Review Article

最新的纳米载体治疗阿尔茨海默病:当前的策略和观点

卷 30, 期 33, 2023

发表于: 28 December, 2022

页: [3743 - 3774] 页: 32

弟呕挨: 10.2174/0929867330666221115103513

价格: $65

Open Access Journals Promotions 2
摘要

本文综述了解决与阿尔茨海默病(AD)相关的全球性问题的纳米治疗策略。造成这种情况在人文、社会和经济方面的紧迫性的最显著因素是这种疾病的不可治愈性,药物干预只能解决阿尔茨海默病的症状并延缓其进展。这些挑战背后的主要原因是无法早期诊断AD,缺乏关于发病机制的分子机制的全面信息,血脑屏障障碍,以及现有药物和治疗策略的有效性不足。纳米载体的应用可以部分解决这些问题,同时提高药物的生物利用度,延长循环时间,克服/绕过生物屏障。迄今为止,许多类型和亚型的纳米载体被开发和审查,其中大多数可以用于治疗各种疾病。因此,本文根据AD药物的给药途径对纳米治疗策略进行了具体分类,强调了非侵入性,即透皮、口服和鼻内给药途径。此外,还讨论了各种纳米载体的优点和局限性,并对其应用前景进行了展望。

关键词: 阿尔茨海默病,药物传递,纳米治疗策略,给药途径,脂质配方,聚合物纳米载体。

[1]
Se Thoe, E.; Fauzi, A.; Tang, Y.Q.; Chamyuang, S.; Chia, A.Y.Y. A review on advances of treatment modalities for Alzheimer’s disease. Life Sci., 2021, 276, 119129-119151.
[http://dx.doi.org/10.1016/j.lfs.2021.119129] [PMID: 33515559]
[2]
Davies, P.; Maloney, A.J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet, 1976, 308(8000), 1403.
[http://dx.doi.org/10.1016/S0140-6736(76)91936-X] [PMID: 63862]
[3]
Bowen, D.M.; Smith, C.B.; White, P.; Davison, A.N. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain, 1976, 99(3), 459-496.
[http://dx.doi.org/10.1093/brain/99.3.459] [PMID: 11871]
[4]
Nguyen, T.T.; Nguyen, T.T.D.; Nguyen, T.K.O.; Vo, T.K.; Vo, V.G. Advances in developing therapeutic strategies for Alzheimer’s disease. Biomed. Pharmacother., 2021, 139, 111623-111632.
[http://dx.doi.org/10.1016/j.biopha.2021.111623] [PMID: 33915504]
[5]
Cummings, J.; Fox, N. Defining disease modifying therapy for Alzheimer’s disease. J. Prev. Alzheimers Dis., 2017, 4(2), 1-7.
[http://dx.doi.org/10.14283/jpad.2017.12] [PMID: 29071250]
[6]
Reiss, A.B.; Ahmed, S.; Dayaramani, C.; Glass, A.D.; Gomolin, I.H.; Pinkhasov, A.; Stecker, M.M.; Wisniewski, T.; De Leon, J. The role of mitochondrial dysfunction in Alzheimer’s disease: A potential pathway to treatment. Exp. Gerontol., 2022, 164, 111828-111836.
[http://dx.doi.org/10.1016/j.exger.2022.111828] [PMID: 35508280]
[7]
Kukharsky, M.S.; Ovchinnikov, R.K.; Bachurin, S.O. Molecular aspects of the pathogenesis and current approaches to pharmacological correction of Alzheimer’s disease. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova, 2015, 115(6), 103-114.
[http://dx.doi.org/10.17116/jnevro20151156103-114] [PMID: 26438898]
[8]
Xi, Y.; Chen, Y.; Jin, Y.; Han, G.; Song, M.; Song, T.; Shi, Y.; Tao, L.; Huang, Z.; Zhou, J.; Ding, Y.; Zhang, H. Versatile nanomaterials for Alzheimer’s disease: Pathogenesis inspired disease-modifying therapy. J. Control. Release, 2022, 345, 38-61.
[http://dx.doi.org/10.1016/j.jconrel.2022.02.034] [PMID: 35257810]
[9]
Jellinger, K.A. Neuropathology of the Alzheimer’s continuum: an update. Free Neuropathol., 2020, 1, 32-65.
[10]
Bachurin, S.O.; Gavrilova, S.I.; Samsonova, A.; Barreto, G.E.; Aliev, G. Mild cognitive impairment due to Alzheimer disease: Contemporary approaches to diagnostics and pharmacological intervention. Pharmacol. Res., 2018, 129, 216-226.
[http://dx.doi.org/10.1016/j.phrs.2017.11.021] [PMID: 29170097]
[11]
Makhaeva, G.F.; Shevtsova, E.F.; Boltneva, N.P.; Lushchekina, S.V.; Kovaleva, N.V.; Rudakova, E.V.; Bachurin, S.O.; Richardson, R.J. Overview of novel multifunctional agents based on conjugates of γ-carbolines, carbazoles, tetrahydrocarbazoles, phenothiazines, and aminoadamantanes for treatment of Alzheimer’s disease. Chem. Biol. Interact., 2019, 308, 224-234.
[http://dx.doi.org/10.1016/j.cbi.2019.05.020] [PMID: 31100279]
[12]
Hinge, N.S.; Kathuria, H.; Pandey, M.M. Engineering of structural and functional properties of nanotherapeutics and nanodiagnostics for intranasal brain targeting in Alzheimer’s. Appl. Mater. Today, 2022, 26, 101303-101335.
[http://dx.doi.org/10.1016/j.apmt.2021.101303]
[13]
Ordóñez-Gutiérrez, L.; Wandosell, F. Nanoliposomes as a therapeutic tool for Alzheimer’s disease. Front. Synaptic Neurosci., 2020, 12, 20-29.
[http://dx.doi.org/10.3389/fnsyn.2020.00020] [PMID: 32523525]
[14]
Gopalan, D.; Pandey, A.; Udupa, N.; Mutalik, S. Receptor specific, stimuli responsive and subcellular targeted approaches for effective therapy of Alzheimer: Role of surface engineered nanocarriers. J. Control. Release, 2020, 319, 183-200.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.034] [PMID: 31866505]
[15]
Poudel, P.; Park, S. Recent advances in the treatment of Alzheimer’s disease using nanoparticle-based drug delivery systems. Pharmaceutics, 2022, 14(4), 835-872.
[http://dx.doi.org/10.3390/pharmaceutics14040835] [PMID: 35456671]
[16]
Cunha, A.; Gaubert, A.; Latxague, L.; Dehay, B. PLGA-based nanoparticles for neuroprotective drug delivery in neurodegenerative diseases. Pharmaceutics, 2021, 13(7), 1042-1065.
[http://dx.doi.org/10.3390/pharmaceutics13071042] [PMID: 34371733]
[17]
Akel, H.; Ismail, R.; Csóka, I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer’s disease. Eur. J. Pharm. Biopharm., 2020, 148, 38-53.
[http://dx.doi.org/10.1016/j.ejpb.2019.12.014] [PMID: 31926222]
[18]
Gaynanova, G.; Vasileva, L.; Kashapov, R.; Kuznetsova, D.; Kushnazarova, R.; Tyryshkina, A.; Vasilieva, E.; Petrov, K.; Zakharova, L.; Sinyashin, O. Self-assembling drug formulations with tunable permeability and biodegradability. Molecules, 2021, 26(22), 6786-6825.
[http://dx.doi.org/10.3390/molecules26226786] [PMID: 34833877]
[19]
Kashapov, R.; Ibragimova, A.; Pavlov, R.; Gabdrakhmanov, D.; Kashapova, N.; Burilova, E.; Zakharova, L.; Sinyashin, O. Nanocarriers for biomedicine: from lipid formulations to inorganic and hybrid nanoparticles. Int. J. Mol. Sci., 2021, 22(13), 7055-7104.
[http://dx.doi.org/10.3390/ijms22137055] [PMID: 34209023]
[20]
Antipin, I.S.; Alfimov, M.V.; Arslanov, V.V.; Burilov, V.A.; Vatsadze, S.Z.; Voloshin, Y.Z.; Volcho, K.P.; Gorbatchuk, V.V.; Gorbunova, Y.G.; Gromov, S.P.; Dudkin, S.V.; Zaitsev, S.Y.; Zakharova, L.Y.; Ziganshin, M.A.; Zolotukhina, A.V.; Kalinina, M.A.; Karakhanov, E.A.; Kashapov, R.R.; Koifman, O.I.; Konovalov, A.I.; Korenev, V.S.; Maksimov, A.L.; Mamardashvili, N.Z.; Mamardashvili, G.M.; Martynov, A.G.; Mustafina, A.R.; Nugmanov, R.I.; Ovsyannikov, A.S.; Padnya, P.L.; Potapov, A.S.; Selektor, S.L.; Sokolov, M.N.; Solovieva, S.E.; Stoikov, I.I.; Stuzhin, P.A.; Suslov, E.V.; Ushakov, E.N.; Fedin, V.P.; Fedorenko, S.V.; Fedorova, O.A.; Fedorov, Y.V.; Chvalun, S.N.; Tsivadze, A.Y.; Shtykov, S.N.; Shurpik, D.N.; Shcherbina, M.A.; Yakimova, L.S. Functional supramolecular systems: Design and applications. Russ. Chem. Rev., 2021, 90(8), 895-1107.
[http://dx.doi.org/10.1070/RCR5011]
[21]
Kashapov, R.; Gaynanova, G.; Gabdrakhmanov, D.; Kuznetsov, D.; Pavlov, R.; Petrov, K.; Zakharova, L.; Sinyashin, O. Self-assembly of amphiphilic compounds as a versatile tool for construction of nanoscale drug carriers. Int. J. Mol. Sci., 2020, 21(18), 6961-7007.
[http://dx.doi.org/10.3390/ijms21186961] [PMID: 32971917]
[22]
Ding, H.; Tan, P.; Fu, S.; Tian, X.; Zhang, H.; Ma, X.; Gu, Z.; Luo, K. Preparation and application of pH-responsive drug delivery systems. J. Control. Release, 2022, 348, 206-238.
[http://dx.doi.org/10.1016/j.jconrel.2022.05.056] [PMID: 35660634]
[23]
Wen, M.M.; El-Salamouni, N.S.; El-Refaie, W.M.; Hazzah, H.A.; Ali, M.M.; Tosi, G.; Farid, R.M.; Blanco-Prieto, M.J.; Billa, N.; Hanafy, A.S. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges. J. Control. Release, 2017, 245, 95-107.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.025] [PMID: 27889394]
[24]
Ferreira, D.; Nordberg, A.; Westman, E. Biological subtypes of Alzheimer disease: A systematic review and meta- analysis. Neurology, 2020, 94, 436-448.
[25]
Ingelsson, M.; Fukumoto, H.; Newell, K.L.; Growdon, J.H.; Hedley-Whyte, E.T.; Frosch, M.P.; Albert, M.S.; Hyman, B.T.; Irizarry, M.C. Early A accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology, 2004, 62(6), 925-931.
[http://dx.doi.org/10.1212/01.WNL.0000115115.98960.37] [PMID: 15037694]
[26]
Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; Itzkovitz, S.; Colonna, M.; Schwartz, M.; Amit, I. A Unique microglia type associated with restricting development of Alzheimer’s disease. Cell, 2017, 169(7), 1276-1290.e17.
[http://dx.doi.org/10.1016/j.cell.2017.05.018] [PMID: 28602351]
[27]
Monzio Compagnoni, G.; Di Fonzo, A.; Corti, S.; Comi, G.P.; Bresolin, N.; Masliah, E. The role of mitochondria in neurodegenerative diseases: the lesson from Alzheimer’s disease and Parkinson’s disease. Mol. Neurobiol., 2020, 57(7), 2959-2980.
[http://dx.doi.org/10.1007/s12035-020-01926-1] [PMID: 32445085]
[28]
Kisler, K.; Nelson, A.R.; Montagne, A.; Zlokovic, B.V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci., 2017, 18(7), 419-434.
[http://dx.doi.org/10.1038/nrn.2017.48] [PMID: 28515434]
[29]
Nation, D.A.; Sweeney, M.D.; Montagne, A.; Sagare, A.P.; D’Orazio, L.M.; Pachicano, M.; Sepehrband, F.; Nelson, A.R.; Buennagel, D.P.; Harrington, M.G.; Benzinger, T.L.S.; Fagan, A.M.; Ringman, J.M.; Schneider, L.S.; Morris, J.C.; Chui, H.C.; Law, M.; Toga, A.W.; Zlokovic, B.V. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med., 2019, 25(2), 270-276.
[http://dx.doi.org/10.1038/s41591-018-0297-y] [PMID: 30643288]
[30]
Heneka, M.T.; Carson, M.J.; Khoury, J.E.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[31]
Sozio, P.; Cerasa, L.S.; Marinelli, L.; Di Stefano, A. Transdermal donepezil on the treatment of Alzheimer’s disease. Neuropsychiatr. Dis. Treat., 2012, 8, 361-368.
[PMID: 22942647]
[32]
Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release, 2016, 235, 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[33]
Visser, C.C.; Stevanović, S.; Heleen Voorwinden, L.; Gaillard, P.J.; Crommelin, D.J.A.; Danhof, M.; de Boer, A.G. Validation of the transferrin receptor for drug targeting to brain capillary endothelial cells in vitro. J. Drug Target., 2004, 12(3), 145-150.
[http://dx.doi.org/10.1080/10611860410001701706] [PMID: 15203893]
[34]
Ohtsuki, S.; Ikeda, C.; Uchida, Y.; Sakamoto, Y.; Miller, F.; Glacial, F.; Decleves, X.; Scherrmann, J.M.; Couraud, P.O.; Kubo, Y.; Tachikawa, M.; Terasaki, T. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model. Mol. Pharm., 2013, 10(1), 289-296.
[http://dx.doi.org/10.1021/mp3004308] [PMID: 23137377]
[35]
Agrawal, M.; Ajazuddin; Tripathi, D.K.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Mourtas, S.; Hammarlund-Udenaes, M.; Alexander, A. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J. Control. Release, 2017, 260, 61-77.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.019] [PMID: 28549949]
[36]
Hervé, F.; Ghinea, N.; Scherrmann, J.M. CNS delivery via adsorptive transcytosis. AAPS J., 2008, 10(3), 455-472.
[http://dx.doi.org/10.1208/s12248-008-9055-2] [PMID: 18726697]
[37]
Broadwell, R.D.; Balin, B.J. Endocytic and exocytic pathways of the neuronal secretory process and trans synaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. J. Comp. Neurol., 1985, 242(4), 632-650.
[http://dx.doi.org/10.1002/cne.902420410] [PMID: 2418083]
[38]
Lu, W.; Tan, Y.Z.; Hu, K.L.; Jiang, X.G. Cationic albumin conjugated pegylated nanoparticle with its transcytosis ability and little toxicity against blood-brain barrier. Int. J. Pharm., 2005, 295(1-2), 247-260.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.043] [PMID: 15848009]
[39]
Lu, W.; Sun, Q.; Wan, J.; She, Z.; Jiang, X.G. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res., 2006, 66(24), 11878-11887.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2354] [PMID: 17178885]
[40]
Shimon-Hophy, M.; Wadhwani, K.C.; Chandrasekaran, K.; Larson, D.; Smith, Q.R.; Rapoport, S.I. Regional blood-brain barrier transport of cationized bovine serum albumin in awake rats. Am. J. Physiol., 1991, 261(2 Pt 2), R478-R483.
[PMID: 1877704]
[41]
Pavlov, R.V.; Gaynanova, G.A.; Kuznetsova, D.A.; Vasileva, L.A.; Zueva, I.V.; Sapunova, A.S.; Buzyurova, D.N.; Babaev, V.M.; Voloshina, A.D.; Lukashenko, S.S.; Rizvanov, I.K.; Petrov, K.A.; Zakharova, L.Y.; Sinyashin, O.G. Biomedical potentialities of cationic geminis as modulating agents of liposome in drug delivery across biological barriers and cellular uptake. Int. J. Pharm., 2020, 587, 119640-119651.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119640] [PMID: 32673770]
[42]
Ulbrich, K.; Hekmatara, T.; Herbert, E.; Kreuter, J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur. J. Pharm. Biopharm., 2009, 71(2), 251-256.
[http://dx.doi.org/10.1016/j.ejpb.2008.08.021] [PMID: 18805484]
[43]
Huang, R.; Ke, W.; Liu, Y.; Jiang, C.; Pei, Y. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials, 2008, 29(2), 238-246.
[http://dx.doi.org/10.1016/j.biomaterials.2007.09.024] [PMID: 17935779]
[44]
Maussang, D.; Rip, J.; van Kregten, J.; van den Heuvel, A.; van der Pol, S.; van der Boom, B.; Reijerkerk, A.; Chen, L.; de Boer, M.; Gaillard, P.; de Vries, H. Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. Drug Discov. Today. Technol., 2016, 20, 59-69.
[http://dx.doi.org/10.1016/j.ddtec.2016.09.003] [PMID: 27986226]
[45]
Keller, L.A.; Merkel, O.; Popp, A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res., 2022, 12(4), 735-757.
[http://dx.doi.org/10.1007/s13346-020-00891-5] [PMID: 33491126]
[46]
Crowe, T.P.; Greenlee, M.H.W.; Kanthasamy, A.G.; Hsu, W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci., 2018, 195, 44-52.
[http://dx.doi.org/10.1016/j.lfs.2017.12.025] [PMID: 29277310]
[47]
Martins, P.P.; Smyth, H.D.C.; Cui, Z. Strategies to facilitate or block nose-to-brain drug delivery. Int. J. Pharm., 2019, 570, 118635-118643.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118635] [PMID: 31445062]
[48]
Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm., 2018, 535(1-2), 1-17.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.046] [PMID: 29111097]
[49]
Gomes, A.; Aguiar, L.; Ferraz, R.; Teixeira, C.; Gomes, P. The emerging role of ionic liquid-based approaches for enhanced skin permeation of bioactive molecules: a snapshot of the past couple of years. Int. J. Mol. Sci., 2021, 22(21), 11991-12016.
[http://dx.doi.org/10.3390/ijms222111991] [PMID: 34769430]
[50]
Yu, Y.Q.; Yang, X.; Wu, X.F.; Fan, Y.B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol., 2021, 9, 646554-646570.
[http://dx.doi.org/10.3389/fbioe.2021.646554] [PMID: 33855015]
[51]
Knorr, F.; Lademann, J.; Patzelt, A.; Sterry, W.; Blume-Peytavi, U.; Vogt, A. Follicular transport route - Research progress and future perspectives. Eur. J. Pharm. Biopharm., 2009, 71(2), 173-180.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.001] [PMID: 19041720]
[52]
Antimisiaris, S.G.; Marazioti, A.; Kannavou, M.; Natsaridis, E.; Gkartziou, F.; Kogkos, G.; Mourtas, S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev., 2021, 174, 53-86.
[http://dx.doi.org/10.1016/j.addr.2021.01.019] [PMID: 33539852]
[53]
Lu, F.; Wang, C.; Zhao, R.; Du, L.; Fang, Z.; Guo, X.; Zhao, Z. Review of stratum corneum impedance measurement in non-invasive penetration application. Biosensors (Basel), 2018, 8(2), 31-50.
[http://dx.doi.org/10.3390/bios8020031] [PMID: 29587456]
[54]
Hogan, M.B.; Peele, K.; Wilson, N.W. Skin barrier function and its importance at the start of the atopic march. J. Allergy (Cairo), 2012, 2012, 901940.
[http://dx.doi.org/10.1155/2012/901940] [PMID: 22619686]
[55]
Warner, R.R.; Myers, M.C.; Taylor, D.A. Electron probe analysis of human skin: determination of the water concentration profile. J. Invest. Dermatol., 1988, 90(2), 218-224.
[http://dx.doi.org/10.1111/1523-1747.ep12462252] [PMID: 3339263]
[56]
Villanueva-Martínez, A.; Merino, V.; Ganem-Rondero, A. Transdermal formulations and strategies for the treatment of osteoporosis. J. Drug Deliv. Sci. Technol., 2022, 69, 103111-103131.
[http://dx.doi.org/10.1016/j.jddst.2022.103111]
[57]
Neupane, R.; Boddu, S.H.S.; Abou-Dahech, M.S.; Bachu, R.D.; Terrero, D.; Babu, R.J.; Tiwari, A.K. Transdermal delivery of chemotherapeutics: Strategies, requirements, and opportunities. Pharmaceutics, 2021, 13(7), 960-991.
[http://dx.doi.org/10.3390/pharmaceutics13070960] [PMID: 34206728]
[58]
De Oliveira, T.C.; Tavares, M.E.V.; Soares-Sobrinho, J.L.; Chaves, L.L. The role of nanocarriers for transdermal application targeted to lymphatic drug delivery: Opportunities and challenges. J. Drug Deliv. Sci. Technol., 2022, 68, 103110-103118.
[http://dx.doi.org/10.1016/j.jddst.2022.103110]
[59]
Zhao, Z.Q.; Chen, B.Z.; Zhang, X.P.; Zheng, H.; Guo, X.D. An update on the routes for the delivery of donepezil. Mol. Pharm., 2021, 18(7), 2482-2494.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00290] [PMID: 34100291]
[60]
Abdelkader, H.; Fathalla, Z.; Seyfoddin, A.; Farahani, M.; Thrimawithana, T.; Allahham, A.; Alani, A.W.G.; Al-Kinani, A.A.; Alany, R.G. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv. Drug Deliv. Rev., 2021, 177, 113957-113977.
[http://dx.doi.org/10.1016/j.addr.2021.113957] [PMID: 34481032]
[61]
Yadav, P.R.; Munni, M.N.; Campbell, L.; Mostofa, G.; Dobson, L.; Shittu, M.; Pattanayek, S.K.; Uddin, M.J.; Das, D.B. J.; Das, D.B. Translation of polymeric microneedles for treatment of human diseases: recent trends, progress, and challenges. Pharmaceutics, 2021, 13(8), 1132-1176.
[http://dx.doi.org/10.3390/pharmaceutics13081132] [PMID: 34452093]
[62]
Sutthapitaksakul, L.; Dass, C.R.; Sriamornsak, P. Donepezil—an updated review of challenges in dosage form design. J. Drug Deliv. Sci. Technol., 2021, 63, 102549-102560.
[http://dx.doi.org/10.1016/j.jddst.2021.102549]
[63]
Khoury, R.; Rajamanickam, J.; Grossberg, G.T. An update on the safety of current therapies for Alzheimer’s disease: Focus on rivastigmine. Ther. Adv. Drug Saf., 2018, 9(3), 171-178.
[http://dx.doi.org/10.1177/2042098617750555] [PMID: 29492246]
[64]
Ita, K. Recent trends in the transdermal delivery of therapeutic agents used for the management of neurodegenerative diseases. J. Drug Target., 2017, 25(5), 406-419.
[http://dx.doi.org/10.1080/1061186X.2016.1245310] [PMID: 27701893]
[65]
Govender, T.; Choonara, Y.E.; Kumar, P.; Bijukumar, D.; du Toit, L.C.; Modi, G.; Naidoo, D.; Pillay, V. Implantable and transdermal polymeric drug delivery technologies for the treatment of central nervous system disorders. Pharm. Dev. Technol., 2017, 22(4), 476-486.
[http://dx.doi.org/10.1080/10837450.2016.1189937] [PMID: 27268737]
[66]
Nguyen, T.T.; Giau, V.V.; Vo, T.K. Current advances in transdermal delivery of drugs for Alzheimer’s disease. Indian J. Pharmacol., 2017, 49(2), 145-154.
[PMID: 28706327]
[67]
Ameen, D.; Michniak-Kohn, B. Development and in vitro evaluation of pressure sensitive adhesive patch for the transdermal delivery of galantamine: Effect of penetration enhancers and crystallization inhibition. Eur. J. Pharm. Biopharm., 2019, 139, 262-271.
[http://dx.doi.org/10.1016/j.ejpb.2019.04.008] [PMID: 30981946]
[68]
Lane, M.E. Skin penetration enhancers. Int. J. Pharm., 2013, 447(1-2), 12-21.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.040] [PMID: 23462366]
[69]
Georgieva, D.; Ivanova-Mileva, K.; Ivanova, S.; Kostova, B.; Rachev, D.; Christova, D. Thermoresponsive poly(N-isopropylacrylamide) copolymer networks for galantamine hydrobromide delivery. Colloid Polym. Sci., 2020, 298(4-5), 377-384.
[http://dx.doi.org/10.1007/s00396-020-04621-8]
[70]
Dan, S.; Sharma, D.; Rastogi, K. Shaloo; Ojha, H.; Pathak, M.; Singhal, R. Therapeutic and diagnostic applications of nanocomposites in the treatment Alzheimer’s disease studies. Biointerface Res. Appl. Chem., 2021, 12(1), 940-960.
[http://dx.doi.org/10.33263/BRIAC121.940960]
[71]
Salimi, A.; Ghobadian, H.; Sharif Makhmalzadeh, B. Dermal pharmacokinetics of rivastigmine-loaded liposomes: An ex vivo-in vivo correlation study. J. Liposome Res., 2021, 31(3), 246-254.
[http://dx.doi.org/10.1080/08982104.2020.1787440] [PMID: 32594811]
[72]
Ravi, G.; Gupta, N.V. Development and evaluation of transdermal film containing solid lipid nanoparticles of rivastigmine tartrate. Int. J. Appl. Pharmaceut., 2017, 9(6), 85-90.
[http://dx.doi.org/10.22159/ijap.2017v9i6.22354]
[73]
Mendes, I.T.; Ruela, A.L.M.; Carvalho, F.C.; Freitas, J.T.J.; Bonfilio, R.; Pereira, G.R. Development and characterization of nanostructured lipid carrier-based gels for the transdermal delivery of donepezil. Colloids Surf. B Biointerfaces, 2019, 177, 274-281.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.007] [PMID: 30763792]
[74]
Kodoth, A.K.; Ghate, V.M.; Lewis, S.A.; Prakash, B.; Badalamoole, V. Pectin-based silver nanocomposite film for transdermal delivery of Donepezil. Int. J. Biol. Macromol., 2019, 134, 269-279.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.191] [PMID: 31047929]
[75]
Kim, J.Y.; Han, M.R.; Kim, Y.H.; Shin, S.W.; Nam, S.Y.; Park, J.H. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. Eur. J. Pharm. Biopharm., 2016, 105, 148-155.
[http://dx.doi.org/10.1016/j.ejpb.2016.06.006] [PMID: 27288938]
[76]
Rehman, N.U.; Song, C.; Kim, J.; Noh, I.; Rhee, Y.S.; Chung, H.J. Pharmacokinetic evaluation of a novel donepezil-loaded dissolving microneedle patch in rats. Pharmaceutics, 2021, 14(1), 5-19.
[http://dx.doi.org/10.3390/pharmaceutics14010005] [PMID: 35056902]
[77]
Vora, L.K.; Moffatt, K.; Tekko, I.A.; Paredes, A.J.; Volpe-Zanutto, F.; Mishra, D.; Peng, K.; Raj Singh Thakur, R.; Donnelly, R.F. Microneedle array systems for long-acting drug delivery. Eur. J. Pharm. Biopharm., 2021, 159, 44-76.
[http://dx.doi.org/10.1016/j.ejpb.2020.12.006] [PMID: 33359666]
[78]
Shi, C.; Yang, D.; Zhao, Y.; Wen, T.; Zhao, W.; Hu, P.; Huang, Z.; Quan, G.; Wu, C.; Pan, X. The spatial-dimensional and temporal-dimensional fate of nanocarrier-loaded dissolving microneedles with different lengths of needles. Med. Drug Discov., 2022, 14, 100124-100133.
[http://dx.doi.org/10.1016/j.medidd.2022.100124]
[79]
Don, T.M.; Chen, M.; Lee, I.C.; Huang, Y.C. Preparation and characterization of fast dissolving ulvan microneedles for transdermal drug delivery system. Int. J. Biol. Macromol., 2022, 207, 90-99.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.127] [PMID: 35218808]
[80]
Al-Rawi, N.N.; Rawas-Qalaji, M. Dissolving microneedles with antibacterial functionalities: A systematic review of laboratory studies. Eur. J. Pharm. Sci., 2022, 174, 106202-106216.
[http://dx.doi.org/10.1016/j.ejps.2022.106202] [PMID: 35526676]
[81]
Zhang, N.; Zhou, X.; Liu, L.; Zhao, L.; Xie, H.; Yang, Z. Dissolving polymer microneedles for transdermal delivery of insulin. Front. Pharmacol., 2021, 12, 719905-719914.
[http://dx.doi.org/10.3389/fphar.2021.719905] [PMID: 34630098]
[82]
Peng, K.; Vora, L.K.; Tekko, I.A.; Permana, A.D.; Domínguez-Robles, J.; Ramadon, D.; Chambers, P.; McCarthy, H.O.; Larrañeta, E.; Donnelly, R.F. Dissolving microneedle patches loaded with amphotericin B microparticles for localised and sustained intradermal delivery: Potential for enhanced treatment of cutaneous fungal infections. J. Control. Release, 2021, 339, 361-380.
[http://dx.doi.org/10.1016/j.jconrel.2021.10.001] [PMID: 34619227]
[83]
Yan, Q.; Wang, W.; Weng, J.; Zhang, Z.; Yin, L.; Yang, Q.; Guo, F.; Wang, X.; Chen, F.; Yang, G. Dissolving microneedles for transdermal delivery of huperzine A for the treatment of Alzheimer’s disease. Drug Deliv., 2020, 27(1), 1147-1155.
[http://dx.doi.org/10.1080/10717544.2020.1797240] [PMID: 32729341]
[84]
Agrawal, S.; Gandhi, S.N.; Gurjar, P.; Saraswathy, N. Microneedles: An advancement to transdermal drug delivery system approach. J. Appl. Pharm. Sci., 2020, 10(3), 149-159.
[http://dx.doi.org/10.7324/JAPS.2020.103019]
[85]
Wu, H.; Fang, F.; Zheng, L.; Ji, W.; Qi, M.; Hong, M.; Ren, G. Ionic liquid form of donepezil: Preparation, characterization and formulation development. J. Mol. Liq., 2020, 300, 112308-112318.
[http://dx.doi.org/10.1016/j.molliq.2019.112308]
[86]
Dinh, L.; Lee, S.; Abuzar, S.M.; Park, H.; Hwang, S.J. Hwang, Formulation, preparation, characterization, and evaluation of dicarboxylic ionic liquid donepezil transdermal patches. Pharmaceutics, 2022, 14(1), 205-224.
[http://dx.doi.org/10.3390/pharmaceutics14010205] [PMID: 35057101]
[87]
Cai, Y.; Tian, Q.; Liu, C.; Fang, L. Development of long-acting rivastigmine drug-in-adhesive patch utilizing ion- pair strategy and characterization of controlled release mechanism. Eur. J. Pharm. Sci., 2021, 161, 105774-105783.
[http://dx.doi.org/10.1016/j.ejps.2021.105774] [PMID: 33640502]
[88]
Sguizzato, M.; Esposito, E.; Cortesi, R. Lipid-based nanosystems as a tool to overcome skin barrier. Int. J. Mol. Sci., 2021, 22(15), 8319-8334.
[http://dx.doi.org/10.3390/ijms22158319] [PMID: 34361084]
[89]
Moghaddam, A.A.; Aqil, M.; Ahmad, F.J.; Ali, M.M.; Sultana, Y.; Ali, A. Nanoethosomes mediated transdermal delivery of vinpocetine for management of Alzheimer’s disease. Drug Deliv., 2015, 22(8), 1018-1026.
[http://dx.doi.org/10.3109/10717544.2013.846433] [PMID: 24717007]
[90]
Shi, J.; Wang, Y.; Luo, G. Ligustrazine phosphate ethosomes for treatment of Alzheimer’s disease, in vitro and in animal model studies. AAPS PharmSciTech, 2012, 13(2), 485-492.
[http://dx.doi.org/10.1208/s12249-012-9767-6] [PMID: 22415639]
[91]
Ueda, K.; Katayama, S.; Arai, T.; Furuta, N.; Ikebe, S.; Ishida, Y.; Kanaya, K.; Ouma, S.; Sakurai, H.; Sugitani, M.; Takahashi, M.; Tanaka, T.; Tsuno, N.; Wakutani, Y.; Shekhawat, A.; Das Gupta, A.; Kiyose, K.; Toriyama, K.; Nakamura, Y. Efficacy, safety, and tolerability of switching from oral cholinesterase inhibitors to rivastigmine transdermal patch with 1-step titration in patients with mild to moderate Alzheimer’s disease: A 24-week, open-label, multicenter study in Japan. Dement. Geriatr. Cogn. Disord. Extra, 2019, 9(2), 302-318.
[http://dx.doi.org/10.1159/000501364] [PMID: 31572426]
[92]
Colombo, D.; Caltagirone, C.; Padovani, A.; Sorbi, S.; Spalletta, G.; Simoni, L.; Ori, A.; Zagni, E. Gender differences in neuropsychiatric symptoms in mild to moderate Alzheimer’s disease patients undergoing switch of cholinesterase inhibitors: A Post Hoc Analysis of the EVOLUTION Study. J. Womens Health (Larchmt.), 2018, 27(11), 1368-1377.
[http://dx.doi.org/10.1089/jwh.2017.6420] [PMID: 30085899]
[93]
Ramezanpour, M.; Leung, S.S.W.; Delgado-Magnero, K.H.; Bashe, B.Y.M.; Thewalt, J.; Tieleman, D.P. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochim. Biophys. Acta, 2016, 1858, 1688-1709.
[94]
Mehta, S.; Dumoga, S.; Malhotra, S.; Singh, N. Comparative analysis of PEG-liposomes and RBCs-derived nanovesicles for anti-tumor therapy. Colloids Surf. B Biointerfaces, 2022, 218, 112785-112790.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112785] [PMID: 36037734]
[95]
Yin, L.; Pang, Y.; Shan, L.; Gu, J. The in vivo Pharmacokinetics of block copolymers containing polyethylene glycol used in nanocarrier drug delivery systems. Drug Metab. Dispos., 2022, 50(6), 827-836.
[http://dx.doi.org/10.1124/dmd.121.000568] [PMID: 35066464]
[96]
Jiang, T.; Ma, S.; Shen, Y.; Li, Y.; Pan, R.; Xing, H. Topical anesthetic and pain relief using penetration enhancer and transcriptional transactivator peptide multi-decorated nanostructured lipid carriers. Drug Deliv., 2021, 28(1), 478-486.
[http://dx.doi.org/10.1080/10717544.2021.1889717] [PMID: 33641554]
[97]
Upadhyay, R.K. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int., 2014, 2014, 869269.
[http://dx.doi.org/10.1155/2014/869269] [PMID: 25136634]
[98]
Moya, E.L.J.; Lombardo, S.M.; Vandenhaute, E.; Schneider, M.; Mysiorek, C.; Türeli, A.E.; Kanda, T.; Shimizu, F.; Sano, Y.; Maubon, N.; Gosselet, F.; Günday-Türeli, N.; Dehouck, M.P. Interaction of surfactant coated PLGA nanoparticles with in vitro human brain-like endothelial cells. Int. J. Pharm., 2022, 621, 121780-121792.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121780] [PMID: 35504427]
[99]
Mehrabian, A.; Mashreghi, M.; Dadpour, S.; Badiee, A.; Arabi, L.; Hoda Alavizadeh, S.; Alia Moosavian, S.; Reza Jaafari, M. Nanocarriers call the last shot in the treatment of brain cancers. Technol. Cancer Res. Treat., 2022, 21, 15330338221080974.
[http://dx.doi.org/10.1177/15330338221080974] [PMID: 35253549]
[100]
K C, S.; Kakoty, V.; Krishna, K.V.; Dubey, S.K.; Chitkara, D.; Taliyan, R. Neuroprotective efficacy of co-encapsulated rosiglitazone and vorinostat nanoparticle on streptozotocin induced mice model of Alzheimer’s disease. ACS Chem. Neurosci., 2021, 12(9), 1528-1541.
[http://dx.doi.org/10.1021/acschemneuro.1c00022] [PMID: 33860663]
[101]
Haake, A.; Nguyen, K.; Friedman, L.; Chakkamparambil, B.; Grossberg, G.T. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Drug Saf., 2020, 19(2), 147-157.
[http://dx.doi.org/10.1080/14740338.2020.1721456] [PMID: 31976781]
[102]
Cacabelos, R. Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Drug Metab. Toxicol., 2020, 16(8), 673-701.
[http://dx.doi.org/10.1080/17425255.2020.1779700] [PMID: 32520597]
[103]
Krishna, K.V.; Wadhwa, G.; Alexander, A.; Kanojia, N.; Saha, R.N.; Kukreti, R.; Singhvi, G.; Dubey, S.K. Design and biological evaluation of lipoprotein-based donepezil nanocarrier for enhanced brain uptake through oral delivery. ACS Chem. Neurosci., 2019, 10(9), 4124-4135.
[http://dx.doi.org/10.1021/acschemneuro.9b00343] [PMID: 31418556]
[104]
Neves, A.R.; Queiroz, J.F.; Costa Lima, S.A.; Figueiredo, F.; Fernandes, R.; Reis, S. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery. J. Colloid Interface Sci., 2016, 463, 258-265.
[http://dx.doi.org/10.1016/j.jcis.2015.10.057] [PMID: 26550783]
[105]
Liu, W.; Pan, H.; Zhang, C.; Zhao, L.; Zhao, R.; Zhu, Y.; Pan, W. Developments in methods for measuring the intestinal absorption of nanoparticle-bound drugs. Int. J. Mol. Sci., 2016, 17(7), 1171-1190.
[http://dx.doi.org/10.3390/ijms17071171] [PMID: 27455239]
[106]
Ghosh, S.; Ghosh, S.; Sil, P.C. Role of nanostructures in improvising oral medicine. Toxicol. Rep., 2019, 6, 358-368.
[http://dx.doi.org/10.1016/j.toxrep.2019.04.004] [PMID: 31080743]
[107]
Bachurin, S.O. A review of drugs for treatment of Alzheimer’s disease in clinical trials: main trends. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova, 2016, 116(8), 77-87.
[http://dx.doi.org/10.17116/jnevro20161168177-87] [PMID: 28635742]
[108]
Florentino, S.A.; Bawany, M.H.; Ma, H.M. Acetylcholinesterase inhibitors to enhance recovery from traumatic brain injury: a comprehensive review and case series. Brain Inj., 2022, 36(4), 441-454.
[http://dx.doi.org/10.1080/02699052.2022.2034962] [PMID: 35113764]
[109]
Charoo, N.A.; Rahman, Z.; Khan, M.A. Nanoparticles for Improvement in Oral Bioavailability. In: Nanoarchitectonics in Biomedicine; Elsevier; Amsterdam, 2019; pp. 371-410.
[http://dx.doi.org/10.1016/B978-0-12-816200-2.00006-2]
[110]
Wilson, B.; Geetha, K.M. Neurotherapeutic applications of nanomedicine for treating Alzheimer’s disease. J. Control. Release, 2020, 325, 25-37.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.044] [PMID: 32473177]
[111]
Markovic, M.; Ben-Shabat, S.; Aponick, A.; Zimmermann, E.M.; Dahan, A. Lipids and lipid-processing pathways in drug delivery and therapeutics. Int. J. Mol. Sci., 2020, 21(9), 3248-3262.
[http://dx.doi.org/10.3390/ijms21093248] [PMID: 32375338]
[112]
Abbas, H.; Gad, H.A.; Khattab, M.A.; Mansour, M. The tragedy of Alzheimer’s disease: towards better management via resveratrol-loaded oral bilosomes. Pharmaceutics, 2021, 13(10), 1635-1657.
[http://dx.doi.org/10.3390/pharmaceutics13101635] [PMID: 34683928]
[113]
Shukla, S.; Hernandez, C. Liposome based drug delivery as a potential treatment option for Alzheimer’s disease. Neural Regen. Res., 2022, 17(6), 1190-1198.
[http://dx.doi.org/10.4103/1673-5374.327328] [PMID: 34782553]
[114]
Seo, M.W.; Park, T.E. Recent advances with liposomes as drug carriers for treatment of neurodegenerative diseases. Biomed. Eng. Lett., 2021, 11(3), 211-216.
[http://dx.doi.org/10.1007/s13534-021-00198-5] [PMID: 34350048]
[115]
Saka, R.; Chella, N.; Khan, W. Development of imatinib mesylate-loaded liposomes for nose to brain delivery: In vitro and in vivo evaluation. AAPS PharmSciTech, 2021, 22(5), 192.
[http://dx.doi.org/10.1208/s12249-021-02072-0] [PMID: 34184160]
[116]
Juhairiyah, F.; de Lange, E.C.M. Understanding drug delivery to the brain using liposome-based strategies: Studies that provide mechanistic insights are essential. AAPS J., 2021, 23(6), 114-129.
[http://dx.doi.org/10.1208/s12248-021-00648-z] [PMID: 34713363]
[117]
Shah, U.; Joshi, G.; Sawant, K. Improvement in antihypertensive and antianginal effects of felodipine by enhanced absorption from PLGA nanoparticles optimized by factorial design. Mater. Sci. Eng. C, 2014, 35, 153-163.
[http://dx.doi.org/10.1016/j.msec.2013.10.038] [PMID: 24411363]
[118]
Tariq, M.; Alam, M.A.; Singh, A.T.; Iqbal, Z.; Panda, A.K.; Talegaonkar, S. Biodegradable polymeric nanoparticles for oral delivery of epirubicin: In vitro, ex vivo, and in vivo investigations. Colloids Surf. B Biointerfaces, 2015, 128, 448-456.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.043] [PMID: 25769281]
[119]
Joshi, G.; Kumar, A.; Sawant, K. Enhanced bioavailability and intestinal uptake of Gemcitabine HCl loaded PLGA nanoparticles after oral delivery. Eur. J. Pharm. Sci., 2014, 60, 80-89.
[http://dx.doi.org/10.1016/j.ejps.2014.04.014] [PMID: 24810394]
[120]
Sánchez-López, E.; Ettcheto, M.; Egea, M.A.; Espina, M.; Cano, A.; Calpena, A.C.; Camins, A.; Carmona, N.; Silva, A.M.; Souto, E.B.; García, M.L. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: In vitro and in vivo characterization. J. Nanobiotechnol., 2018, 16(1), 32-47.
[http://dx.doi.org/10.1186/s12951-018-0356-z] [PMID: 29587747]
[121]
Krishna, K.V.; Saha, R.N.; Dubey, S.K. Biophysical, biochemical, and behavioral implications of ApoE3 conjugated donepezil nanomedicine in a Aβ1-42 induced Alzheimer’s disease rat model. ACS Chem. Neurosci., 2020, 11(24), 4139-4151.
[http://dx.doi.org/10.1021/acschemneuro.0c00430] [PMID: 33251785]
[122]
Bartolomé, F.; Rosa, L.; Valenti, P.; Lopera, F.; Hernández-Gallego, J.; Cantero, J.L.; Orive, G.; Carro, E. Lactoferrin as immune-enhancement strategy for SARS-CoV-2 infection in Alzheimer’s disease patients. Front. Immunol., 2022, 13, 878201-878212.
[http://dx.doi.org/10.3389/fimmu.2022.878201] [PMID: 35547737]
[123]
Agwa, M.M.; Abdelmonsif, D.A.; Khattab, S.N.; Sabra, S. Self-assembled lactoferrin-conjugated linoleic acid micelles as an orally active targeted nanoplatform for Alzheimer’s disease. Int. J. Biol. Macromol., 2020, 162, 246-261.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.058] [PMID: 32531361]
[124]
Monaco, A.; Ferrandino, I.; Boscaino, F.; Cocca, E.; Cigliano, L.; Maurano, F.; Luongo, D.; Spagnuolo, M.S.; Rossi, M.; Bergamo, P. Conjugated linoleic acid prevents age-dependent neurodegeneration in a mouse model of neuropsychiatric lupus via the activation of an adaptive response. J. Lipid Res., 2018, 59(1), 48-57.
[http://dx.doi.org/10.1194/jlr.M079400] [PMID: 29167408]
[125]
Laserra, S.; Basit, A.; Sozio, P.; Marinelli, L.; Fornasari, E.; Cacciatore, I.; Ciulla, M.; Türkez, H.; Geyikoglu, F.; Di Stefano, A. Solid lipid nanoparticles loaded with lipoyl-memantine codrug: Preparation and characterization. Int. J. Pharm., 2015, 485(1-2), 183-191.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.001] [PMID: 25747452]
[126]
Misra, S.; Chopra, K.; Sinha, V.R.; Medhi, B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: Preparation, characterization, in vitro and in vivo evaluations. Drug Deliv., 2016, 23(4), 1434-1443.
[http://dx.doi.org/10.3109/10717544.2015.1089956] [PMID: 26405825]
[127]
AnjiReddy, K.; Karpagam, S. In vitro and in vivo evaluation of oral disintegrating nanofiber and thin-film contains hyperbranched chitosan/donepezil for active drug delivery. J. Polym. Environ., 2021, 29(3), 922-936.
[http://dx.doi.org/10.1007/s10924-020-01937-y]
[128]
de Boer, A.G.; Gaillard, P.J. Drug targeting to the brain. Annu. Rev. Pharmacol. Toxicol., 2007, 47(1), 323-355.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105237] [PMID: 16961459]
[129]
Chougle, S.; Kumar, D.; Khan, A.; Zehra, S.; Ali̇, A. Treatment of Alzheimer’s disease by natural products. J. Exp. Clin. Med., 2021, 38(4), 634-644.
[http://dx.doi.org/10.52142/omujecm.38.4.42]
[130]
Raju, M.; Kunde, S.S.; Auti, S.T.; Kulkarni, Y.A.; Wairkar, S. Berberine loaded nanostructured lipid carrier for Alzheimer’s disease: Design, statistical optimization and enhanced in vivo performance. Life Sci., 2021, 285, 119990-119996.
[http://dx.doi.org/10.1016/j.lfs.2021.119990] [PMID: 34592234]
[131]
Sayed, N.; Khurana, A.; Godugu, C. Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. J. Drug Deliv. Sci. Technol., 2019, 53, 101201-101218.
[http://dx.doi.org/10.1016/j.jddst.2019.101201]
[132]
Durham, B. Novel histone deacetylase (HDAC) inhibitors with improved selectivity for HDAC2 and 3 protect against neural cell death. Biosci. Horiz., 2012, 5, hzs003.
[http://dx.doi.org/10.1093/biohorizons/hzs003]
[133]
Green, K.N.; Steffan, J.S.; Martinez-Coria, H.; Sun, X.; Schreiber, S.S.; Thompson, L.M.; LaFerla, F.M. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci., 2008, 28(45), 11500-11510.
[http://dx.doi.org/10.1523/JNEUROSCI.3203-08.2008] [PMID: 18987186]
[134]
Vakilinezhad, M.A.; Amini, A.; Akbari Javar, H.; Baha’addini Beigi Zarandi, B.F.; Montaseri, H.; Dinarvand, R. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. Daru, 2018, 26(2), 165-177.
[http://dx.doi.org/10.1007/s40199-018-0221-5] [PMID: 30386982]
[135]
Labban, S.; Alghamdi, B.S.; Alshehri, F.S.; Kurdi, M. Effects of melatonin and resveratrol on recognition memory and passive avoidance performance in a mouse model of Alzheimer’s disease. Behav. Brain Res., 2021, 402, 113100-113108.
[http://dx.doi.org/10.1016/j.bbr.2020.113100] [PMID: 33417994]
[136]
Al-Edresi, S.; Alsalahat, I.; Freeman, S.; Aojula, H.; Penny, J. Resveratrol-mediated cleavage of amyloid β1-42 peptide: Potential relevance to Alzheimer’s disease. Neurobiol. Aging, 2020, 94, 24-33.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.04.012] [PMID: 32512325]
[137]
Qu, C.; Li, Q.P.; Su, Z.R.; Ip, S.P.; Yuan, Q.J.; Xie, Y.L.; Xu, Q.Q.; Yang, W.; Huang, Y.F.; Xian, Y.F.; Lin, Z.X. Nano-Honokiol ameliorates the cognitive deficits in TgCRND8 mice of Alzheimer’s disease via inhibiting neuropathology and modulating gut microbiota. J. Adv. Res., 2022, 35, 231-243.
[http://dx.doi.org/10.1016/j.jare.2021.03.012] [PMID: 35024199]
[138]
Serafini, M.M.; Catanzaro, M.; Rosini, M.; Racchi, M.; Lanni, C. Curcumin in Alzheimer’s disease: Can we think to new strategies and perspectives for this molecule? Pharmacol. Res., 2017, 124, 146-155.
[http://dx.doi.org/10.1016/j.phrs.2017.08.004] [PMID: 28811228]
[139]
Yusuf, H.; Rahmawati, R.A.; Syamsur Rijal, M.A.; Isadiartuti, D. Curcumin micelles entrapped in eudragit S-100 matrix: A synergistic strategy for enhanced oral delivery. Future Sci. OA, 2021, 7(4), FSO677-FSO687.
[http://dx.doi.org/10.2144/fsoa-2020-0131] [PMID: 33815823]
[140]
Kakkar, V.; Kaur, I.P. Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem. Toxicol., 2011, 49(11), 2906-2913.
[http://dx.doi.org/10.1016/j.fct.2011.08.006] [PMID: 21889563]
[141]
Hamaguchi, T.; Ono, K.; Yamada, M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci. Ther., 2010, 16(5), 285-297.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00147.x] [PMID: 20406252]
[142]
Tian, M.P.; Song, R.X.; Wang, T.; Sun, M.J.; Liu, Y.; Chen, X.G. Inducing sustained release and improving oral bioavailability of curcumin via chitosan derivatives-coated liposomes. Int. J. Biol. Macromol., 2018, 120(Pt A), 702-710.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.146] [PMID: 30170061]
[143]
Hsu, C.Y.; Wang, P.W.; Alalaiwe, A.; Lin, Z.C.; Fang, J.Y. Use of lipid nanocarriers to improve oral delivery of vitamins. Nutrients, 2019, 11(1), 68-97.
[http://dx.doi.org/10.3390/nu11010068] [PMID: 30609658]
[144]
Alexander, A.; Agrawal, M.; Saraf, S.; Saraf, S.; Ajazuddin; Chougule, M.B.; Ajazuddin. Formulation strategies of nano lipid carrier for effective brain targeting of anti-AD drugs. Curr. Pharm. Des., 2020, 26(27), 3269-3280.
[http://dx.doi.org/10.2174/1381612826666200212120947] [PMID: 32048957]
[145]
Tian, C.; Asghar, S.; Wu, Y.; Kambere Amerigos, D.; Chen, Z.; Zhang, M.; Yin, L.; Huang, L.; Ping, Q.; Xiao, Y. N-acetyl-L-cysteine functionalized nanostructured lipid preparation, in vitro and in vivo evaluations. Drug Deliv., 2017, 24, 1605-1616.
[http://dx.doi.org/10.1080/10717544.2017.1391890] [PMID: 29063815]
[146]
Lee, D.; Minko, T. Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier. Pharmaceutics, 2021, 13(12), 2049-2095.
[http://dx.doi.org/10.3390/pharmaceutics13122049] [PMID: 34959331]
[147]
Zhang, W.; Mehta, A.; Tong, Z.; Esser, L.; Voelcker, N.H. Development of polymeric nanoparticles for blood-brain barrier transfer—strategies and challenges. Adv. Sci. (Weinh.), 2021, 8(10), 2003937-2003968.
[http://dx.doi.org/10.1002/advs.202003937] [PMID: 34026447]
[148]
Brookes, A.; Ji, L.; Bradshaw, T.D.; Stocks, M.; Gray, D.; Butler, J.; Gershkovich, P. Is oral lipid-based delivery for drug targeting to the brain feasible? Eur. J. Pharm. Biopharm., 2022, 172, 112-122.
[http://dx.doi.org/10.1016/j.ejpb.2022.02.004] [PMID: 35149190]
[149]
Dhas, N.L.; Kudarha, R.R.; Mehta, T.A. Intranasal delivery of nanotherapeutics/ nanobiotherapeutics for the treatment of Alzheimer’s disease: A proficient approach. Crit. Rev. Ther. Drug Carrier Syst., 2019, 36(5), 373-447.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018026762] [PMID: 32421951]
[150]
Gorain, B.; Rajeswary, D.C.; Pandey, M.; Kesharwani, P.; Kumbhar, S.A.; Choudhury, H. Nose to brain delivery of nanocarriers towards attenuation of demented condition. Curr. Pharm. Des., 2020, 26(19), 2233-2246.
[http://dx.doi.org/10.2174/1381612826666200313125613] [PMID: 32167424]
[151]
Laffleur, F.; Bauer, B. Progress in nasal drug delivery systems. Int. J. Pharm., 2021, 607, 120994-121010.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120994] [PMID: 34390810]
[152]
Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Chougule, M.B.; Shoyele, S.A.; Alexander, A. Nose- to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release, 2018, 281, 139-177.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.011] [PMID: 29772289]
[153]
Fonseca, L.C.; Lopes, J.A.; Vieira, J.; Viegas, C.; Oliveira, C.S.; Hartmann, R.P.; Fonte, P. Intranasal drug delivery for treatment of Alzheimer’s disease. Drug Deliv. Transl. Res., 2021, 11(2), 411-425.
[http://dx.doi.org/10.1007/s13346-021-00940-7] [PMID: 33638130]
[154]
Ghori, M.U.; Mahdi, M.H.; Smith, A.M.; Conway, B.R. Nasal drug delivery systems: An overview. Am. J. Pharmacol. Sci., 2015, 3, 110-119.
[155]
Sood, S.; Jain, K.; Gowthamarajan, K. Intranasal therapeutic strategies for management of Alzheimer’s disease. J. Drug Target., 2014, 22(4), 279-294.
[http://dx.doi.org/10.3109/1061186X.2013.876644] [PMID: 24404923]
[156]
Jain, D.; Rashid, M.A.; Ahmad, F.J. Recent advances in targeted drug delivery approaches using lipidic and polymeric nanocarriers for the management of Alzheimer’s disease. Curr. Pharm. Des., 2021, 27(43), 4388-4403.
[http://dx.doi.org/10.2174/1381612827666210927163258] [PMID: 34579627]
[157]
Yu, S.; Xu, X.; Feng, J.; Liu, M.; Hu, K. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int. J. Pharm., 2019, 560, 282-293.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.012] [PMID: 30772458]
[158]
Meng, Q.; Wang, A.; Hua, H.; Jiang, Y.; Wang, Y.; Mu, H.; Wu, Z.; Sun, K. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int. J. Nanomed., 2018, 13, 705-718.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[159]
Lehr, C.M. Lectin-mediated drug delivery. J. Control. Release, 2000, 65(1-2), 19-29.
[http://dx.doi.org/10.1016/S0168-3659(99)00228-X] [PMID: 10699266]
[160]
Gao, Y.; Almalki, W.H.; Afzal, O.; Panda, S.K.; Kazmi, I.; Alrobaian, M.; Katouah, H.A.; Altamimi, A.S.A.; Al-Abbasi, F.A.; Alshehri, S.; Soni, K.; Ibrahim, I.A.A.; Rahman, M.; Beg, S. Systematic development of lectin conjugated microspheres for nose-to-brain delivery of rivastigmine for the treatment of Alzheimer’s disease. Biomed. Pharmacother., 2021, 141, 111829-111839.
[http://dx.doi.org/10.1016/j.biopha.2021.111829] [PMID: 34147904]
[161]
Chen, Y.; Fan, H.; Xu, C.; Hu, W.; Yu, B. Efficient cholera toxin B subunit-based nanoparticles with MRI capability for drug delivery to the brain following intranasal administration. Macromol. Biosci., 2019, 19(2), 1800340-1800340.
[http://dx.doi.org/10.1002/mabi.201800340]
[162]
Rajput, A.; Butani, S. Donepezil HCl liposomes: Development, characterization, cytotoxicity, and pharmacokinetic study. AAPS PharmSciTech, 2022, 23(2), 74.
[http://dx.doi.org/10.1208/s12249-022-02209-9] [PMID: 35149912]
[163]
Al Harthi, S.; Alavi, S.E.; Radwan, M.A.; El Khatib, M.M.; AlSarra, I.A. Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer’s disease. Sci. Rep., 2019, 9(1), 9563-9582.
[http://dx.doi.org/10.1038/s41598-019-46032-y] [PMID: 31266990]
[164]
Gu, F.; Fan, H.; Cong, Z.; Li, S.; Wang, Y.; Wu, C. Preparation, characterization, and in vivo pharmacokinetics of thermosensitive in situ nasal gel of donepezil hydrochloride. Acta Pharm., 2020, 70(3), 411-422.
[http://dx.doi.org/10.2478/acph-2020-0032] [PMID: 32074067]
[165]
Chen, W.; Li, R.; Zhu, S.; Ma, J.; Pang, L.; Ma, B.; Du, L.; Jin, Y. Nasal timosaponin BII dually sensitive in situ hydrogels for the prevention of Alzheimer’s disease induced by lipopolysaccharides. Int. J. Pharm., 2020, 578, 119115-119123.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119115] [PMID: 32045690]
[166]
Espinoza, L.C.; Vacacela, M.; Clares, B.; Garcia, M.L.; Fabrega, M.J.; Calpena, A.C. Development of a nasal donepezil-loaded microemulsion for the treatment of Alzheimer’s disease: in vitro and ex vivo characterization. CNS Neurol. Disord. Drug Targets, 2018, 17(1), 43-53.
[http://dx.doi.org/10.2174/1871527317666180104122347] [PMID: 29299992]
[167]
Espinoza, L.C.; Silva-Abreu, M.; Clares, B.; Rodríguez-Lagunas, M.J.; Halbaut, L.; Cañas, M.A.; Calpena, A.C. Formulation strategies to improve nose-to-brain delivery of donepezil. Pharmaceutics, 2019, 11(2), 64-79.
[http://dx.doi.org/10.3390/pharmaceutics11020064] [PMID: 30717264]
[168]
Khunt, D.; Shrivas, M.; Polaka, S.; Gondaliya, P.; Misra, M. Role of omega-3 fatty acids and butter oil in targeting delivery of donepezil hydrochloride microemulsion to brain via the intranasal route: A comparative study. AAPS PharmSciTech, 2020, 21(2), 45-55.
[http://dx.doi.org/10.1208/s12249-019-1585-7] [PMID: 31900652]
[169]
Shah, B.M.; Misra, M.; Shishoo, C.J.; Padh, H. Nose to brain microemulsion-based drug delivery system of rivastigmine: Formulation and ex-vivo characterization. Drug Deliv., 2015, 22(7), 918-930.
[http://dx.doi.org/10.3109/10717544.2013.878857] [PMID: 24467601]
[170]
Shah, B.; Khunt, D.; Misra, M.; Padh, H. Formulation and in-vivo pharmacokinetic consideration of intranasal microemulsion and mucoadhesive microemulsion of rivastigmine for brain targeting. Pharm. Res., 2018, 35(1), 8-17.
[http://dx.doi.org/10.1007/s11095-017-2279-z] [PMID: 29294189]
[171]
Kotta, S.; Mubarak Aldawsari, H.; Badr-Eldin, S.M.; Alhakamy, N.A.; Md, S. Coconut oil-based resveratrol nanoemulsion: Optimization using response surface methodology, stability assessment and pharmacokinetic evaluation. Food Chem., 2021, 357, 129721-129733.
[http://dx.doi.org/10.1016/j.foodchem.2021.129721] [PMID: 33866243]
[172]
Kaur, A.; Nigam, K.; Bhatnagar, I.; Sukhpal, H.; Awasthy, S.; Shankar, S.; Tyagi, A.; Dang, S. Treatment of Alzheimer’s diseases using donepezil nanoemulsion: An intranasal approach. Drug Deliv. Transl. Res., 2020, 10(6), 1862-1875.
[http://dx.doi.org/10.1007/s13346-020-00754-z] [PMID: 32297166]
[173]
Phongpradist, R.; Thongchai, W.; Thongkorn, K.; Lekawanvijit, S.; Chittasupho, C. Surface modification of curcumin microemulsions by coupling of KLVFF peptide: A prototype for targeted bifunctional microemulsions. Polymers, 2022, 14(3), 443-453.
[http://dx.doi.org/10.3390/polym14030443] [PMID: 35160433]
[174]
Horsley, J.R.; Jovcevski, B.; Wegener, K.L.; Yu, J.; Pukala, T.L.; Abell, A.D. Rationally designed peptide-based inhibitor of Aβ42 fibril formation and toxicity: A potential therapeutic strategy for Alzheimer’s disease. Biochem. J., 2020, 477(11), 2039-2054.
[http://dx.doi.org/10.1042/BCJ20200290] [PMID: 32427336]
[175]
Huang, Q.; Zhao, Q.; Peng, J.; Yu, Y.; Wang, C.; Zou, Y.; Su, Y.; Zhu, L.; Wang, C.; Yang, Y. Peptide-polyphenol (KLVFF/EGCG) binary modulators for inhibiting aggregation and neurotoxicity of amyloid-β peptide. ACS Omega, 2019, 4(2), 4233-4242.
[http://dx.doi.org/10.1021/acsomega.8b02797]
[176]
Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol., 2009, 41(1), 40-59.
[http://dx.doi.org/10.1016/j.biocel.2008.06.010] [PMID: 18662800]
[177]
Lee, W.H.; Loo, C.Y.; Bebawy, M.; Luk, F.; Mason, R.; Rohanizadeh, R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol., 2013, 11(4), 338-378.
[http://dx.doi.org/10.2174/1570159X11311040002] [PMID: 24381528]
[178]
Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[179]
Ahmadi, N.; Hosseini, M.J.; Rostamizadeh, K.; Anoush, M. Investigation of therapeutic effect of curcumin α and β glucoside anomers against Alzheimer’s disease by the nose to brain drug delivery. Brain Res., 2021, 1766, 147517.
[http://dx.doi.org/10.1016/j.brainres.2021.147517] [PMID: 33991495]
[180]
Arumugam, K.; Subramanian, G.; Mallayasamy, S.; Averineni, R.; Reddy, M.; Udupa, N. A study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharm., 2008, 58(3), 287-297.
[http://dx.doi.org/10.2478/v10007-008-0014-3] [PMID: 19103565]
[181]
Al Asmari, A.K.; Ullah, Z.; Tariq, M.; Fatani, A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des. Devel. Ther., 2016, 10, 205-215.
[PMID: 26834457]
[182]
Nageeb El-Helaly, S.; Abd Elbary, A.; Kassem, M.A.; El-Nabarawi, M.A. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: Preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies. Drug Deliv., 2017, 24(1), 692-700.
[http://dx.doi.org/10.1080/10717544.2017.1309476] [PMID: 28415883]
[183]
Li, W.; Zhou, Y.; Zhao, N.; Hao, B.; Wang, X.; Kong, P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ. Toxicol. Pharmacol., 2012, 34(2), 272-279.
[http://dx.doi.org/10.1016/j.etap.2012.04.012] [PMID: 22613079]
[184]
Kulkarni, P.; Rawtani, D.; Barot, T. Design, development and in-vitro/in-vivo evaluation of intranasally delivered Rivastigmine and N-Acetyl cysteine loaded bifunctional niosomes for applications in combinative treatment of Alzheimer’s disease. Eur. J. Pharm. Biopharm., 2021, 163, 1-15.
[http://dx.doi.org/10.1016/j.ejpb.2021.02.015] [PMID: 33774160]
[185]
Yang, Z.Z.; Zhang, Y.Q.; Wang, Z.Z.; Wu, K.; Lou, J.N.; Qi, X.R. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int. J. Pharm., 2013, 452(1-2), 344-354.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.009] [PMID: 23680731]
[186]
Zheng, X.; Shao, X.; Zhang, C.; Tan, Y.; Liu, Q.; Wan, X.; Zhang, Q.; Xu, S.; Jiang, X. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm. Res., 2015, 32(12), 3837-3849.
[http://dx.doi.org/10.1007/s11095-015-1744-9] [PMID: 26113236]
[187]
Corace, G.; Angeloni, C.; Malaguti, M.; Hrelia, S.; Stein, P.C.; Brandl, M.; Gotti, R.; Luppi, B. Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride. J. Liposome Res., 2014, 24(4), 323-335.
[http://dx.doi.org/10.3109/08982104.2014.899369] [PMID: 24807822]
[188]
Dogterom, P.; Nagelkerke, J.F.; Mulder, G.J. Hepatotoxicity of tetrahydroaminoacridine in isolated rat hepatocytes: Effect of glutathione and vitamin E. Biochem. Pharmacol., 1988, 37(12), 2311-2313.
[http://dx.doi.org/10.1016/0006-2952(88)90356-5] [PMID: 3390201]
[189]
Nacka, F.; Cansell, M.; Méléard, P.; Combe, N. Incorporation of α-tocopherol in marine lipid-based liposomes: in vitro and in vivo studies. Lipids, 2001, 36(12), 1313-1320.
[http://dx.doi.org/10.1007/s11745-001-0846-x] [PMID: 11834082]
[190]
Stough, C.; Downey, L.; Silber, B.; Lloyd, J.; Kure, C.; Wesnes, K.; Camfield, D. The effects of 90-day supplementation with the Omega-3 essential fatty acid docosahexaenoic acid (DHA) on cognitive function and visual acuity in a healthy aging population. Neurobiol. Aging, 2012, 33(4), 824.e1-824.e3.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.03.019] [PMID: 21531481]
[191]
Phillips, M.; Childs, C.; Calder, P.; Rogers, P. No effect of Omega-3 fatty acid supplementation on cognition and mood in individuals with cognitive impairment and probable Alzheimer’s Disease: A randomised controlled trial. Int. J. Mol. Sci., 2015, 16(10), 24600-24613.
[http://dx.doi.org/10.3390/ijms161024600] [PMID: 26501267]
[192]
Rampa, A.; Gobbi, S.; Belluti, F.; Bisi, A. Tackling Alzheimer’s disease with existing drugs: A promising strategy for bypassing obstacles. Curr. Med. Chem., 2021, 28(12), 2305-2327.
[http://dx.doi.org/10.2174/0929867327666200831140745] [PMID: 32867634]
[193]
Qian, S.; He, L.; Wang, Q.; Wong, Y.C.; Mak, M.; Ho, C.Y.; Han, Y.; Zuo, Z. Intranasal delivery of a novel acetylcholinesterase inhibitor HLS-3 for treatment of Alzheimer’s disease. Life Sci., 2018, 207, 428-435.
[http://dx.doi.org/10.1016/j.lfs.2018.06.032] [PMID: 29966606]
[194]
Makhaeva, G.F.; Kovaleva, N.V.; Boltneva, N.P.; Rudakova, E.V.; Lushchekina, S.V.; Astakhova, T.Y.; Serkov, I.V.; Proshin, A.N.; Radchenko, E.V.; Palyulin, V.A.; Korabecny, J.; Soukup, O.; Bachurin, S.O.; Richardson, R.J. Bis-Amiridines as acetylcholinesterase and butyrylcholinesterase inhibitors: n-functionalization determines the multitarget anti-Alzheimer’s activity profile. Molecules, 2022, 27(3), 1060-1084.
[http://dx.doi.org/10.3390/molecules27031060] [PMID: 35164325]
[195]
Makhaeva, G.F.; Serkov, I.V.; Kovaleva, N.V.; Rudakova, E.V.; Boltneva, N.P.; Kochetkova, E.A.; Proshin, A.N.; Bachurin, S.O. Novel conjugates of 4-amino-2,3-polymethylenequinolines and vanillin as potential multitarget agents for AD treatment. Mendeleev Commun., 2021, 31(5), 606-608.
[http://dx.doi.org/10.1016/j.mencom.2021.09.005]
[196]
Burilova, E.A.; Pashirova, T.N.; Zueva, I.V.; Gibadullina, E.M.; Lushchekina, S.V.; Sapunova, A.S.; Kayumova, R.M.; Rogov, A.M.; Evtjugin, V.G.; Sudakov, I.A.; Vyshtakalyuk, A.B.; Voloshina, A.D.; Bukharov, S.V.; Burilov, A.R.; Petrov, K.A.; Zakharova, L.Y.; Sinyashin, O.G. Bi- functional sterically hindered phenol lipid-based delivery systems as potential multi-target agents against Alzheimer’s disease via an intranasal route. Nanoscale, 2020, 12(25), 13757-13770.
[http://dx.doi.org/10.1039/D0NR04037A] [PMID: 32573587]
[197]
Zhao, J.; Xu, N.; Yang, X.; Ling, G.; Zhang, P. The roles of gold nanoparticles in the detection of amyloid-β peptide for Alzheimer’s disease. Colloid Interface Sci. Commun., 2022, 46, 100579-100587.
[http://dx.doi.org/10.1016/j.colcom.2021.100579]
[198]
Daund, V.; Chalke, S.; Sherje, A.P.; Kale, P.P. ROS responsive mesoporous silica nanoparticles for smart drug delivery: A review. J. Drug Deliv. Sci. Technol., 2021, 64, 102599-102612.
[http://dx.doi.org/10.1016/j.jddst.2021.102599]
[199]
Yu, G.; Chen, X. Host-guest chemistry in supramolecular theranostics. Theranostics, 2019, 9(11), 3041-3074.
[http://dx.doi.org/10.7150/thno.31653] [PMID: 31244941]
[200]
Adlard, P.A.; Bush, A.I. Metals and Alzheimer’s disease. J. Alzheimers Dis., 2006, 10(2-3), 145-163.
[http://dx.doi.org/10.3233/JAD-2006-102-303] [PMID: 17119284]
[201]
Nath, A.K.; Dey, S.G. Simultaneous binding of heme and Cu with amyloid β peptides: Active site and reactivities. Dalton Trans., 2022, 51(13), 4986-4999.
[http://dx.doi.org/10.1039/D2DT00162D] [PMID: 35266499]
[202]
Yu, M.; Ryan, T.M.; Ellis, S.; Bush, A.I.; Triccas, J.A.; Rutledge, P.J.; Todd, M.H. Neuroprotective peptide-macrocycle conjugates reveal complex structure-activity relationships in their interactions with amyloid β. Metallomics, 2014, 6(10), 1931-1940.
[http://dx.doi.org/10.1039/C4MT00122B] [PMID: 25132118]
[203]
Xu, W.; Gao, C.; Sun, X.; Tai, W.C.S.; Lung, H.L.; Law, G.L. Design, synthesis and comparison of water-soluble phthalocyanine/porphyrin analogues and their inhibition effects on Aβ42 fibrillization. Inorg. Chem. Front., 2021, 8(14), 3501-3513.
[http://dx.doi.org/10.1039/D1QI00237F]
[204]
Liu, Z.; Ma, M.; Yu, D.; Ren, J.; Qu, X. Target-driven supramolecular self-assembly for selective amyloid-β photooxygenation against Alzheimer’s disease. Chem. Sci. (Camb.), 2020, 11(40), 11003-11008.
[http://dx.doi.org/10.1039/D0SC04984K] [PMID: 34094349]
[205]
Martins, A.F.; Dias, D.M.; Morfin, J.F.; Lacerda, S.; Laurents, D.V.; Tóth, É.; Geraldes, C.F.G.C. Interaction of PiB-derivative metal complexes with beta-amyloid peptides: selective recognition of the aggregated forms. Chemistry, 2015, 21(14), 5413-5422.
[http://dx.doi.org/10.1002/chem.201406152] [PMID: 25712142]
[206]
Razuvayeva, Y.; Kashapov, R.; Zakharova, L. Calixarene-based pure and mixed assemblies for biomedical applications. Supramol. Chem., 2020, 32(3), 178-206.
[http://dx.doi.org/10.1080/10610278.2020.1725515]
[207]
Español, E.; Villamil, M. Calixarenes: Generalities and their role in improving the solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules. Biomolecules, 2019, 9(3), 90-104.
[http://dx.doi.org/10.3390/biom9030090] [PMID: 30841659]
[208]
Wang, Z.; Tao, S.; Dong, X.; Sun, Y. Para-sulfonatocalix[n]arenes inhibit amyloid β-peptide fibrillation and reduce amyloid cytotoxicity. Chem. Asian J., 2017, 12(3), 341-346.
[http://dx.doi.org/10.1002/asia.201601461] [PMID: 27911039]
[209]
Schubert, E.A.; Kayser, V.; Wheate, N.J. Analysis of the interaction of para-sulfonatocalix[8]arene with free amino acids and a six residue segment of β-amyloid peptide as a potential treatment for Alzheimer’s disease. J. Incl. Phenom. Macrocycl. Chem., 2019, 93(3-4), 265-273.
[http://dx.doi.org/10.1007/s10847-018-00879-2]
[210]
Fanizza, E.; Depalo, N.; Fedorenko, S.; Iacobazzi, R.M.; Mukhametshina, A.; Zairov, R.; Salatino, A.; Vischio, F.; Panniello, A.; Laquintana, V.; Curri, M.L.; Mustafina, A.; Denora, N.; Striccoli, M. Green fluorescent terbium (III) complex doped silica nanoparticles. Int. J. Mol. Sci., 2019, 20(13), 3139-3154.
[http://dx.doi.org/10.3390/ijms20133139] [PMID: 31252567]
[211]
Xu, Z.; Jia, S.; Wang, W.; Yuan, Z.; Jan Ravoo, B.; Guo, D.S. Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation. Nat. Chem., 2019, 11(1), 86-93.
[http://dx.doi.org/10.1038/s41557-018-0164-y] [PMID: 30455432]
[212]
Consoli, G.M.L.; Tosto, R.; Baglieri, A.; Petralia, S.; Campagna, T.; Di Natale, G.; Zimbone, S.; Giuffrida, M.L.; Pappalardo, G. Novel peptide-calix[4]arene conjugate inhibits aβ aggregation and rescues neurons from Aβ’s oligomers cytotoxicity in vitro. ACS Chem. Neurosci., 2021, 12(8), 1449-1462.
[http://dx.doi.org/10.1021/acschemneuro.1c00117] [PMID: 33844495]
[213]
Wheate, N.J. Comparative host-guest complex formation of the Alzheimer’s drug memantine with para-sulfonatocalix[n]arenes (n = 4 or 8). J. Incl. Phenom. Macrocycl. Chem., 2021, 101(1-2), 131-137.
[http://dx.doi.org/10.1007/s10847-021-01096-0]
[214]
Ostos, F.J.; Lebrón, J.A.; López-Cornejo, P.; López-López, M.; García-Calderón, M.; García-Calderón, C.B.; Rosado, I.V.; Kalchenko, V.I.; Rodik, R.V.; Moyá, M.L. Self-aggregation in aqueous solution of amphiphilic cationic calix[4]arenes. Potential use as vectors and nanocarriers. J. Mol. Liq., 2020, 304, 112724-112737.
[http://dx.doi.org/10.1016/j.molliq.2020.112724]
[215]
Kumar, R.; Sharma, A.; Singh, H.; Suating, P.; Kim, H.S.; Sunwoo, K.; Shim, I.; Gibb, B.C.; Kim, J.S. Revisiting fluorescent calixarenes: From molecular sensors to smart materials. Chem. Rev., 2019, 119(16), 9657-9721.
[http://dx.doi.org/10.1021/acs.chemrev.8b00605] [PMID: 31306015]
[216]
Feldman, H.H.; Lane, R. Rivastigmine: A placebo controlled trial of twice daily and three times daily regimens in patients with Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 2007, 78(10), 1056-1063.
[http://dx.doi.org/10.1136/jnnp.2006.099424] [PMID: 17353259]
[217]
Hsieh, S.W.; Chen, J.C.; Chen, N.C.; Jhang, K.M.; Wang, W.; Yang, Y.H. Real-world evaluation of tolerability, safety and efficacy of rivastigmine oral solution in patients with mild to moderate Alzheimer’s disease dementia. Clin. Psychopharmacol. Neurosci., 2021, 19(3), 459-469.
[http://dx.doi.org/10.9758/cpn.2021.19.3.459] [PMID: 34294615]
[218]
Lohan, S.; Sharma, T.; Saini, S.; Singh, A.; Kumar, A.; Raza, K.; Kaur, J.; Singh, B. Galactosylated nanoconstructs of berberine with enhanced biopharmaceutical and cognitive potential: A preclinical evidence in Alzheimer‘s disease. J. Drug Deliv. Sci. Technol., 2021, 66, 102695-102704.
[http://dx.doi.org/10.1016/j.jddst.2021.102695]
[219]
Lohan, S.; Sharma, T.; Saini, S.; Swami, R.; Dhull, D.; Beg, S.; Raza, K.; Kumar, A.; Singh, B. QbD-steered development of mixed nanomicelles of galantamine: Demonstration of enhanced brain uptake, prolonged systemic retention and improved biopharmaceutical attributes. Int. J. Pharm., 2021, 600, 120482-120493.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120482] [PMID: 33737096]
[220]
Hanafy, A.S.; Farid, R.M.; Helmy, M.W.; ElGamal, S.S. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: future potential contribution in Alzheimer’s disease management. Drug Deliv., 2016, 23(8), 3111-3122.
[http://dx.doi.org/10.3109/10717544.2016.1153748] [PMID: 26942549]
[221]
Fazil, M.; Md, S.; Haque, S.; Kumar, M.; Baboota, S.; Sahni, J.; Ali, J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur. J. Pharm. Sci., 2012, 47(1), 6-15.
[http://dx.doi.org/10.1016/j.ejps.2012.04.013] [PMID: 22561106]
[222]
Takeuchi, H.; Imamura, K.; Ji, B.; Tsukita, K.; Enami, T.; Takao, K.; Miyakawa, T.; Hasegawa, M.; Sahara, N.; Iwata, N.; Inoue, M.; Hara, H.; Tabira, T.; Ono, M.; Trojanowski, J.Q.; Lee, V.M.Y.; Takahashi, R.; Suhara, T.; Higuchi, M.; Inoue, H. Nasal vaccine delivery attenuates brain pathology and cognitive impairment in tauopathy model mice. NPJ Vaccines, 2020, 5(1), 28-38.
[http://dx.doi.org/10.1038/s41541-020-0172-y] [PMID: 32219000]
[223]
Silva-Abreu, M.; Calpena, A.C.; Andrés-Benito, P.; Aso, E.; Romero, I.A.; Roig-Carles, D.; Gromnicova, R.; Espina, M.; Ferrer, I.; García, M.L.; Male, D. PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer’s disease: In vitro and in vivo studies. Int. J. Nanomed., 2018, 13, 5577-5590.
[http://dx.doi.org/10.2147/IJN.S171490] [PMID: 30271148]
[224]
Saini, S.; Sharma, T.; Jain, A.; Kaur, H.; Katare, O.P.; Singh, B. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence. Colloids Surf. B Biointerfaces, 2021, 205, 111838-101849.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111838] [PMID: 34022704]
[225]
Sadeghi, M.; Ganji, F.; Taghizadeh, S.M.; Daraei, B. Preparation and characterization of rivastigmine transdermal patch based on chitosan microparticles. Iran J. Pharm. Res., 2016, 15, 283-294.
[226]
Kearney, M.C.; Caffarel-Salvador, E.; Fallows, S.J.; McCarthy, H.O.; Donnelly, R.F. Microneedle-mediated delivery of donepezil: Potential for improved treatment options in Alzheimer’s disease. Eur. J. Pharm. Biopharm., 2016, 103, 43-50.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.026] [PMID: 27018330]
[227]
Yoon, S.K.; Bae, K.S.; Hong, D.H.; Kim, S.S.; Choi, Y.K.; Lim, H.S. Pharmacokinetic evaluation by modeling and simulation analysis of a donepezil patch formulation in healthy male volunteers. Drug Des. Devel. Ther., 2020, 14, 1729-1737.
[http://dx.doi.org/10.2147/DDDT.S244957] [PMID: 32440098]
[228]
Kumar, M.; Sharma, P.; Maheshwari, R.; Tekade, M.; Shrivastava, S.K.; Tekade, R.K. Beyond the blood-brain barrier: Facing new challenges and prospects of nanotechnology-mediated targeted delivery to the brain. In: Nanotechnology-based targeted drug delivery systems for brain tumors; Elsevier: Amsterdam, 2018; pp. 397-437.
[229]
Wolfram, J.; Zhu, M.; Yang, Y.; Shen, J.; Gentile, E.; Paolino, D.; Fresta, M.; Nie, G.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y. Safety of nanoparticles in medicine. Curr. Drug Targets, 2015, 16(14), 1671-1681.
[http://dx.doi.org/10.2174/1389450115666140804124808] [PMID: 26601723]
[230]
Bajracharya, R.; Caruso, A.C.; Vella, L.J.; Nisbet, R.M. Current and emerging strategies for enhancing antibody delivery to the brain. Pharmaceutics, 2021, 13(12), 2014-2029.
[http://dx.doi.org/10.3390/pharmaceutics13122014] [PMID: 34959296]
[231]
Cummings, J.; Lee, G.; Nahed, P.; Kambar, M.E.Z.N.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s disease drug development pipeline: 2022. Alzheimers Dement. (N. Y.), 2022, 8(1), e12295-e12318.
[http://dx.doi.org/10.1002/trc2.12295] [PMID: 35516416]
[232]
Kirabali, T.; Rust, R.; Rigotti, S.; Siccoli, A.; Nitsch, R.M.; Kulic, L. Distinct changes in all major components of the neurovascular unit across different neuropathological stages of Alzheimer’s disease. Brain Pathol., 2020, 30(6), 1056-1070.
[http://dx.doi.org/10.1111/bpa.12895] [PMID: 32866303]
[233]
Choi, S.W.; Kim, J. Recent progress in autocatalytic ceria nanoparticles-based translational research on brain diseases. ACS Appl. Nano Mater., 2020, 3(2), 1043-1062.
[http://dx.doi.org/10.1021/acsanm.9b02243]
[234]
Mukherjee, S.; Madamsetty, V.S.; Bhattacharya, D.; Roy Chowdhury, S.; Paul, M.K.; Mukherjee, A. Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv. Funct. Mater., 2020, 30(35), 2003054-2003080.
[http://dx.doi.org/10.1002/adfm.202003054]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy