, K.; Fujiwara, K.; Katsuragi, I.; Kakuma, T.; Sakata, T.; Yoshimatsu, H. Nesfatin-1, corticotropin-releasing hormone, thyrotropin-releasing hormone, and neuronal histamine interact in the hypothalamus to regulate feeding behavior. J. Neurochem., 2013, 124(1), 90-99.
[http://dx.doi.org/10.1111/jnc.12066] [PMID: 23106615]
[60]
Itowi, N.; Nagai, K.; Nakagawa, H.; Watanabe, T.; Wada, H. Changes in the feeding behavior of rats elicited by histamine infusion. Physiol. Behav., 1988, 44(2), 221-226.
[http://dx.doi.org/10.1016/0031-9384(88)90142-4] [PMID: 3237828]
[61]
Lecklin, A.; Tuomisto, L. The blockade of H1 receptors attenuates the suppression of feeding and diuresis induced by inhibition of histamine catabolism. Pharmacol. Biochem. Behav., 1998, 59(3), 753-758.
[http://dx.doi.org/10.1016/S0091-3057(97)00465-6] [PMID: 9512082]
[62]
Vaziri, P.; Dang, K.; Anderson, G.H. Evidence for histamine involvement in the effect of histidine loads on food and water intake in rats. J. Nutr., 1997, 127(8), 1519-1526.
[http://dx.doi.org/10.1093/jn/127.8.1519] [PMID: 9237947]
[63]
Lecklin, A.; Etu-Seppälä, P.; Stark, H.; Tuomisto, L. Effects of intracerebroventricularly infused histamine and selective H1, H2 and H3 agonists on food and water intake and urine flow in Wistar rats. Brain Res., 1998, 793(1-2), 279-288.
[http://dx.doi.org/10.1016/S0006-8993(98)00186-3] [PMID: 9630675]
[64]
Kobayashi, T.; Tonai, S.; Ishihara, Y.; Koga, R.; Okabe, S.; Watanabe, T. Abnormal functional and morphological regulation of the gastric mucosa in histamine H2 receptor–deficient mice. J. Clin. Invest., 2000, 105(12), 1741-1749.
[http://dx.doi.org/10.1172/JCI9441] [PMID: 10862789]
[65]
Scott Kraly, F.; Specht, S.M. Histamine plays a major role for drinking elicited by spontaneous eating in rats. Physiol. Behav., 1984, 33(4), 611-614.
[http://dx.doi.org/10.1016/0031-9384(84)90379-2] [PMID: 6522479]
[66]
Kjaer, A.; Knigge, U.; Rouleau, A.; Garbarg, M.; Warberg, J. Dehydration-induced release of vasopressin involves activation of hypothalamic histaminergic neurons. Endocrinology, 1994, 135(2), 675-681.
[http://dx.doi.org/10.1210/endo.135.2.8033816] [PMID: 8033816]
[67]
Wang, K.Y.; Tanimoto, A.; Yamada, S.; Guo, X.; Ding, Y.; Watanabe, T.; Watanabe, T.; Kohno, K.; Hirano, K.I.; Tsukada, H.; Sasaguri, Y. Histamine regulation in glucose and lipid metabolism via histamine receptors: Model for nonalcoholic steatohepatitis in mice. Am. J. Pathol., 2010, 177(2), 713-723.
[http://dx.doi.org/10.2353/ajpath.2010.091198] [PMID: 20566747]
[68]
Støa-Birketvedt, G. Effect of cimetidine suspension on appetite and weight in overweight subjects. BMJ, 1993, 306(6885), 1091-1093.
[http://dx.doi.org/10.1136/bmj.306.6885.1091] [PMID: 8388285]
[69]
Støa-Birketvedt, G.; Paus, P.N.; Ganss, R.; Ingebretsen, O.C.; Florholmen, J. Cimetidine reduces weight and improves metabolic control in overweight patients with Type 2 diabetes. Int. J. Obes., 1998, 22(11), 1041-1045.
[http://dx.doi.org/10.1038/sj.ijo.0800721] [PMID: 9822940]
[70]
Xu, L.; Lin, W.; Zheng, Y.; Chen, J.; Fang, Z.; Tan, N.; Hu, W.; Guo, Y.; Wang, Y.; Chen, Z. An H2R-dependent medial septum histaminergic circuit mediates feeding behavior. Curr. Biol., 2022, 32(9), 1937-1948.e5.
[http://dx.doi.org/10.1016/j.cub.2022.03.010] [PMID: 35338850]
[71]
Sakata, T.; Fukagawa, K.; Ookuma, K.; Fujimoto, K.; Yoshimatsu, H.; Yamatodani, A.; Wada, H. Hypothalamic neuronal histamine modulates ad libitum feeding by rats. Brain Res., 1990, 537(1-2), 303-306.
[http://dx.doi.org/10.1016/0006-8993(90)90373-J] [PMID: 2085781]
[72]
Malmlöf, K.; Zaragoza, F.; Golozoubova, V.; Refsgaard, H.H.F.; Cremers, T.; Raun, K.; Wulff, B.S.; Johansen, P.B.; Westerink, B.; Rimvall, K. Influence of a selective histamine H3 receptor antagonist on hypothalamic neural activity, food intake and body weight. Int. J. Obes., 2005, 29(12), 1402-1412.
[http://dx.doi.org/10.1038/sj.ijo.0803036] [PMID: 16151415]
[73]
Malmlöf, K.; Golozoubova, V.; Peschke, B.; Wulff, B.S.; Refsgaard, H.H.F.; Johansen, P.B.; Cremers, T.; Rimvall, K. Increase of neuronal histamine in obese rats is associated with decreases in body weight and plasma triglycerides. Obesity (Silver Spring), 2006, 14(12), 2154-2162.
[http://dx.doi.org/10.1038/oby.2006.252] [PMID: 17189541]
[74]
Malmlöf, K.; Hastrup, S.; Wulff, B.S.; Hansen, B.C.; Peschke, B.; Jeppesen, C.B.; Hohlweg, R.; Rimvall, K. Antagonistic targeting of the histamine H3 receptor decreases caloric intake in higher mammalian species. Biochem. Pharmacol., 2007, 73(8), 1237-1242.
[http://dx.doi.org/10.1016/j.bcp.2007.01.034] [PMID: 17328868]
[75]
Itoh, E.; Fujimiya, M.; Inui, A. Thioperamide, a histamine H3 receptor antagonist, suppresses NPY-but not Dynorphin A-induced feeding in rats. Regul. Pept., 1998, 75-76, 373-376.
[http://dx.doi.org/10.1016/S0167-0115(98)00090-1] [PMID: 9802431]
[76]
Itoh, E.; Fujimiya, M.; Inui, A. Thioperamide, a histamine H3 receptor antagonist, powerfully suppresses peptide YY-induced food intake in rats. Biol. Psychiatry, 1999, 45(4), 475-481.
[http://dx.doi.org/10.1016/S0006-3223(98)00044-4] [PMID: 10071721]
[77]
Henry, M.B.; Zheng, S.; Duan, C.; Patel, B.; Vassileva, G.; Sondey, C.; Lachowicz, J.; Hwa, J.J. Antidiabetic properties of the histamine H3 receptor protean agonist proxyfan. Endocrinology, 2011, 152(3), 828-835.
[http://dx.doi.org/10.1210/en.2010-0757] [PMID: 21239440]
[78]
Tokita, S.; Takahashi, K.; Kotani, H. Recent advances in molecular pharmacology of the histamine systems: Physiology and pharmacology of histamine H3 receptor: Roles in feeding regulation and therapeutic potential for metabolic disorders. J. Pharmacol. Sci., 2006, 101(1), 12-18.
[http://dx.doi.org/10.1254/jphs.FMJ06001X4] [PMID: 16648667]
[79]
Thurmond, R.L. The histamine H4 receptor: From orphan to the clinic. Front. Pharmacol., 2015, 6, 65.
[http://dx.doi.org/10.3389/fphar.2015.00065] [PMID: 25873897]
[80]
Doi, T.; Sakata, T.; Yoshimatsu, H.; Machidori, H.; Kurokawa, M.; Jayasekara, L.A.L.W.; Niki, N. Hypothalamic neuronal histamine regulates feeding circadian rhythm in rats. Brain Res., 1994, 641(2), 311-318.
[http://dx.doi.org/10.1016/0006-8993(94)90160-0] [PMID: 8012834]
[81]
Abe, H.; Honma, S.; Ohtsu, H.; Honma, K. Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase. Brain Res. Mol. Brain Res., 2004, 124(2), 178-187.
[http://dx.doi.org/10.1016/j.molbrainres.2004.02.015] [PMID: 15135226]
[82]
Ishizuka, T.; Yamatodani, A. Integrative role of the histaminergic system in feeding and taste perception. Front. Syst. Neurosci., 2012, 6, 44.
[http://dx.doi.org/10.3389/fnsys.2012.00044] [PMID: 22654740]
[83]
Itoh, Y.; Oishi, R.; Saeki, K. Feeding-induced increase in the extracellular concentration of histamine in rat hypothalamus as measured by in vivo microdialysis. Neurosci. Lett., 1991, 125(2), 235-237.
[http://dx.doi.org/10.1016/0304-3940(91)90037-T] [PMID: 1881601]
[84]
Valdés, J.L.; Sánchez, C.; Riveros, M.E.; Blandina, P.; Contreras, M.; Farías, P.; Torrealba, F. The histaminergic tuberomammillary nucleus is critical for motivated arousal. Eur. J. Neurosci., 2010, 31(11), 2073-2085.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07241.x] [PMID: 20529118]
[85]
Inzunza, O.; Serón-Ferré, M.J.; Bravo, H.; Torrealba, F. Tuberomammillary nucleus activation anticipates feeding under a restricted schedule in rats. Neurosci. Lett., 2000, 293(2), 139-142.
[http://dx.doi.org/10.1016/S0304-3940(00)01516-0] [PMID: 11027853]
[86]
Meynard, M.; Valdés, J.; Recabarren, M.; Serónferré, M.; Torrealba, F. Specific activation of histaminergic neurons during daily feeding anticipatory behavior in rats. Behav. Brain Res., 2005, 158(2), 311-319.
[http://dx.doi.org/10.1016/j.bbr.2004.09.010] [PMID: 15698898]
[87]
Umehara, H.; Mizuguchi, H.; Mizukawa, N.; Matsumoto, M.; Takeda, N.; Senba, E.; Fukui, H. Deprivation of anticipated food under scheduled feeding induces c-Fos expression in the caudal part of the arcuate nucleus of hypothalamus through histamine H1 receptors in rats: Potential involvement of E3 subgroup of histaminergic neurons in tuberomammillary nucleus. Brain Res., 2011, 1387, 61-70.
[http://dx.doi.org/10.1016/j.brainres.2011.02.018] [PMID: 21320473]
[88]
Poyurovsky, M.; Fuchs, C.; Pashinian, A.; Levi, A.; Weizman, R.; Weizman, A. Reducing antipsychotic-induced weight gain in schizophrenia: A double-blind placebo-controlled study of reboxetine–betahistine combination. Psychopharmacology (Berl.), 2013, 226(3), 615-622.
[http://dx.doi.org/10.1007/s00213-012-2935-2] [PMID: 23239133]
[89]
Barak, N.; Beck, Y.; Albeck, J.H. Betahistine decreases olanzapine-induced weight gain and somnolence in humans. J. Psychopharmacol., 2016, 30(3), 237-241.
[http://dx.doi.org/10.1177/0269881115626349] [PMID: 26839321]
[90]
Barak, N.; Greenway, F.L.; Fujioka, K.; Aronne, L.J.; Kushner, R.F. Effect of histaminergic manipulation on weight in obese adults: A randomized placebo controlled trial. Int. J. Obes., 2008, 32(10), 1559-1565.
[http://dx.doi.org/10.1038/ijo.2008.135] [PMID: 18698316]
[91]
Raveendran, V.V.; Kassel, K.M.; Smith, D.D.; Luyendyk, J.P.; Williams, K.J.; Cherian, R.; Reed, G.A.; Flynn, C.A.; Csanaky, I.L.; Lickteig, A.L.; Pratt-Hyatt, M.J.; Klaassen, C.D.; Dileepan, K.N. H1-antihistamines exacerbate high-fat diet-induced hepatic steatosis in wild-type but not in apolipoprotein E knockout mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307(2), G219-G228.
[http://dx.doi.org/10.1152/ajpgi.00027.2014] [PMID: 24852568]
[92]
Hancock, A.A.; Bennani, Y.L.; Bush, E.N.; Esbenshade, T.A.; Faghih, R.; Fox, G.B.; Jacobson, P.; Knourek-Segel, V.; Krueger, K.M.; Nuss, M.E.; Pan, J.B.; Shapiro, R.; Witte, D.G.; Yao, B.B. Antiobesity effects of A-331440, a novel non-imidazole histamine H3 receptor antagonist. Eur. J. Pharmacol., 2004, 487(1-3), 183-197.
[http://dx.doi.org/10.1016/j.ejphar.2004.01.015] [PMID: 15033391]
[93]
Pierson, P.D.; Fettes, A.; Freichel, C.; Gatti-McArthur, S.; Hertel, C.; Huwyler, J.; Mohr, P.; Nakagawa, T.; Nettekoven, M.; Plancher, J.M.; Raab, S.; Richter, H.; Roche, O.; Rodríguez Sarmiento, R.M.; Schmitt, M.; Schuler, F.; Takahashi, T.; Taylor, S.; Ullmer, C.; Wiegand, R. 5-hydroxyindole-2-carboxylic acid amides: Novel histamine-3 receptor inverse agonists for the treatment of obesity. J. Med. Chem., 2009, 52(13), 3855-3868.
[http://dx.doi.org/10.1021/jm900409x] [PMID: 19456097]
[94]
Ericson, H.; Watanabe, T.; Köhler, C. Morphological analysis of the tuberomammmillary nucleus in the rat brain: Delineation of subgroups with antibody again L-histidine decarboxylase as a marker. J. Comp. Neurol., 1987, 263(1), 1-24.
[http://dx.doi.org/10.1002/cne.902630102] [PMID: 2822770]
[95]
Miklós, I.H.; Kovács, K.J. Functional heterogeneity of the responses of histaminergic neuron subpopulations to various stress challenges. Eur. J. Neurosci., 2003, 18(11), 3069-3079.
[http://dx.doi.org/10.1111/j.1460-9568.2003.03033.x] [PMID: 14656302]
[96]
Panula, P.; Nuutinen, S. The histaminergic network in the brain: Basic organization and role in disease. Nat. Rev. Neurosci., 2013, 14(7), 472-487.
[http://dx.doi.org/10.1038/nrn3526] [PMID: 23783198]
[97]
Medhurst, A.D.; Atkins, A.R.; Beresford, I.J.; Brackenborough, K.; Briggs, M.A.; Calver, A.R.; Cilia, J.; Cluderay, J.E.; Crook, B.; Davis, J.B.; Davis, R.K.; Davis, R.P.; Dawson, L.A.; Foley, A.G.; Gartlon, J.; Gonzalez, M.I.; Heslop, T.; Hirst, W.D.; Jennings, C.; Jones, D.N.C.; Lacroix, L.P.; Martyn, A.; Ociepka, S.; Ray, A.; Regan, C.M.; Roberts, J.C.; Schogger, J.; Southam, E.; Stean, T.O.; Trail, B.K.; Upton, N.; Wadsworth, G.; Wald, J.A.; White, T.; Witherington, J.; Woolley, M.L.; Worby, A.; Wilson, D.M. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer’s disease brain and improves cognitive performance in preclinical models. J. Pharmacol. Exp. Ther., 2007, 321(3), 1032-1045.
[http://dx.doi.org/10.1124/jpet.107.120311] [PMID: 17327487]
[98]
Giannoni, P.; Passani, M.B.; Nosi, D.; Chazot, P.L.; Shenton, F.C.; Medhurst, A.D.; Munari, L.; Blandina, P. Heterogeneity of histaminergic neurons in the tuberomammillary nucleus of the rat. Eur. J. Neurosci., 2009, 29(12), 2363-2374.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06765.x] [PMID: 19490084]
[99]
Giannoni, P.; Medhurst, A.D.; Passani, M.B.; Giovannini, M.G.; Ballini, C.; Corte, L.D.; Blandina, P. Regional differential effects of the novel histamine H3 receptor antagonist 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridine- carboxamide hydrochloride (GSK189254) on histamine release in the central nervous system of freely moving rats. J. Pharmacol. Exp. Ther., 2010, 332(1), 164-172.
[http://dx.doi.org/10.1124/jpet.109.158444] [PMID: 19815811]
[100]
Sakata, T.; Ookuma, K.; Fukagawa, K.; Fujimoto, K.; Yoshimatsu, H.; Shiraishi, T.; Wada, H. Blockade of the histamine H1-receptor in the rat ventromedial hypothalamus and feeding elicitation. Brain Res., 1988, 441(1-2), 403-407.
[http://dx.doi.org/10.1016/0006-8993(88)91423-0] [PMID: 3359243]
[101]
Sakata, T.; Fukagawa, K.; Ookuma, K.; Fujimoto, K.; Yoshimatsu, H.; Yamatodani, A.; Wada, H. Modulation of neuronal histamine in control of food intake. Physiol. Behav., 1988, 44(4-5), 539-543.
[http://dx.doi.org/10.1016/0031-9384(88)90316-2] [PMID: 3237844]
[102]
Ookuma, K.; Yoshimatsu, H.; Sakata, T.; Fujimoto, K.; Fukagawa, K. Hypothalamic sites of neuronal histamine action on food intake by rats. Brain Res., 1989, 490(2), 268-275.
[http://dx.doi.org/10.1016/0006-8993(89)90244-8] [PMID: 2765863]
[103]
Morton, G.J.; Cummings, D.E.; Baskin, D.G.; Barsh, G.S.; Schwartz, M.W. Central nervous system control of food intake and body weight. Nature, 2006, 443(7109), 289-295.
[http://dx.doi.org/10.1038/nature05026] [PMID: 16988703]
[104]
Gao, Q.; Horvath, T.L. Neurobiology of feeding and energy expenditure. Annu. Rev. Neurosci., 2007, 30(1), 367-398.
[http://dx.doi.org/10.1146/annurev.neuro.30.051606.094324] [PMID: 17506645]
[105]
Stuber, G.D.; Wise, R.A. Lateral hypothalamic circuits for feeding and reward. Nat. Neurosci., 2016, 19(2), 198-205.
[http://dx.doi.org/10.1038/nn.4220] [PMID: 26814589]
[106]
Wang, Y.; Kim, J.; Schmit, M.B.; Cho, T.S.; Fang, C.; Cai, H. A bed nucleus of stria terminalis microcircuit regulating inflammation-associated modulation of feeding. Nat. Commun., 2019, 10(1), 2769.
[http://dx.doi.org/10.1038/s41467-019-10715-x] [PMID: 31235690]
[107]
Zhao, Z.; Chen, Z.; Xiang, X.; Hu, M.; Xie, H.; Jia, X.; Cai, F.; Cui, Y.; Chen, Z.; Qian, L.; Liu, J.; Shang, C.; Yang, Y.; Ni, X.; Sun, W.; Hu, J.; Cao, P.; Li, H.; Shen, W.L. Zona incerta GABAergic neurons integrate prey-related sensory signals and induce an appetitive drive to promote hunting. Nat. Neurosci., 2019, 22(6), 921-932.
[http://dx.doi.org/10.1038/s41593-019-0404-5] [PMID: 31127258]
[108]
Luo, S.X.; Huang, J.; Li, Q.; Mohammad, H.; Lee, C.Y.; Krishna, K.; Kok, A.M.Y.; Tan, Y.L.; Lim, J.Y.; Li, H.; Yeow, L.Y.; Sun, J.; He, M.; Grandjean, J.; Sajikumar, S.; Han, W.; Fu, Y. Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science, 2018, 361(6397), 76-81.
[http://dx.doi.org/10.1126/science.aar4983] [PMID: 29976824]
[109]
Petrovich, G.D. Feeding behavior survival circuit: Anticipation & competition. Curr. Opin. Behav. Sci., 2018, 24, 137-142.
[http://dx.doi.org/10.1016/j.cobeha.2018.09.007] [PMID: 31086808]
[110]
Sternson, S.M.; Eiselt, A.K. Three pillars for the neural control of appetite. Annu. Rev. Physiol., 2017, 79(1), 401-423.
[http://dx.doi.org/10.1146/annurev-physiol-021115-104948] [PMID: 27912679]
[111]
Krashes, M.J.; Koda, S.; Ye, C.; Rogan, S.C.; Adams, A.C.; Cusher, D.S.; Maratos-Flier, E.; Roth, B.L.; Lowell, B.B. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest., 2011, 121(4), 1424-1428.
[http://dx.doi.org/10.1172/JCI46229] [PMID: 21364278]
[112]
Luquet, S.; Perez, F.A.; Hnasko, T.S.; Palmiter, R.D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science, 2005, 310(5748), 683-685.
[http://dx.doi.org/10.1126/science.1115524]
[113]
Aponte, Y.; Atasoy, D.; Sternson, S.M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci., 2011, 14(3), 351-355.
[http://dx.doi.org/10.1038/nn.2739] [PMID: 21209617]
[114]
Livneh, Y.; Ramesh, R.N.; Burgess, C.R.; Levandowski, K.M.; Madara, J.C.; Fenselau, H.; Goldey, G.J.; Diaz, V.E.; Jikomes, N.; Resch, J.M.; Lowell, B.B.; Andermann, M.L. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature, 2017, 546(7660), 611-616.
[http://dx.doi.org/10.1038/nature22375] [PMID: 28614299]
[115]
Scott, M.M.; Williams, K.W.; Rossi, J.; Lee, C.E.; Elmquist, J.K. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J. Clin. Invest., 2011, 121(6), 2413-2421.
[http://dx.doi.org/10.1172/JCI43703] [PMID: 21606595]
[116]
Zhan, C.; Zhou, J.; Feng, Q.; Zhang, J.; Lin, S.; Bao, J.; Wu, P.; Luo, M. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci., 2013, 33(8), 3624-3632.
[http://dx.doi.org/10.1523/JNEUROSCI.2742-12.2013] [PMID: 23426689]
[117]
Garfield, A.S.; Li, C.; Madara, J.C.; Shah, B.P.; Webber, E.; Steger, J.S.; Campbell, J.N.; Gavrilova, O.; Lee, C.E.; Olson, D.P.; Elmquist, J.K.; Tannous, B.A.; Krashes, M.J.; Lowell, B.B. A neural basis for melanocortin-4 receptor–regulated appetite. Nat. Neurosci., 2015, 18(6), 863-871.
[http://dx.doi.org/10.1038/nn.4011] [PMID: 25915476]
[118]
Essner, R.A.; Smith, A.G.; Jamnik, A.A.; Ryba, A.R.; Trutner, Z.D.; Carter, M.E. AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons. J. Neurosci., 2017, 37(36), 8678-8687.
[http://dx.doi.org/10.1523/JNEUROSCI.0798-17.2017] [PMID: 28821663]
[119]
Qiu, J.; Rivera, H.M.; Bosch, M.A.; Padilla, S.L.; Stincic, T.L.; Palmiter, R.D.; Kelly, M.J.; Rønnekleiv, O.K. Estrogenic-dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females. eLife, 2018, 7, e35656.
[http://dx.doi.org/10.7554/eLife.35656] [PMID: 30079889]
[120]
Wei, Q.; Krolewski, D.M.; Moore, S.; Kumar, V.; Li, F.; Martin, B.; Tomer, R.; Murphy, G.G.; Deisseroth, K.; Watson, S.J., Jr; Akil, H. Uneven balance of power between hypothalamic peptidergic neurons in the control of feeding. Proc. Natl. Acad. Sci. USA, 2018, 115(40), E9489-E9498.
[http://dx.doi.org/10.1073/pnas.1802237115] [PMID: 30224492]
[121]
Bouret, S.G.; Draper, S.J.; Simerly, R.B. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci., 2004, 24(11), 2797-2805.
[http://dx.doi.org/10.1523/JNEUROSCI.5369-03.2004] [PMID: 15028773]
[122]
Minokoshi, Y.; Alquier, T.; Furukawa, N.; Kim, Y.B.; Lee, A.; Xue, B.; Mu, J.; Foufelle, F.; Ferré, P.; Birnbaum, M.J.; Stuck, B.J.; Kahn, B.B. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 2004, 428(6982), 569-574.
[http://dx.doi.org/10.1038/nature02440] [PMID: 15058305]
[123]
Taylor, J.E.; Richelson, E. High affinity binding of tricyclic antidepressants to histamine H1-receptors: Fact and artifact. Eur. J. Pharmacol., 1980, 67(1), 41-46.
[http://dx.doi.org/10.1016/0014-2999(80)90006-0] [PMID: 6106553]
[124]
Ookuma, K.; Sakata, T.; Fujimoto, K. Evidence for feeding elicited through antihistaminergic effects of tricyclic antidepressants in the rat hypothalamus. Psychopharmacology (Berl.), 1990, 101(4), 481-485.
[http://dx.doi.org/10.1007/BF02244225] [PMID: 1975106]
[125]
Kim, S.F.; Huang, A.S.; Snowman, A.M.; Teuscher, C.; Snyder, S.H. Antipsychotic drug-induced weight gain mediated by histamine H 1 receptor-linked activation of hypothalamic AMP-kinase. Proc. Natl. Acad. Sci. USA, 2007, 104(9), 3456-3459.
[http://dx.doi.org/10.1073/pnas.0611417104] [PMID: 17360666]
[126]
Morimoto, T.; Yamamoto, Y.; Yamatodani, A. Brain histamine and feeding behavior. Behav. Brain Res., 2001, 124(2), 145-150.
[http://dx.doi.org/10.1016/S0166-4328(01)00225-X] [PMID: 11640967]
[127]
Tuomisto, J.; Männistö, P. Neurotransmitter regulation of anterior pituitary hormones. Pharmacol. Rev., 1985, 37(3), 249-332.
[PMID: 2869509]
[128]
Wu, Z.; Kim, E.R.; Sun, H.; Xu, Y.; Mangieri, L.R.; Li, D.P.; Pan, H.L.; Xu, Y.; Arenkiel, B.R.; Tong, Q. GABAergic projections from lateral hypothalamus to paraventricular hypothalamic nucleus promote feeding. J. Neurosci., 2015, 35(8), 3312-3318.
[http://dx.doi.org/10.1523/JNEUROSCI.3720-14.2015] [PMID: 25716832]
[129]
Stamatakis, A.M.; Van Swieten, M.; Basiri, M.L.; Blair, G.A.; Kantak, P.; Stuber, G.D. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. J. Neurosci., 2016, 36(2), 302-311.
[http://dx.doi.org/10.1523/JNEUROSCI.1202-15.2016] [PMID: 26758824]
[130]
Mangieri, L.R.; Lu, Y.; Xu, Y.; Cassidy, R.M.; Xu, Y.; Arenkiel, B.R.; Tong, Q. A neural basis for antagonistic control of feeding and compulsive behaviors. Nat. Commun., 2018, 9(1), 52.
[http://dx.doi.org/10.1038/s41467-017-02534-9] [PMID: 29302029]
[131]
Kita, H.; Oomura, Y. Reciprocal connections between the lateral hypothalamus and the frontal cortex in the rat: Electrophysiological and anatomical observations. Brain Res., 1981, 213(1), 1-16.
[http://dx.doi.org/10.1016/0006-8993(81)91244-0] [PMID: 6165439]
[132]
Lin, J.S.; Sakai, K.; Jouvet, M. Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology, 1988, 27(2), 111-122.
[http://dx.doi.org/10.1016/0028-3908(88)90159-1] [PMID: 2965315]
[133]
Anthony, T.E.; Dee, N.; Bernard, A.; Lerchner, W.; Heintz, N.; Anderson, D.J. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell, 2014, 156(3), 522-536.
[http://dx.doi.org/10.1016/j.cell.2013.12.040] [PMID: 24485458]
[134]
Sakurai, T. The neural circuit of orexin (hypocretin): Maintaining sleep and wakefulness. Nat. Rev. Neurosci., 2007, 8(3), 171-181.
[http://dx.doi.org/10.1038/nrn2092] [PMID: 17299454]
[135]
Yao, L.; Ramirez, A.D.; Roecker, A.J.; Fox, S.V.; Uslaner, J.M.; Smith, S.M.; Hodgson, R.; Coleman, P.J.; Renger, J.J.; Winrow, C.J.; Gotter, A.L. The dual orexin receptor antagonist, DORA-22, lowers histamine levels in the lateral hypothalamus and prefrontal cortex without lowering hippocampal acetylcholine. J. Neurochem., 2017, 142(2), 204-214.
[http://dx.doi.org/10.1111/jnc.14055] [PMID: 28444767]
[136]
Jones, B.E.; Moore, R.Y. Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res., 1977, 127(1), 23-53.
[http://dx.doi.org/10.1016/0006-8993(77)90378-X] [PMID: 301051]
[137]
Moore, R.Y.; Halaris, A.E.; Jones, B.E. Serotonin neurons of the midbrain raphe: Ascending projections. J. Comp. Neurol., 1978, 180(3), 417-438.
[http://dx.doi.org/10.1002/cne.901800302] [PMID: 77865]
[138]
Eriksson, K.S.; Sergeeva, O.; Brown, R.E.; Haas, H.L. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J. Neurosci., 2001, 21(23), 9273-9279.
[http://dx.doi.org/10.1523/JNEUROSCI.21-23-09273.2001] [PMID: 11717361]
[139]
Li, Y.; Gao, X.B.; Sakurai, T.; van den Pol, A.N. Hypocretin/] Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron, 2002, 36(6), 1169-1181.
[http://dx.doi.org/10.1016/S0896-6273(02)01132-7] [PMID: 12495630]
[140]
Zeltser, L.M. Feeding circuit development and early-life influences on future feeding behaviour. Nat. Rev. Neurosci., 2018, 19(5), 302-316.
[http://dx.doi.org/10.1038/nrn.2018.23] [PMID: 29662204]
[141]
Betley, J.N.; Cao, Z.F.H.; Ritola, K.D.; Sternson, S.M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell, 2013, 155(6), 1337-1350.
[http://dx.doi.org/10.1016/j.cell.2013.11.002] [PMID: 24315102]
[142]
Chen, Y.; Lin, Y.C.; Zimmerman, C.A.; Essner, R.A.; Knight, Z.A. Hunger neurons drive feeding through a sustained, positive reinforcement signal. eLife, 2016, 5, e18640.
[http://dx.doi.org/10.7554/eLife.18640] [PMID: 27554486]
[143]
Jennings, J.H.; Rizzi, G.; Stamatakis, A.M.; Ung, R.L.; Stuber, G.D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science, 2013, 341(6153), 1517-1521.
[http://dx.doi.org/10.1126/science.1241812]
[144]
Cumming, P.; Damsma, G.; Fibiger, H.C.; Vincent, S.R. Characterization of extracellular histamine in the striatum and bed nucleus of the stria terminalis of the rat: An in vivo microdialysis study. J. Neurochem., 1991, 56(5), 1797-1803.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb02083.x] [PMID: 1707442]
[145]
Schneeberger, M.; Gomis, R.; Claret, M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J. Endocrinol., 2014, 220(2), T25-T46.
[http://dx.doi.org/10.1530/JOE-13-0398] [PMID: 24222039]
[146]
King, B.M. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol. Behav., 2006, 87(2), 221-244.
[http://dx.doi.org/10.1016/j.physbeh.2005.10.007] [PMID: 16412483]
[147]
Choi, Y.H.; Fujikawa, T.; Lee, J.; Reuter, A.; Kim, K.W. Revisiting the ventral medial nucleus of the hypothalamus: The roles of SF-1 neurons in energy homeostasis. Front. Neurosci., 2013, 7, 71.
[http://dx.doi.org/10.3389/fnins.2013.00071] [PMID: 23675313]
[148]
Mieda, M.; Williams, S.C.; Richardson, J.A.; Tanaka, K.; Yanagisawa, M. The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc. Natl. Acad. Sci. USA, 2006, 103(32), 12150-12155.
[http://dx.doi.org/10.1073/pnas.0604189103] [PMID: 16880388]
[149]
Gooley, J.J.; Schomer, A.; Saper, C.B. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat. Neurosci., 2006, 9(3), 398-407.
[http://dx.doi.org/10.1038/nn1651] [PMID: 16491082]
[150]
Garfield, A.S.; Shah, B.P.; Burgess, C.R.; Li, M.M.; Li, C.; Steger, J.S.; Madara, J.C.; Campbell, J.N.; Kroeger, D.; Scammell, T.E.; Tannous, B.A.; Myers, M.G., Jr; Andermann, M.L.; Krashes, M.J.; Lowell, B.B. Dynamic GABAergic afferent modulation of AgRP neurons. Nat. Neurosci., 2016, 19(12), 1628-1635.
[http://dx.doi.org/10.1038/nn.4392] [PMID: 27643429]
[151]
Otgon-Uul, Z.; Suyama, S.; Onodera, H.; Yada, T. Optogenetic activation of leptin- and glucose-regulated GABAergic neurons in dorsomedial hypothalamus promotes food intake via inhibitory synaptic transmission to paraventricular nucleus of hypothalamus. Mol. Metab., 2016, 5(8), 709-715.
[http://dx.doi.org/10.1016/j.molmet.2016.06.010] [PMID: 27656408]
[152]
Jeong, J.H.; Lee, D.K.; Jo, Y.H. Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Mol. Metab., 2017, 6(3), 306-312.
[http://dx.doi.org/10.1016/j.molmet.2017.01.001] [PMID: 28271037]
[153]
Angeles-Castellanos, M.; Aguilar-Roblero, R.; Escobar, C. c-Fos expression in hypothalamic nuclei of food-entrained rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 286(1), R158-R165.
[http://dx.doi.org/10.1152/ajpregu.00216.2003] [PMID: 12933360]
[154]
Fukagawa, K.; Sakata, T.; Shiraishi, T.; Yoshimatsu, H.; Fujimoto, K.; Ookuma, K.; Wada, H. Neuronal histamine modulates feeding behavior through H1-receptor in rat hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol., 1989, 256(3), R605-R611.
[http://dx.doi.org/10.1152/ajpregu.1989.256.3.R605] [PMID: 2564258]
[155]
Chou, T.C.; Scammell, T.E.; Gooley, J.J.; Gaus, S.E.; Saper, C.B.; Lu, J. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci., 2003, 23(33), 10691-10702.
[http://dx.doi.org/10.1523/JNEUROSCI.23-33-10691.2003] [PMID: 14627654]
[156]
Bernardis, L.L.; Bellinger, L.L. The dorsomedial hypothalamic nucleus revisited: 1986 update. Brain Res. Brain Res. Rev., 1987, 12(3), 321-381.
[http://dx.doi.org/10.1016/0165-0173(87)90004-X] [PMID: 3300862]
[157]
Sutton, A.K.; Myers, M.G., Jr; Olson, D.P. The role of PVH circuits in leptin action and energy balance. Annu. Rev. Physiol., 2016, 78(1), 207-221.
[http://dx.doi.org/10.1146/annurev-physiol-021115-105347] [PMID: 26863324]
[158]
Shorposner, G.; Azar, A.; Insinga, S.; Leibowitz, S. Deficits in the control of food intake after hypothalamic paraventricular nucleus lesions. Physiol. Behav., 1985, 35(6), 883-890.
[http://dx.doi.org/10.1016/0031-9384(85)90255-0] [PMID: 3006098]
[159]
Leibowitz, S.F.; Hammer, N.J.; Chang, K. Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. Physiol. Behav., 1981, 27(6), 1031-1040.
[http://dx.doi.org/10.1016/0031-9384(81)90366-8] [PMID: 7335803]
[160]
Sims, J.S.; Lorden, J.F. Effect of paraventricular nucleus lesions on body weight, food intake and insulin levels. Behav. Brain Res., 1986, 22(3), 265-281.
[http://dx.doi.org/10.1016/0166-4328(86)90071-9] [PMID: 3098259]
[161]
Balthasar, N.; Dalgaard, L.T.; Lee, C.E.; Yu, J.; Funahashi, H.; Williams, T.; Ferreira, M.; Tang, V.; McGovern, R.A.; Kenny, C.D.; Christiansen, L.M.; Edelstein, E.; Choi, B.; Boss, O.; Aschkenasi, C.; Zhang, C.; Mountjoy, K.; Kishi, T.; Elmquist, J.K.; Lowell, B.B. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell, 2005, 123(3), 493-505.
[http://dx.doi.org/10.1016/j.cell.2005.08.035] [PMID: 16269339]
[162]
Huszar, D.; Lynch, C.A.; Fairchild-Huntress, V.; Dunmore, J.H.; Fang, Q.; Berkemeier, L.R.; Gu, W.; Kesterson, R.A.; Boston, B.A.; Cone, R.D.; Smith, F.J.; Campfield, L.A.; Burn, P.; Lee, F. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell, 1997, 88(1), 131-141.
[http://dx.doi.org/10.1016/S0092-8674(00)81865-6] [PMID: 9019399]
[163]
Vaisse, C.; Clement, K.; Guy-Grand, B.; Froguel, P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet., 1998, 20(2), 113-114.
[http://dx.doi.org/10.1038/2407] [PMID: 9771699]
[164]
Stachniak, T.J.; Ghosh, A.; Sternson, S.M. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron, 2014, 82(4), 797-808.
[http://dx.doi.org/10.1016/j.neuron.2014.04.008] [PMID: 24768300]
[165]
Krashes, M.J.; Shah, B.P.; Madara, J.C.; Olson, D.P.; Strochlic, D.E.; Garfield, A.S.; Vong, L.; Pei, H.; Watabe-Uchida, M.; Uchida, N.; Liberles, S.D.; Lowell, B.B. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature, 2014, 507(7491), 238-242.
[http://dx.doi.org/10.1038/nature12956] [PMID: 24487620]
[166]
Orthen-Gambill, N. Antihistaminic drugs increase feeding, while histidine suppresses feeding in rats. Pharmacol. Biochem. Behav., 1988, 31(1), 81-86.
[http://dx.doi.org/10.1016/0091-3057(88)90315-2] [PMID: 2908065]
[167]
Orthen-Gambill, N.; Salomon, M. Differential effects of psychotropic drugs on feeding in rats: Is histamine blockade involved? Pharmacol. Biochem. Behav., 1990, 36(4), 837-841.
[http://dx.doi.org/10.1016/0091-3057(90)90086-W] [PMID: 2217511]
[168]
Toftegaard, C.L.; Knigge, U.; Kjær, A.; Warberg, J. The role of hypothalamic histamine in leptin-induced suppression of short-term food intake in fasted rats. Regul. Pept., 2003, 111(1-3), 83-90.
[http://dx.doi.org/10.1016/S0167-0115(02)00260-4] [PMID: 12609753]
[169]
Jørgensen, E.A.; Knigge, U.; Watanabe, T.; Warberg, J.; Kjaer, A. Histaminergic neurons are involved in the orexigenic effect of orexin-A. Neuroendocrinology, 2005, 82(2), 70-77.
[http://dx.doi.org/10.1159/000090982] [PMID: 16415597]
[170]
Gotoh, K.; Fukagawa, K.; Fukagawa, T.; Noguchi, H.; Kakuma, T.; Sakata, T.; Yoshimatsu, H. Glucagon‐like peptide‐1, corticotropin‐releasing hormone, and hypothalamic neuronal histamine interact in the leptin‐signaling pathway to regulate feeding behavior. FASEB J., 2005, 19(9), 1131-1133.
[http://dx.doi.org/10.1096/fj.04-2384fje] [PMID: 15894564]
[171]
Herman, A.M.; Ortiz-Guzman, J.; Kochukov, M.; Herman, I.; Quast, K.B.; Patel, J.M.; Tepe, B.; Carlson, J.C.; Ung, K.; Selever, J.; Tong, Q.; Arenkiel, B.R. A cholinergic basal forebrain feeding circuit modulates appetite suppression. Nature, 2016, 538(7624), 253-256.
[http://dx.doi.org/10.1038/nature19789] [PMID: 27698417]
[172]
Sweeney, P.; Yang, Y. An inhibitory septum to lateral hypothalamus circuit that suppresses feeding. J. Neurosci., 2016, 36(44), 11185-11195.
[http://dx.doi.org/10.1523/JNEUROSCI.2042-16.2016] [PMID: 27807162]
[173]
Zhang, Y.; Jiang, Y.Y.; Shao, S.; Zhang, C.; Liu, F.Y.; Wan, Y.; Yi, M. Inhibiting medial septal cholinergic neurons with DREADD alleviated anxiety-like behaviors in mice. Neurosci. Lett., 2017, 638, 139-144.
[http://dx.doi.org/10.1016/j.neulet.2016.12.010] [PMID: 27939976]
[174]
Sweeney, P.; Li, C.; Yang, Y. Appetite suppressive role of medial septal glutamatergic neurons. Proc. Natl. Acad. Sci. USA, 2017, 114(52), 13816-13821.
[http://dx.doi.org/10.1073/pnas.1707228114] [PMID: 29229861]
[175]
Tabarean, I.V. Histamine receptor signaling in energy homeostasis. Neuropharmacology, 2016, 106, 13-19.
[http://dx.doi.org/10.1016/j.neuropharm.2015.04.011] [PMID: 26107117]
[176]
Boyden, E.S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci., 2005, 8(9), 1263-1268.
[http://dx.doi.org/10.1038/nn1525] [PMID: 16116447]
[177]
Feng, G.; Mellor, R.H.; Bernstein, M.; Keller-Peck, C.; Nguyen, Q.T.; Wallace, M.; Nerbonne, J.M.; Lichtman, J.W.; Sanes, J.R. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron, 2000, 28(1), 41-51.
[http://dx.doi.org/10.1016/S0896-6273(00)00084-2] [PMID: 11086982]
[178]
Zong, H.; Espinosa, J.S.; Su, H.H.; Muzumdar, M.D.; Luo, L. Mosaic analysis with double markers in mice. Cell, 2005, 121(3), 479-492.
[http://dx.doi.org/10.1016/j.cell.2005.02.012] [PMID: 15882628]
[179]
Chung, K.; Wallace, J.; Kim, S.Y.; Kalyanasundaram, S.; Andalman, A.S.; Davidson, T.J.; Mirzabekov, J.J.; Zalocusky, K.A.; Mattis, J.; Denisin, A.K.; Pak, S.; Bernstein, H.; Ramakrishnan, C.; Grosenick, L.; Gradinaru, V.; Deisseroth, K. Structural and molecular interrogation of intact biological systems. Nature, 2013, 497(7449), 332-337.
[http://dx.doi.org/10.1038/nature12107] [PMID: 23575631]
[180]
Zecharia, A.Y.; Yu, X.; Götz, T.; Ye, Z.; Carr, D.R.; Wulff, P.; Bettler, B.; Vyssotski, A.L.; Brickley, S.G.; Franks, N.P.; Wisden, W. GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J. Neurosci., 2012, 32(38), 13062-13075.
[http://dx.doi.org/10.1523/JNEUROSCI.2931-12.2012] [PMID: 22993424]
[181]
Zhang, X.Y.; Peng, S.Y.; Shen, L.P.; Zhuang, Q.X.; Li, B.; Xie, S.T.; Li, Q.X.; Shi, M.R.; Ma, T.Y.; Zhang, Q.; Wang, J.J.; Zhu, J.N. Targeting presynaptic H3 heteroreceptor in nucleus accumbens to improve anxiety and obsessive-compulsive-like behaviors. Proc. Natl. Acad. Sci. USA, 2020, 117(50), 32155-32164.
[http://dx.doi.org/10.1073/pnas.2008456117] [PMID: 33257584]
[182]
Yu, X.; Ye, Z.; Houston, C.M.; Zecharia, A.Y.; Ma, Y.; Zhang, Z.; Uygun, D.S.; Parker, S.; Vyssotski, A.L.; Yustos, R.; Franks, N.P.; Brickley, S.G.; Wisden, W. Wakefulness is governed by GABA and histamine cotransmission. Neuron, 2015, 87(1), 164-178.
[http://dx.doi.org/10.1016/j.neuron.2015.06.003] [PMID: 26094607]
[183]
Silva, C.; McNaughton, N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog. Neurobiol., 2019, 177(January), 33-72.
[http://dx.doi.org/10.1016/j.pneurobio.2019.02.001] [PMID: 30786258]
[184]
Pollard, H.; Moreau, J.; Arrang, J.M.; Schwartz, J.C. A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience, 1993, 52(1), 169-189.
[http://dx.doi.org/10.1016/0306-4522(93)90191-H] [PMID: 8381924]
[185]
Santos, N.R.; Huston, J.P.; Brandão, M.L. Further evidence for the involvement of histamine H2 receptors in the control of defensive behaviour generated in the midbrain tectum. Behav. Pharmacol., 2002, 13(1), 73-80.
[http://dx.doi.org/10.1097/00008877-200202000-00007] [PMID: 11990721]
[186]
Santos, N.R.; Huston, J.P.; Brandão, M.L. Blockade of histamine H2 receptors of the periaqueductal gray and inferior colliculus induces fear-like behaviors. Pharmacol. Biochem. Behav., 2003, 75(1), 25-33.
[http://dx.doi.org/10.1016/S0091-3057(03)00033-9] [PMID: 12759110]
[187]
Santos, N.; Huston, J.P.; Brandão, M.L. Escape behavior under tonic inhibitory control of histamine H2-receptor mediated mechanisms in the midbrain tectum. Behav. Brain Res., 2001, 124(2), 167-175.
[http://dx.doi.org/10.1016/S0166-4328(01)00228-5] [PMID: 11640970]
[188]
Nalwalk, J.W.; Svokos, K.; Taraschenko, O.; Leurs, R.; Timmerman, H.; Hough, L.B. Activation of brain stem nuclei by improgan, a non-opioid analgesic. Brain Res., 2004, 1021(2), 248-255.
[http://dx.doi.org/10.1016/j.brainres.2004.06.066] [PMID: 15342273]
[189]
Thoburn, K.K.; Hough, L.B.; Nalwalk, J.W.; Mischler, S.A. Histamine-induced modulation of nociceptive responses. Pain, 1994, 58(1), 29-37.
[http://dx.doi.org/10.1016/0304-3959(94)90182-1] [PMID: 7970837]
[190]
Liao, R.; Jiang, L.; Wang, R.; Zhao, H.; Chen, Y.; Li, Y.; Wang, L.; Jie, L.Y.; Zhou, Y.; Zhang, X.; Chen, Z.; Hu, W. Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration. Sci. Rep., 2015, 5(1), 15356.
[http://dx.doi.org/10.1038/srep15356] [PMID: 26481857]
[191]
Liao, R.; Chen, Y.; Cheng, L.; Fan, L.; Chen, H.; Wan, Y.; You, Y.; Zheng, Y.; Jiang, L.; Chen, Z.; Zhang, X.; Hu, W. Histamine H1 receptors in neural stem cells are required for the promotion of neurogenesis conferred by H3 receptor antagonism following traumatic brain injury. Stem Cell Reports, 2019, 12(3), 532-544.
[http://dx.doi.org/10.1016/j.stemcr.2019.01.004] [PMID: 30745032]
[192]
Hösli, L.; Hösli, E.; Schneider, U.; Wiget, W. Evidence for the existence of histamine H1- and H2-receptors on astrocytes of cultured rat central nervous system. Neurosci. Lett., 1984, 48(3), 287-291.
[http://dx.doi.org/10.1016/0304-3940(84)90052-1] [PMID: 6148726]
[193]
Jurič, D.M.; Kržan, M.; Lipnik-Stangelj, M. Histamine and astrocyte function. Pharmacol. Res., 2016, 111, 774-783.
[http://dx.doi.org/10.1016/j.phrs.2016.07.035] [PMID: 27475882]
[194]
Inagaki, N.; Fukui, H.; Taguchi, Y.; Wang, N.P.; Yamatodani, A.; Wada, H. Characterization of histamine H1-receptors on astrocytes in primary culture: [3H]mepyramine binding studies. Eur. J. Pharmacol., 1989, 173(1), 43-51.
[http://dx.doi.org/10.1016/0014-2999(89)90007-1] [PMID: 2575040]
[195]
Xia, P.; Logiacco, F.; Huang, Y.; Kettenmann, H.; Semtner, M. Histamine triggers microglial responses indirectly via astrocytes and purinergic signaling. Glia, 2021, 69(9), 2291-2304.
[http://dx.doi.org/10.1002/glia.24039] [PMID: 34080730]
[196]
Jung, S.; Pfeiffer, F.; Deitmer, J.W. Histamine‐induced calcium entry in rat cerebellar astrocytes: Evidence for capacitative and non‐capacitative mechanisms. J. Physiol., 2000, 527(3), 549-561.
[http://dx.doi.org/10.1111/j.1469-7793.2000.00549.x] [PMID: 10990540]
[197]
Nakahata, N.; Martin, M.W.; Hughes, A.R.; Hepler, J.R.; Harden, T.K. H1-histamine receptors on human astrocytoma cells. Mol. Pharmacol., 1986, 29(2), 188-195.
[PMID: 2419744]
[198]
Kárpáti, A.; Yoshikawa, T.; Nakamura, T.; Iida, T.; Matsuzawa, T.; Kitano, H.; Harada, R.; Yanai, K. Histamine elicits glutamate release from cultured astrocytes. J. Pharmacol. Sci., 2018, 137(2), 122-128.
[http://dx.doi.org/10.1016/j.jphs.2018.05.002] [PMID: 29858014]
[199]
Jiang, L.; Cheng, L.; Chen, H.; Dai, H.; An, D.; Ma, Q.; Zheng, Y.; Zhang, X.; Hu, W.; Chen, Z. Histamine H2 receptor negatively regulates oligodendrocyte differentiation in neonatal hypoxic-ischemic white matter injury. J. Exp. Med., 2021, 218(1), e20191365.
[http://dx.doi.org/10.1084/jem.20191365] [PMID: 32991666]
[200]
Cheng, L.; Xu, C.; Wang, L.; An, D.; Jiang, L.; Zheng, Y.; Xu, Y.; Wang, Y.; Wang, Y.; Zhang, K.; Wang, X.; Zhang, X.; Bao, A.; Zhou, Y.; Yang, J.; Duan, S.; Swaab, D.F.; Hu, W.; Chen, Z. Histamine H1 receptor deletion in cholinergic neurons induces sensorimotor gating ability deficit and social impairments in mice. Nat. Commun., 2021, 12(1), 1142.
[http://dx.doi.org/10.1038/s41467-021-21476-x] [PMID: 33602941]
[201]
Toyota, H.; Dugovic, C.; Koehl, M.; Laposky, A.D.; Weber, C.; Ngo, K.; Wu, Y.; Lee, D.H.; Yanai, K.; Sakurai, E.; Watanabe, T.; Liu, C.; Chen, J.; Barbier, A.J.; Turek, F.W.; Fung-Leung, W.P.; Lovenberg, T.W. Behavioral characterization of mice lacking histamine H(3) receptors. Mol. Pharmacol., 2002, 62(2), 389-397.
[http://dx.doi.org/10.1124/mol.62.2.389] [PMID: 12130692]
[202]
Fülöp, A.K.; Földes, A.; Buzás, E.; Hegyi, K.; Miklós, I.H.; Romics, L.; Kleiber, M.; Nagy, A.; Falus, A.; Kovács, K.J. Hyperleptinemia, visceral adiposity, and decreased glucose tolerance in mice with a targeted disruption of the histidine decarboxylase gene. Endocrinology, 2003, 144(10), 4306-4314.
[http://dx.doi.org/10.1210/en.2003-0222] [PMID: 12960041]
[203]
Jørgensen, E.A.; Vogelsang, T.W.; Knigge, U.; Watanabe, T.; Warberg, J.; Kjaer, A. Increased susceptibility to diet-induced obesity in histamine-deficient mice. Neuroendocrinology, 2006, 83(5-6), 289-294.
[http://dx.doi.org/10.1159/000095339] [PMID: 16926531]
[204]
Parmentier, R.; Ohtsu, H.; Djebbara-Hannas, Z.; Valatx, J.L.; Watanabe, T.; Lin, J.S. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: Evidence for the role of brain histamine in behavioral and sleep-wake control. J. Neurosci., 2002, 22(17), 7695-7711.
[http://dx.doi.org/10.1523/JNEUROSCI.22-17-07695.2002] [PMID: 12196593]
[205]
Attoub, S.; Moizo, L.; Sobhani, I.; Laigneau, J.P.; Lewin, M.J.M.; Bado, A. The H3 receptor is involved in cholecystokinin inhibition of food intake in rats. Life Sci., 2001, 69(4), 469-478.
[http://dx.doi.org/10.1016/S0024-3205(01)01138-9] [PMID: 11459437]
[206]
Hancock, A.A.; Brune, M.E. Assessment of pharmacology and potential anti-obesity properties of H3 receptor antagonists/inverse agonists. Expert Opin. Investig. Drugs, 2005, 14(3), 223-241.
[http://dx.doi.org/10.1517/13543784.14.3.223] [PMID: 15833055]
[207]
Hancock, A.A.; Diehl, M.S.; Faghih, R.; Bush, E.N.; Krueger, K.M.; Krishna, G.; Miller, T.R.; Wilcox, D.M.; Nguyen, P.; Pratt, J.K.; Cowart, M.D.; Esbenshade, T.A.; Jacobson, P.B. In vitro optimization of structure activity relationships of analogues of A-331440 combining radioligand receptor binding assays and micronucleus assays of potential antiobesity histamine H3 receptor antagonists. Pharmacol. Toxicol., 2004, 95(3), 144-152.
[http://dx.doi.org/10.1111/j.1742-7843.2004.950307.x] [PMID: 15447739]
[208]
Kang, D.; Jing, Z.; Li, R.; Hei, G.; Shao, T.; Li, L.; Sun, M.; Yang, Y.; Wang, Y.; Wang, X.; Long, Y.; Huang, X.; Wu, R. Effect of betahistine and metformin on antipsychotic-induced weight gain: An analysis of two clinical trials. Front. Psychiatry, 2018, 9, 620.
[http://dx.doi.org/10.3389/fpsyt.2018.00620] [PMID: 30542300]
[209]
Mehta, V.S.; Ram, D. Efficacy of ranitidine in olanzapine-induced weight gain: A dose-response study. Early Interv. Psychiatry, 2016, 10(6), 522-527.
[http://dx.doi.org/10.1111/eip.12205] [PMID: 25529756]
[210]
Poyurovsky, M.; Tal, V.; Maayan, R.; Gil-Ad, I.; Fuchs, C.; Weizman, A. The effect of famotidine addition on olanzapine-induced weight gain in first-episode schizophrenia patients: A double-blind placebo-controlled pilot study. Eur. Neuropsychopharmacol., 2004, 14(4), 332-336.
[http://dx.doi.org/10.1016/j.euroneuro.2003.10.004] [PMID: 15163444]
[211]
Atmaca, M.; Kuloglu, M.; Tezcan, E.; Ustundag, B. Nizatidine treatment and its relationship with leptin levels in patients with olanzapine-induced weight gain. Hum. Psychopharmacol., 2003, 18(6), 457-461.
[http://dx.doi.org/10.1002/hup.514] [PMID: 12923824]
[212]
Assunção, S.S.M.; Ruschel, S.I.; Rosa, L.C.R.; Campos, J.A.O.; Alves, M.J.O.; Bracco, O.L.; Lima, M.S. Weight gain management in patients with schizophrenia during treatment with olanzapine in association with nizatidine. Rev. Bras. Psiquiatr., 2006, 28(4), 270-276.
[http://dx.doi.org/10.1590/S1516-44462006000400005] [PMID: 17242805]
[213]
Cavazzoni, P.; Tanaka, Y.; Roychowdhury, S.M.; Breier, A.; Allison, D.B. Nizatidine for prevention of weight gain with olanzapine: A double-blind placebo-controlled trial. Eur. Neuropsychopharmacol., 2003, 13(2), 81-85.
[http://dx.doi.org/10.1016/S0924-977X(02)00127-X] [PMID: 12650950]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy