Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advancements in the Discovery of MDM2/MDM2-p53 Interaction Inhibitors for the Treatment of Cancer

Author(s): Neha Bhatia, Rakesh Khator, Swanand Kulkarni, Yogesh Singh, Pradeep Kumar and Suresh Thareja*

Volume 30, Issue 32, 2023

Published on: 27 December, 2022

Page: [3668 - 3701] Pages: 34

DOI: 10.2174/0929867330666221114103924

Price: $65

Abstract

Discovery of MDM2 and MDM2-p53 interaction inhibitors changed the direction of anticancer research as it is involved in about 50% of cancer cases globally. Not only the inhibition of MDM2 but also its interaction with p53 proved to be an effective strategy in anticancer drug design and development. Various molecules of natural as well as synthetic origin have been reported to possess excellent MDM2 inhibitory potential. The present review discusses the pathophysiology of the MDM2-p53 interaction loop and MDM2/MDM2-p53 interaction inhibitors from literature covering recent patents. Focus has also been put on characteristic features of the active site of the target and its desired interactions with the currently FDA-approved inhibitor. The designing approach of previously reported MDM2/MDM2-p53 interaction inhibitors, their SAR studies, in silico studies, and the biological efficacy of various inhibitors from natural as well as synthetic origins are also elaborated. An attempt is made to cover recently patented MDM2/MDM2- p53 interaction inhibitors.

Keywords: Murine double minute 2 (MDM2), p53, cancer, MDM2-p53 inhibitor, nutlin, biological efficacy.

[1]
Bacher, G.; Beckers, T.; Emig, P.; Klenner, T.; Kutscher, B.; Nickel, B. New small molecule tubulin inhibitors. Pure Appl. Chem., 2001, 73(9), 1459-1464.
[http://dx.doi.org/10.1351/pac200173091459]
[2]
Saijo, N. Preclinical and clinical trials of topoisomerase inhibitors. Ann. N. Y. Acad. Sci., 2000, 922(1), 92-99.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb07028.x] [PMID: 11193928]
[3]
Verma, S.; Singh, A.; Mishra, A. Molecular dynamics investigation on the inhibition of MDM2-p53 interaction by polyphenols. Mol. Inform., 2013, 32(2), 203-212.
[http://dx.doi.org/10.1002/minf.201200113] [PMID: 27481281]
[4]
Vidal, A.; Koff, A. Cell-cycle inhibitors: Three families united by a common cause. Gene, 2000, 247(1-2), 1-15.
[http://dx.doi.org/10.1016/S0378-1119(00)00092-5] [PMID: 10773440]
[5]
Sharon Kemp; Brodie, C.R.; Collins, J.G.; Kemp, S.; Aldrich-Wright, J.R. DNA intercalators in cancer therapy: Organic and inorganic drugs and their spectroscopic tools of analysis. Mini Rev. Med. Chem., 2007, 7(6), 627-648.
[http://dx.doi.org/10.2174/138955707780859413] [PMID: 17584161]
[6]
Yu, W.; Simmons-Menchaca, M.; Gapor, A.; Sanders, B.G.; Kline, K. Induction of apoptosis in human breast cancer cells by tocopherols and tocotrienols. Nutr. Cancer, 1999, 33(1), 26-32.
[http://dx.doi.org/10.1080/01635589909514744] [PMID: 10227040]
[7]
Cahilly-Snyder, L.; Yang-Feng, T.; Francke, U.; George, D.L. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat. Cell Mol. Genet., 1987, 13(3), 235-244.
[http://dx.doi.org/10.1007/BF01535205] [PMID: 3474784]
[8]
Brooks, C.L.; Gu, W. p53 ubiquitination: MDM2 and beyond. Mol. Cell, 2006, 21(3), 307-315.
[http://dx.doi.org/10.1016/j.molcel.2006.01.020] [PMID: 16455486]
[9]
Momand, J.; Wu, H.H.; Dasgupta, G. MDM2 - master regulator of the p53 tumor suppressor protein. Gene, 2000, 242(1-2), 15-29.
[http://dx.doi.org/10.1016/S0378-1119(99)00487-4] [PMID: 10721693]
[10]
Chen, L.; Yin, H.; Farooqi, B.; Sebti, S.; Hamilton, A.D.; Chen, J. p53 α-Helix mimetics antagonize p53/MDM2 interaction and activate p53. Mol. Cancer Ther., 2005, 4(6), 1019-1025.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0342] [PMID: 15956260]
[11]
Wu, H.; Leng, R.P. UBE4B, a ubiquitin chain assembly factor, is required for MDM2-mediated p53 polyubiquitination and degradation. Cell Cycle, 2011, 10(12), 1912-1915.
[http://dx.doi.org/10.4161/cc.10.12.15882] [PMID: 21558803]
[12]
Oliner, J.D.; Saiki, A.Y.; Caenepeel, S. The role of MDM2 amplification and overexpression in tumorigenesis. Cold Spring Harb. Perspect. Med., 2016, 6(6), a026336.
[http://dx.doi.org/10.1101/cshperspect.a026336] [PMID: 27194168]
[13]
Strachan, T.; Read, A.P. Cancer Genetics. Human Molecular Genetics 2nd ed;Wiley-Liss: New York. 1999, pp, 427-444.
[14]
Levine, A.J.; Oren, M. The first 30 years of p53: Growing ever more complex. Nat. Rev. Cancer, 2009, 9(10), 749-758.
[http://dx.doi.org/10.1038/nrc2723] [PMID: 19776744]
[15]
Carr, M.I.; Jones, S.N. Regulation of the MDM2-p53 signaling axis in the DNA damage response and tumorigenesis. Transl. Cancer Res., 2016, 5(6), 707-724.
[http://dx.doi.org/10.21037/tcr.2016.11.75] [PMID: 28690977]
[16]
Hou, H.; Sun, D.; Zhang, X. The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell Int., 2019, 19(1), 216.
[http://dx.doi.org/10.1186/s12935-019-0937-4] [PMID: 31440117]
[17]
Wade, M.; Li, Y.C.; Matani, A.S.; Braun, S.M.G.; Milanesi, F.; Rodewald, L.W.; Wahl, G.M. Functional analysis and consequences of Mdm2 E3 ligase inhibition in human tumor cells. Oncogene, 2012, 31(45), 4789-4797.
[http://dx.doi.org/10.1038/onc.2011.625] [PMID: 22266850]
[18]
Blattner, C.; Hay, T.; Meek, D.W.; Lane, D.P. Hypophosphorylation of Mdm2 augments p53 stability. Mol. Cell. Biol., 2002, 22(17), 6170-6182.
[http://dx.doi.org/10.1128/MCB.22.17.6170-6182.2002] [PMID: 12167711]
[19]
Iwakuma, T.; Lozano, G. MDM2, an introduction. Mol. Cancer Res., 2003, 1(14), 993-1000.
[PMID: 14707282]
[20]
Michael, D. The p53–Mdm2 Module and the Ubiquitin System, Seminars in Cancer Biology; Elsevier; Amsterdam, 2003, pp. 49-58.
[21]
Gupta, A.; Shah, K.; Oza, M.J.; Behl, T. Reactivation of p53 gene by MDM2 inhibitors: A novel therapy for cancer treatment. Biomed. Pharmacother., 2019, 109, 484-492.
[http://dx.doi.org/10.1016/j.biopha.2018.10.155] [PMID: 30551517]
[22]
Peng, Y.; Chen, L.; Li, C.; Lu, W.; Chen, J. Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization. J. Biol. Chem., 2001, 276(44), 40583-40590.
[http://dx.doi.org/10.1074/jbc.M102817200] [PMID: 11507088]
[23]
May, P.; May, E. Twenty years of p53 research: Structural and functional aspects of the p53 protein. Oncogene, 1999, 18(53), 7621-7636.
[http://dx.doi.org/10.1038/sj.onc.1203285] [PMID: 10618702]
[24]
Chang, F.; Syrjänen, S.; Kurvinen, K.; Syrjänen, K. The p53 tumor suppressor gene as a common cellular target in human carcinogenesis. Am. J. Gastroenterol., 1993, 88(2), 174-186.
[PMID: 8424417]
[25]
Vousden, K.H.; Prives, C. Blinded by the light: The growing complexity of p53. Cell, 2009, 137(3), 413-431.
[http://dx.doi.org/10.1016/j.cell.2009.04.037] [PMID: 19410540]
[26]
Toufektchan, E.; Toledo, F. The guardian of the genome revisited: p53 downregulates genes required for telomere maintenance, DNA repair, and centromere structure. Cancers, 2018, 10(5), 135.
[http://dx.doi.org/10.3390/cancers10050135] [PMID: 29734785]
[27]
Momand, J.; Zambetti, G. P.; Olson, D. C.; George, D.; Levine, A. J. The MDM-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. cell, 1992, 69(7), 1237-1245.
[28]
Haupt, Y.; Maya, R.; Kazaz, A.; Oren, M. Mdm2 promotes the rapid degradation of p53. Nature, 1997, 387(6630), 296-299.
[http://dx.doi.org/10.1038/387296a0] [PMID: 9153395]
[29]
Leng, P.; Brown, D.R.; Shivakumar, C.V.; Deb, S.; Deb, S.P. N-terminal 130 amino acids of MDM2 are sufficient to inhibit p53-mediated transcriptional activation. Oncogene, 1995, 10(7), 1275-1282.
[PMID: 7731677]
[30]
Perry, M.E.; Piette, J.; Zawadzki, J.A.; Harvey, D.; Levine, A.J. The mdm-2 gene is induced in response to UV light in a p53-dependent manner. Proc. Natl. Acad. Sci. USA, 1993, 90(24), 11623-11627.
[http://dx.doi.org/10.1073/pnas.90.24.11623] [PMID: 8265599]
[31]
Shangary, S.; Wang, S. Targeting the MDM2-p53 interaction for cancer therapy. Clin. Cancer Res., 2008, 14(17), 5318-5324.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5136] [PMID: 18765522]
[32]
Sakurai, K.; Chung, H.S.; Kahne, D. Use of a retroinverso p53 peptide as an inhibitor of MDM2. J. Am. Chem. Soc., 2004, 126(50), 16288-16289.
[http://dx.doi.org/10.1021/ja044883w] [PMID: 15600307]
[33]
Van Maerken, T.; Vandesompele, J.; Rihani, A.; De Paepe, A.; Speleman, F. Escape from p53-mediated tumor surveillance in neuroblastoma: Switching off the p14ARF-MDM2-p53 axis. Cell Death Differ., 2009, 16(12), 1563-1572.
[http://dx.doi.org/10.1038/cdd.2009.138] [PMID: 19779493]
[34]
Zhao, Y.; Aguilar, A.; Bernard, D.; Wang, S. Small molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 Inhibitors) in clinical trials for cancer treatment. J. Med. Chem., 2015, 58(3), 1038-1052.
[http://dx.doi.org/10.1021/jm501092z] [PMID: 25396320]
[35]
Lézard, L. Ascentage Pharma's MDM2-p53 inhibitor APG-115 (Alrizomadlin) granted an orphan drug designation by the FDA for the treatment of stage IIB-IV melanoma, marking the twelfth obtained by the company. Available from: https://www.prnewswire.com/news/ascentage-pharma/
[36]
Tolcher, A.W.; Reeves, J.A.; McKean, M.; Chmielowski, B.; Beck, J.T.; Shaheen, M.F.; Somaiah, N.; Wilson, M.; Spira, A.I.; Drabick, J.J.; Tang, Y.; Winkler, R.; Li, M.; Ahmad, M.; Lu, M.; Liang, Z.; Yang, D.; Zhai, Y. Preliminary results of a phase II study of alrizomadlin (APG-115), a novel, small-molecule MDM2 inhibitor, in combination with pembrolizumab in patients (pts) with unresectable or metastatic melanoma or advanced solid tumors that have failed immuno-oncologic (I-O) drugs. J. Clin. Oncol., 2021, 39(15 Suppl.), 2506.
[http://dx.doi.org/10.1200/JCO.2021.39.15_suppl.2506]
[37]
McKean, M.; Tolcher, A.W.; Reeves, J.A.; Chmielowski, B.; Shaheen, M.F.; Beck, J.T.; Orloff, M.M.; Somaiah, N.; Van Tine, B.A.; Drabick, J.J. Newly updated activity results of alrizomadlin (APG-115), a novel MDM2/p53 inhibitor, plus pembrolizumab: Phase 2 study in adults and children with various solid tumors. Am. Soc. Clin. Oncol., 2022, 40(16), 9517-9517.
[38]
Aguilar, A.; Lu, J.; Liu, L.; Du, D.; Bernard, D.; McEachern, D.; Przybranowski, S.; Li, X.; Luo, R.; Wen, B.; Sun, D.; Wang, H.; Wen, J.; Wang, G.; Zhai, Y.; Guo, M.; Yang, D.; Wang, S. Discovery of 4-((3′ R, 4′ S, 5′ R )-6″-Chloro-4′-(3-chloro-2-fluorophenyl)-1′-ethyl-2″-oxodispiro[cyclohexane-1,2′-pyrrolidine-3′,3″-indoline]-5′-carboxamido)bicyclo[2.2.2]octane-1-carboxylic Acid (AA-115/APG-115): A potent and orally active murine double minute 2 (MDM2) inhibitor in clinical development. J. Med. Chem., 2017, 60(7), 2819-2839.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01665] [PMID: 28339198]
[39]
Kuznar, W. Unique immunotherapy combos evaluated in advanced melanoma. Target Ther Oncol, 2021, 10, 10.
[40]
Zhai, Y.; Wang, J. 450 Trial in progress: A phase 1b study of alrizomadlin, alone or plus 5-azacitidine or cytarabine, in pts with relapsed/refractory acute myeloid leukemia and relapsed higher-risk myelodysplastic syndrome. J. Immunother. Cancer, 2021, 9(Suppl. 2), A478-A478.
[http://dx.doi.org/10.1136/jitc-2021-SITC2021.450]
[41]
Wang, W.; Zhang, X.; Qin, J.J.; Voruganti, S.; Nag, S.A.; Wang, M.H.; Wang, H.; Zhang, R. Natural product ginsenoside 25-OCH3-PPD inhibits breast cancer growth and metastasis through down-regulating MDM2. PLoS One, 2012, 7(7), e41586.
[http://dx.doi.org/10.1371/journal.pone.0041586] [PMID: 22911819]
[42]
Malloy, K.L.; Choi, H.; Fiorilla, C.; Valeriote, F.A.; Matainaho, T.; Gerwick, W.H. Hoiamide D, a marine cyanobacteria-derived inhibitor of p53/MDM2 interaction. Bioorg. Med. Chem. Lett., 2012, 22(1), 683-688.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.054] [PMID: 22104152]
[43]
Vogel, S.M.; Bauer, M.R.; Joerger, A.C.; Wilcken, R.; Brandt, T.; Veprintsev, D.B.; Rutherford, T.J.; Fersht, A.R.; Boeckler, F.M. Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2. Proc. Natl. Acad. Sci. USA, 2012, 109(42), 16906-16910.
[http://dx.doi.org/10.1073/pnas.1215060109] [PMID: 23035244]
[44]
Huang, M.; Zhang, H.; Liu, T.; Tian, D.; Gu, L.; Zhou, M. Triptolide inhibits MDM2 and induces apoptosis in acute lymphoblastic leukemia cells through a p53-independent pathway. Mol. Cancer Ther., 2013, 12(2), 184-194.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0425] [PMID: 23243057]
[45]
Dung, T.D.; Day, C.H.; Binh, T.V.; Lin, C.H.; Hsu, H.H.; Su, C.C.; Lin, Y.M.; Tsai, F.J.; Kuo, W.W.; Chen, L.M.; Huang, C.Y. PP2A mediates diosmin p53 activation to block HA22T cell proliferation and tumor growth in xenografted nude mice through PI3K–Akt–MDM2 signaling suppression. Food Chem. Toxicol., 2012, 50(5), 1802-1810.
[http://dx.doi.org/10.1016/j.fct.2012.01.021] [PMID: 22289577]
[46]
Jin, L.; Li, C.; Xu, Y.; Wang, L.; Liu, J.; Wang, D.; Hong, C.; Jiang, Z.; Ma, Y.; Chen, Q.; Yu, F. Epigallocatechin gallate promotes p53 accumulation and activity via the inhibition of MDM2-mediated p53 ubiquitination in human lung cancer cells. Oncol. Rep., 2013, 29(5), 1983-1990.
[http://dx.doi.org/10.3892/or.2013.2343] [PMID: 23483203]
[47]
Leão, M.; Gomes, S.; Pedraza-Chaverri, J.; Machado, N.; Sousa, E.; Pinto, M.; Inga, A.; Pereira, C.; Saraiva, L. Α-mangostin and gambogic acid as potential inhibitors of the p53-MDM2 interaction revealed by a yeast approach. J. Nat. Prod., 2013, 76(4), 774-778.
[http://dx.doi.org/10.1021/np400049j] [PMID: 23540934]
[48]
Proietti, S.; Cucina, A.; Dobrowolny, G.; D’Anselmi, F.; Dinicola, S.; Masiello, M.G.; Pasqualato, A.; Palombo, A.; Morini, V.; Reiter, R.J.; Bizzarri, M. Melatonin down-regulates MDM2 gene expression and enhances p53 acetylation in MCF-7 cells. J. Pineal Res., 2014, 57(1), 120-129.
[http://dx.doi.org/10.1111/jpi.12150] [PMID: 24920214]
[49]
Tin, A.S.; Park, A.H.; Sundar, S.N.; Firestone, G.L. Essential role of the cancer stem/progenitor cell marker nucleostemin for indole-3-carbinol anti-proliferative responsiveness in human breast cancer cells. BMC Biol., 2014, 12(1), 72.
[http://dx.doi.org/10.1186/s12915-014-0072-6] [PMID: 25209720]
[50]
Qin, J.J.; Wang, W.; Voruganti, S.; Wang, H.; Zhang, W.D.; Zhang, R. Identification of a new class of natural product MDM2 inhibitor: In vitro and in vivo anti-breast cancer activities and target validation. Oncotarget, 2015, 6(5), 2623-2640.
[http://dx.doi.org/10.18632/oncotarget.3098] [PMID: 25739118]
[51]
Borah, D.; Gogoi, D.; Yadav, R.N.S. Computer aided screening, docking and ADME study of mushroom derived compounds as MDM2 inhibitor, a novel approach. Natl. Acad. Sci. Lett., 2015, 38(6), 469-473.
[http://dx.doi.org/10.1007/s40009-015-0366-4]
[52]
Leão, M.; Soares, J.; Gomes, S.; Raimundo, L.; Ramos, H.; Bessa, C.; Queiroz, G.; Domingos, S.; Pinto, M.; Inga, A.; Cidade, H.; Saraiva, L. Enhanced cytotoxicity of prenylated chalcone against tumour cells via disruption of the p53–MDM2 interaction. Life Sci., 2015, 142, 60-65.
[http://dx.doi.org/10.1016/j.lfs.2015.10.015] [PMID: 26475964]
[53]
Cominetti, M.M.D.; Goffin, S.A.; Raffel, E.; Turner, K.D.; Ramoutar, J.C.; O’Connell, M.A.; Howell, L.A.; Searcey, M. Identification of a new p53/MDM2 inhibitor motif inspired by studies of chlorofusin. Bioorg. Med. Chem. Lett., 2015, 25(21), 4878-4880.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.014] [PMID: 26115576]
[54]
Muhseen, Z.T.; Li, G. Promising terpenes as natural antagonists of cancer: An in-silico approach. Molecules, 2019, 25(1), 155.
[http://dx.doi.org/10.3390/molecules25010155] [PMID: 31906032]
[55]
Woo, S.M.; Choi, Y.K.; Kim, A.J.; Cho, S.G.; Ko, S.G. p53 causes butein-mediated apoptosis of chronic myeloid leukemia cells. Mol. Med. Rep., 2016, 13(2), 1091-1096.
[http://dx.doi.org/10.3892/mmr.2015.4672] [PMID: 26676515]
[56]
Qin, J-J.; Sarkar, S.; Voruganti, S.; Agarwal, R.; Wang, W.; Zhang, R. Identification of lineariifolianoid A as a novel dual NFAT1 and MDM2 inhibitor for human cancer therapy. J. Biomed. Res., 2016, 30(4), 322-333.
[PMID: 27533941]
[57]
Qin, J.J.; Wang, W.; Sarkar, S.; Voruganti, S.; Agarwal, R.; Zhang, R. Inulanolide A as a new dual inhibitor of NFAT1-MDM2 pathway for breast cancer therapy. Oncotarget, 2016, 7(22), 32566-32578.
[http://dx.doi.org/10.18632/oncotarget.8873] [PMID: 27105525]
[58]
Verma, S.; Grover, S.; Tyagi, C.; Goyal, S.; Jamal, S.; Singh, A.; Grover, A. Hydrophobic interactions are a key to MDM2 inhibition by polyphenols as revealed by molecular dynamics simulations and MM/PBSA free energy calculations. PLoS One, 2016, 11(2), e0149014.
[http://dx.doi.org/10.1371/journal.pone.0149014] [PMID: 26863418]
[59]
Noguchi, T.; Oishi, S.; Honda, K.; Kondoh, Y.; Saito, T.; Ohno, H.; Osada, H.; Fujii, N. Screening of a virtual mirror-image library of natural products. Chem. Commun. (Camb.), 2016, 52(49), 7653-7656.
[http://dx.doi.org/10.1039/C6CC03114E] [PMID: 27198617]
[60]
Kong, Y.; Lu, Z.L.; Wang, J.J.; Zhou, R.; Guo, J.; Liu, J.; Sun, H.L.; Wang, H.; Song, W.; Yang, J.; Xu, H.X. Platycodin D, a metabolite of Platycodin grandiflorum, inhibits highly metastatic MDA-MB-231 breast cancer growth in vitro and in vivo by targeting the MDM2 oncogene. Oncol. Rep., 2016, 36(3), 1447-1456.
[http://dx.doi.org/10.3892/or.2016.4935] [PMID: 27432230]
[61]
Singh, A.K.; Chauhan, S.S.; Singh, S.K.; Verma, V.V.; Singh, A.; Arya, R.K.; Maheshwari, S.; Akhtar, M.S.; Sarkar, J.; Rangnekar, V.M.; Chauhan, P.M.S.; Datta, D. Dual targeting of MDM2 with a novel small-molecule inhibitor overcomes TRAIL resistance in cancer. Carcinogenesis, 2016, 37(11), 1027-1040.
[http://dx.doi.org/10.1093/carcin/bgw088] [PMID: 27543608]
[62]
Jing, B.; Liu, M.; Yang, L.; Cai, H.; Chen, J.; Li, Z.; Kou, X.; Wu, Y.; Qin, D.; Zhou, L.; Jin, J.; Lei, H.; Xu, H.; Wang, W.; Wu, Y. Characterization of naturally occurring pentacyclic triterpenes as novel inhibitors of deubiquitinating protease USP7 with anticancer activity in vitro. Acta Pharmacol. Sin., 2018, 39(3), 492-498.
[http://dx.doi.org/10.1038/aps.2017.119] [PMID: 29168472]
[63]
Ishiba, H.; Noguchi, T.; Shu, K.; Ohno, H.; Honda, K.; Kondoh, Y.; Osada, H.; Fujii, N.; Oishi, S. Investigation of the inhibitory mechanism of apomorphine against MDM2–p53 interaction. Bioorg. Med. Chem. Lett., 2017, 27(11), 2571-2574.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.082] [PMID: 28400230]
[64]
Riaz, M.; Ashfaq, U.A.; Qasim, M.; Yasmeen, E.; Ul Qamar, M.T.; Anwar, F. Screening of medicinal plant phytochemicals as natural antagonists of p53–MDM2 interaction to reactivate p53 functioning. Anticancer Drugs, 2017, 28(9), 1032-1038.
[http://dx.doi.org/10.1097/CAD.0000000000000548] [PMID: 28723868]
[65]
Wang, W.; Qin, J.J.; Li, X.; Tao, G.; Wang, Q.; Wu, X.; Zhou, J.; Zi, X.; Zhang, R. Prevention of prostate cancer by natural product MDM2 inhibitor GS25: In vitro and in vivo activities and molecular mechanisms. Carcinogenesis, 2018, 39(8), 1026-1036.
[http://dx.doi.org/10.1093/carcin/bgy063] [PMID: 29762656]
[66]
Pawar, A.C. Targeting p53-MDM2 interaction by natural plant products: A novel approach for future cancer therapy. Int. J. Life Sci. Scienti. Res, 2017, 3(2), 940-950.
[67]
Gu, L.; Zhang, H.; Liu, T.; Draganov, A.; Yi, S.; Wang, B.; Zhou, M. Inhibition of MDM2 by a rhein-derived compound AQ-101 suppresses cancer development in SCID mice. Mol. Cancer Ther., 2018, 17(2), 497-507.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0566] [PMID: 29282301]
[68]
Akhtar, S.; Khan, M.K.A.; Arif, J.M. Evaluation and elucidation studies of natural aglycones for anticancer potential using apoptosis-related markers: An in silico study. Interdiscip. Sci., 2018, 10(2), 297-310.
[http://dx.doi.org/10.1007/s12539-016-0191-6] [PMID: 27709544]
[69]
Gong, H.; An, J.; Dong, Q.; Li, J.; Yang, W.; Sun, W.; Su, Z.; Zhang, S. Discovery of SCY45, a natural small-molecule MDM2-p53 interaction inhibitor. Chem. Biodivers., 2019, 16(6), cbdv.201900081.
[http://dx.doi.org/10.1002/cbdv.201900081] [PMID: 30989812]
[70]
Ilic, V.; Egorova, O.; Tsang, E.; Gatto, M.; Yi, W.; Zhao, Y.; Sheng, Y. Bioflavonoid Hinokiflavone is a novel MDM2 inhibitor. Available from: https://sciforum.net/manuscripts/9208/slides.pdf
[71]
Ilic, V.K. Investigating the Anti-Cancer Effects of Small Molecule MEI-1 as a Potential MDM2 Inhibitor. Master's Thesis, York University, Torento, Canada, 2021. Available from: https://yorkspace.library.yorku.ca/xmlui/handle/10315/38638
[72]
Verma, S.; Pandey, A.K. Epicatechin an incredible tool to dissociate MDM2-p53 interaction for treatment of glioblastomas: A molecular docking and molecular dynamics simulation approach. Netw. Model. Anal. Health Inform. Bioinform., 2021, 10(1), 6.
[http://dx.doi.org/10.1007/s13721-021-00286-7] [PMID: 34849327]
[73]
Liu, L.; Xu, Z.; Yu, B.; Tao, L.; Cao, Y. Berbamine inhibits cell proliferation and migration and induces cell death of lung cancer cells via regulating c-Maf, PI3K/Akt, and MDM2-P53 pathways. Evid.-Based Complement. Altern. Med., 2021, 2021, 5517143.
[74]
Huang, H.; Park, S.; Zhang, H.; Park, S.; Kwon, W.; Kim, E.; Zhang, X.; Jang, S.; Yoon, D.; Choi, S.K.; Yi, J.; Kim, S.; Dong, Z.; Lee, M.; Ryoo, Z.; Kim, M.O. Targeting AKT with costunolide suppresses the growth of colorectal cancer cells and induces apoptosis in vitro and in vivo. J. Exp. Clin. Cancer Res., 2021, 40(1), 114.
[http://dx.doi.org/10.1186/s13046-021-01895-w] [PMID: 33785035]
[75]
Zhang, Z.; Chu, X.J.; Liu, J.J.; Ding, Q.; Zhang, J.; Bartkovitz, D.; Jiang, N.; Karnachi, P.; So, S.S.; Tovar, C.; Filipovic, Z.M.; Higgins, B.; Glenn, K.; Packman, K.; Vassilev, L.; Graves, B. Discovery of potent and orally active p53-MDM2 inhibitors RO5353 and RO2468 for potential clinical development. ACS Med. Chem. Lett., 2014, 5(2), 124-127.
[http://dx.doi.org/10.1021/ml400359z] [PMID: 24900784]
[76]
Arnhold, V.; Schmelz, K.; Proba, J.; Winkler, A.; Wünschel, J.; Toedling, J.; Deubzer, H.E.; Künkele, A.; Eggert, A.; Schulte, J.H.; Hundsdoerfer, P. Reactivating TP53 signaling by the novel MDM2 inhibitor DS-3032b as a therapeutic option for high-risk neuroblastoma. Oncotarget, 2018, 9(2), 2304-2319.
[http://dx.doi.org/10.18632/oncotarget.23409] [PMID: 29416773]
[77]
Ding, Q.; Zhang, Z.; Liu, J.J.; Jiang, N.; Zhang, J.; Ross, T.M.; Chu, X.J.; Bartkovitz, D.; Podlaski, F.; Janson, C.; Tovar, C.; Filipovic, Z.M.; Higgins, B.; Glenn, K.; Packman, K.; Vassilev, L.T.; Graves, B. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J. Med. Chem., 2013, 56(14), 5979-5983.
[http://dx.doi.org/10.1021/jm400487c] [PMID: 23808545]
[78]
Zhou, Z.; Zalutsky, M.R.; Chitneni, S.K. Fluorine-18 labeling of the MDM2 inhibitor RG7388 for PET imaging: Chemistry and preliminary evaluation. Mol. Pharm., 2021, 18(10), 3871-3881.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00531] [PMID: 34523337]
[79]
Vu, B.; Wovkulich, P.; Pizzolato, G.; Lovey, A.; Ding, Q.; Jiang, N.; Liu, J.J.; Zhao, C.; Glenn, K.; Wen, Y.; Tovar, C.; Packman, K.; Vassilev, L.; Graves, B. Discovery of RG7112: A small-molecule MDM2 inhibitor in clinical development. ACS Med. Chem. Lett., 2013, 4(5), 466-469.
[http://dx.doi.org/10.1021/ml4000657] [PMID: 24900694]
[80]
He, S.; Dong, G.; Wu, S.; Fang, K.; Miao, Z.; Wang, W.; Sheng, C. Small molecules simultaneously inhibiting p53-murine double minute 2 (MDM2) interaction and histone deacetylases (HDACs): Discovery of novel multitargeting antitumor agents. J. Med. Chem., 2018, 61(16), 7245-7260.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00664] [PMID: 30045621]
[81]
Dong, G.; He, S.; Qin, X.; Liu, T.; Jiang, Y.; Li, X.; Chen, L.; Han, G.; Sheng, C.; Li, M. Discovery of nonpeptide, environmentally sensitive fluorescent probes for imaging p53-MDM2 interactions in living cell lines and tissue slice. Anal. Chem., 2020, 92(3), 2642-2648.
[http://dx.doi.org/10.1021/acs.analchem.9b04551] [PMID: 31918545]
[82]
Zhuang, C.; Miao, Z.; Wu, Y.; Guo, Z.; Li, J.; Yao, J.; Xing, C.; Sheng, C.; Zhang, W. Double-edged swords as cancer therapeutics: Novel, orally active, small molecules simultaneously inhibit p53-MDM2 interaction and the NF-κB pathway. J. Med. Chem., 2014, 57(3), 567-577.
[http://dx.doi.org/10.1021/jm401800k] [PMID: 24428757]
[83]
Zhuang, C.; Miao, Z.; Zhu, L.; Dong, G.; Guo, Z.; Wang, S.; Zhang, Y.; Wu, Y.; Yao, J.; Sheng, C.; Zhang, W. Discovery, synthesis, and biological evaluation of orally active pyrrolidone derivatives as novel inhibitors of p53-MDM2 protein-protein interaction. J. Med. Chem., 2012, 55(22), 9630-9642.
[http://dx.doi.org/10.1021/jm300969t] [PMID: 23046248]
[84]
Konopleva, M.; Martinelli, G.; Daver, N.; Papayannidis, C.; Wei, A.; Higgins, B.; Ott, M.; Mascarenhas, J.; Andreeff, M. MDM2 inhibition: An important step forward in cancer therapy. Leukemia, 2020, 34(11), 2858-2874.
[http://dx.doi.org/10.1038/s41375-020-0949-z] [PMID: 32651541]
[85]
Rew, Y.; Sun, D.; Gonzalez-Lopez De Turiso, F.; Bartberger, M.D.; Beck, H.P.; Canon, J.; Chen, A.; Chow, D.; Deignan, J.; Fox, B.M.; Gustin, D.; Huang, X.; Jiang, M.; Jiao, X.; Jin, L.; Kayser, F.; Kopecky, D.J.; Li, Y.; Lo, M.C.; Long, A.M.; Michelsen, K.; Oliner, J.D.; Osgood, T.; Ragains, M.; Saiki, A.Y.; Schneider, S.; Toteva, M.; Yakowec, P.; Yan, X.; Ye, Q.; Yu, D.; Zhao, X.; Zhou, J.; Medina, J.C.; Olson, S.H. Structure-based design of novel inhibitors of the MDM2-p53 interaction. J. Med. Chem., 2012, 55(11), 4936-4954.
[http://dx.doi.org/10.1021/jm300354j] [PMID: 22524527]
[86]
Rew, Y.; Sun, D. Discovery of a small molecule MDM2 inhibitor (AMG 232) for treating cancer. J. Med. Chem., 2014, 57(15), 6332-6341.
[http://dx.doi.org/10.1021/jm500627s] [PMID: 24967612]
[87]
Gonzalez, A.Z.; Li, Z.; Beck, H.P.; Canon, J.; Chen, A.; Chow, D.; Duquette, J.; Eksterowicz, J.; Fox, B.M.; Fu, J.; Huang, X.; Houze, J.; Jin, L.; Li, Y.; Ling, Y.; Lo, M.C.; Long, A.M.; McGee, L.R.; McIntosh, J.; Oliner, J.D.; Osgood, T.; Rew, Y.; Saiki, A.Y.; Shaffer, P.; Wortman, S.; Yakowec, P.; Yan, X.; Ye, Q.; Yu, D.; Zhao, X.; Zhou, J.; Olson, S.H.; Sun, D.; Medina, J.C. Novel inhibitors of the MDM2-p53 interaction featuring hydrogen bond acceptors as carboxylic acid isosteres. J. Med. Chem., 2014, 57(7), 2963-2988.
[http://dx.doi.org/10.1021/jm401911v] [PMID: 24601644]
[88]
Yu, M.; Wang, Y.; Zhu, J.; Bartberger, M.D.; Canon, J.; Chen, A.; Chow, D.; Eksterowicz, J.; Fox, B.; Fu, J.; Gribble, M.; Huang, X.; Li, Z.; Liu, J.J.; Lo, M.; McMinn, D.; Oliner, J.D.; Osgood, T.; Rew, Y.; Saiki, A.Y.; Shaffer, P.; Yan, X.; Ye, Q.; Yu, D.; Zhao, X.; Zhou, J.; Olson, S.H.; Medina, J.C.; Sun, D. Discovery of potent and simplified piperidinone-based inhibitors of the MDM2–p53 interaction. ACS Med. Chem. Lett., 2014, 5(8), 894-899.
[http://dx.doi.org/10.1021/ml500142b] [PMID: 25147610]
[89]
Gonzalez, A.Z.; Eksterowicz, J.; Bartberger, M.D.; Beck, H.P.; Canon, J.; Chen, A.; Chow, D.; Duquette, J.; Fox, B.M.; Fu, J.; Huang, X.; Houze, J.B.; Jin, L.; Li, Y.; Li, Z.; Ling, Y.; Lo, M.C.; Long, A.M.; McGee, L.R.; McIntosh, J.; McMinn, D.L.; Oliner, J.D.; Osgood, T.; Rew, Y.; Saiki, A.Y.; Shaffer, P.; Wortman, S.; Yakowec, P.; Yan, X.; Ye, Q.; Yu, D.; Zhao, X.; Zhou, J.; Olson, S.H.; Medina, J.C.; Sun, D. Selective and potent morpholinone inhibitors of the MDM2-p53 protein-protein interaction. J. Med. Chem., 2014, 57(6), 2472-2488.
[http://dx.doi.org/10.1021/jm401767k] [PMID: 24548297]
[90]
Rew, Y.; Sun, D.; Yan, X.; Beck, H.P.; Canon, J.; Chen, A.; Duquette, J.; Eksterowicz, J.; Fox, B.M.; Fu, J.; Gonzalez, A.Z.; Houze, J.; Huang, X.; Jiang, M.; Jin, L.; Li, Y.; Li, Z.; Ling, Y.; Lo, M.C.; Long, A.M.; McGee, L.R.; McIntosh, J.; Oliner, J.D.; Osgood, T.; Saiki, A.Y.; Shaffer, P.; Wang, Y.C.; Wortman, S.; Yakowec, P.; Ye, Q.; Yu, D.; Zhao, X.; Zhou, J.; Medina, J.C.; Olson, S.H. Discovery of AM-7209, a potent and selective 4-amidobenzoic acid inhibitor of the MDM2-p53 interaction. J. Med. Chem., 2014, 57(24), 10499-10511.
[http://dx.doi.org/10.1021/jm501550p] [PMID: 25384157]
[91]
Gessier, F.; Kallen, J.; Jacoby, E.; Chène, P.; Stachyra-Valat, T.; Ruetz, S.; Jeay, S.; Holzer, P.; Masuya, K.; Furet, P. Discovery of dihydroisoquinolinone derivatives as novel inhibitors of the p53–MDM2 interaction with a distinct binding mode. Bioorg. Med. Chem. Lett., 2015, 25(17), 3621-3625.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.058] [PMID: 26141769]
[92]
Bogen, S.L.; Pan, W.; Gibeau, C.R.; Lahue, B.R.; Ma, Y.; Nair, L.G.; Seigel, E.; Shipps, G.W., Jr; Tian, Y.; Wang, Y.; Lin, Y.; Liu, M.; Liu, S.; Mirza, A.; Wang, X.; Lipari, P.; Seidel-Dugan, C.; Hicklin, D.J.; Bishop, W.R.; Rindgen, D.; Nomeir, A.; Prosise, W.; Reichert, P.; Scapin, G.; Strickland, C.; Doll, R.J. Discovery of novel 3, 3-disubstituted piperidines as orally bioavailable, potent, and efficacious HDM2-p53 inhibitors. ACS Med. Chem. Lett., 2016, 7(3), 324-329.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00472] [PMID: 26985323]
[93]
Holzer, P.; Masuya, K.; Furet, P.; Kallen, J.; Valat-Stachyra, T.; Ferretti, S.; Berghausen, J.; Bouisset-Leonard, M.; Buschmann, N.; Pissot-Soldermann, C.; Rynn, C.; Ruetz, S.; Stutz, S.; Chène, P.; Jeay, S.; Gessier, F. Discovery of a dihydroisoquinolinone derivative (NVP-CGM097): a highly potent and selective MDM2 inhibitor undergoing phase 1 clinical trials in p53wt tumors. J. Med. Chem., 2015, 58(16), 6348-6358.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00810] [PMID: 26181851]
[94]
Wang, W.; Qin, J.J.; Voruganti, S.; Srivenugopal, K.S.; Nag, S.; Patil, S.; Sharma, H.; Wang, M.H.; Wang, H.; Buolamwini, J.K.; Zhang, R. The pyrido[b]indole MDM2 inhibitor SP-141 exerts potent therapeutic effects in breast cancer models. Nat. Commun., 2014, 5(1), 5086.
[http://dx.doi.org/10.1038/ncomms6086] [PMID: 25271708]
[95]
Chauhan, S.S.; Singh, A.K.; Meena, S.; Lohani, M.; Singh, A.; Arya, R.K.; Cheruvu, S.H.; Sarkar, J.; Gayen, J.R.; Datta, D.; Chauhan, P.M.S. Synthesis of novel β-carboline based chalcones with high cytotoxic activity against breast cancer cells. Bioorg. Med. Chem. Lett., 2014, 24(13), 2820-2824.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.109] [PMID: 24844196]
[96]
Zheng, G.; Shen, J.; Zhan, Y.; Yi, H.; Xue, S.; Wang, Z.; Ji, X.; Li, Z. Design, synthesis and in vitro and in vivo antitumour activity of 3-benzylideneindolin-2-one derivatives, a novel class of small-molecule inhibitors of the MDM2–p53 interaction. Eur. J. Med. Chem., 2014, 81, 277-288.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.027] [PMID: 24852275]
[97]
Daniele, S.; La Pietra, V.; Barresi, E.; Di Maro, S.; Da Pozzo, E.; Robello, M.; La Motta, C.; Cosconati, S.; Taliani, S.; Marinelli, L.; Novellino, E.; Martini, C.; Da Settimo, F. Lead optimization of 2-phenylindolylglyoxylyldipeptide murine double minute (MDM) 2/translocator protein (TSPO) dual inhibitors for the treatment of gliomas. J. Med. Chem., 2016, 59(10), 4526-4538.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01767] [PMID: 27050782]
[98]
Surmiak, E.; Twarda-Clapa, A.; Zak, K.M.; Musielak, B.; Tomala, M.D.; Kubica, K.; Grudnik, P.; Madej, M.; Jablonski, M.; Potempa, J.; Kalinowska-Tluscik, J.; Dömling, A.; Dubin, G.; Holak, T.A. A unique MDM2-binding mode of the 3-pyrrolin-2-one-and 2-furanone-based antagonists of the p53-MDM2 interaction. ACS Chem. Biol., 2016, 11(12), 3310-3318.
[http://dx.doi.org/10.1021/acschembio.6b00596] [PMID: 27709883]
[99]
Sang, P.; Shi, Y.; Lu, J.; Chen, L.; Yang, L.; Borcherds, W.; Abdulkadir, S.; Li, Q.; Daughdrill, G.; Chen, J.; Cai, J. α-Helix-mimicking sulfono-γ-AApeptide inhibitors for p53–MDM2/MDMX protein–protein interactions. J. Med. Chem., 2020, 63(3), 975-986.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00993] [PMID: 31971801]
[100]
Chessari, G.; Hardcastle, I.R.; Ahn, J.S.; Anil, B.; Anscombe, E.; Bawn, R.H.; Bevan, L.D.; Blackburn, T.J.; Buck, I.; Cano, C.; Carbain, B.; Castro, J.; Cons, B.; Cully, S.J.; Endicott, J.A.; Fazal, L.; Golding, B.T.; Griffin, R.J.; Haggerty, K.; Harnor, S.J.; Hearn, K.; Hobson, S.; Holvey, R.S.; Howard, S.; Jennings, C.E.; Johnson, C.N.; Lunec, J.; Miller, D.C.; Newell, D.R.; Noble, M.E.M.; Reeks, J.; Revill, C.H.; Riedinger, C.; St Denis, J.D.; Tamanini, E.; Thomas, H.; Thompson, N.T.; Vinković, M.; Wedge, S.R.; Williams, P.A.; Wilsher, N.E.; Zhang, B.; Zhao, Y. Structure-based design of potent and orally active isoindolinone inhibitors of MDM2-p53 protein-protein interaction. J. Med. Chem., 2021, 64(7), 4071-4088.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02188] [PMID: 33761253]
[101]
Gicquel, M.; Gomez, C.; Garcia Alvarez, M.C.; Pamlard, O.; Guérineau, V.; Jacquet, E.; Bignon, J.; Voituriez, A.; Marinetti, A. Inhibition of p53-murine double minute 2 (MDM2) interactions with 3, 3′-spirocyclopentene oxindole derivatives. J. Med. Chem., 2018, 61(20), 9386-9392.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01137] [PMID: 30221935]
[102]
Wang, S.; Jiang, Y.; Wu, S.; Dong, G.; Miao, Z.; Zhang, W.; Sheng, C. Meeting organocatalysis with drug discovery: asymmetric synthesis of 3, 3′-Spirooxindoles fused with tetrahydrothiopyrans as novel p53-MDM2 inhibitors. Org. Lett., 2016, 18(5), 1028-1031.
[http://dx.doi.org/10.1021/acs.orglett.6b00155] [PMID: 26883465]
[103]
Ribeiro, C.J.A.; Amaral, J.D.; Rodrigues, C.M.P.; Moreira, R.; Santos, M.M.M. Spirooxadiazoline oxindoles with promising in vitro antitumor activities. MedChemComm, 2016, 7(3), 420-425.
[http://dx.doi.org/10.1039/C5MD00450K]
[104]
Giofrè, S.V.; Cirmi, S.; Mancuso, R.; Nicolò, F.; Lanza, G.; Legnani, L.; Campisi, A.; Chiacchio, M.A.; Navarra, M.; Gabriele, B.; Romeo, R. Synthesis of spiro[isoindole-1,5′-isoxazolidin]-3(2 H )-ones as potential inhibitors of the MDM2-p53 interaction. Beilstein J. Org. Chem., 2016, 12(1), 2793-2807.
[http://dx.doi.org/10.3762/bjoc.12.278] [PMID: 28144352]
[105]
Zhao, Y.; Yu, S.; Sun, W.; Liu, L.; Lu, J.; McEachern, D.; Shargary, S.; Bernard, D.; Li, X.; Zhao, T.; Zou, P.; Sun, D.; Wang, S. A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J. Med. Chem., 2013, 56(13), 5553-5561.
[http://dx.doi.org/10.1021/jm4005708] [PMID: 23786219]
[106]
Wang, S.; Sun, W.; Zhao, Y.; McEachern, D.; Meaux, I.; Barrière, C.; Stuckey, J.A.; Meagher, J.L.; Bai, L.; Liu, L.; Hoffman-Luca, C.G.; Lu, J.; Shangary, S.; Yu, S.; Bernard, D.; Aguilar, A.; Dos-Santos, O.; Besret, L.; Guerif, S.; Pannier, P.; Gorge-Bernat, D.; Debussche, L. SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Res., 2014, 74(20), 5855-5865.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0799] [PMID: 25145672]
[107]
Aguilar, A.; Sun, W.; Liu, L.; Lu, J.; McEachern, D.; Bernard, D.; Deschamps, J.R.; Wang, S. Design of chemically stable, potent, and efficacious MDM2 inhibitors that exploit the retro-mannich ring-opening-cyclization reaction mechanism in spiro-oxindoles. J. Med. Chem., 2014, 57(24), 10486-10498.
[http://dx.doi.org/10.1021/jm501541j] [PMID: 25496041]
[108]
Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Shangary, S.; Gao, W.; Qin, D.; Stuckey, J.; Krajewski, K.; Roller, P.P.; Wang, S. Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J. Med. Chem., 2006, 49(12), 3432-3435.
[http://dx.doi.org/10.1021/jm051122a] [PMID: 16759082]
[109]
Gollner, A.; Rudolph, D.; Arnhof, H.; Bauer, M.; Blake, S.M.; Boehmelt, G.; Cockroft, X.L.; Dahmann, G.; Ettmayer, P.; Gerstberger, T.; Karolyi-Oezguer, J.; Kessler, D.; Kofink, C.; Ramharter, J.; Rinnenthal, J.; Savchenko, A.; Schnitzer, R.; Weinstabl, H.; Weyer-Czernilofsky, U.; Wunberg, T.; McConnell, D.B. Discovery of novel spiro [3 H-indole-3, 2′-pyrrolidin]-2 (1 H)-one compounds as chemically stable and orally active inhibitors of the MDM2–p53 interaction. J. Med. Chem., 2016, 59(22), 10147-10162.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00900] [PMID: 27775892]
[110]
Yang, M.C.; Peng, C.; Huang, H.; Yang, L.; He, X.H.; Huang, W.; Cui, H.L.; He, G.; Han, B. Organocatalytic asymmetric synthesis of spiro-oxindole piperidine derivatives that reduce cancer cell proliferation by inhibiting MDM2–p53 interaction. Org. Lett., 2017, 19(24), 6752-6755.
[http://dx.doi.org/10.1021/acs.orglett.7b03516] [PMID: 29210587]
[111]
Soares, J.; Espadinha, M.; Raimundo, L.; Ramos, H.; Gomes, A.S.; Gomes, S.; Loureiro, J.B.; Inga, A.; Reis, F.; Gomes, C.; Santos, M.M.M.; Saraiva, L. DIMP53-1: A novel small-molecule dual inhibitor of p53-MDM2/X interactions with multifunctional p53-dependent anticancer properties. Mol. Oncol., 2017, 11(6), 612-627.
[http://dx.doi.org/10.1002/1878-0261.12051] [PMID: 28296148]
[112]
Wurz, R.P.; Cee, V.J. Targeted degradation of MDM2 as a new approach to improve the efficacy of MDM2-p53 inhibitors. J. Med. Chem., 2019, 62(2), 445-447.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01945] [PMID: 30575392]
[113]
Li, Y.; Yang, J.; Aguilar, A.; McEachern, D.; Przybranowski, S.; Liu, L.; Yang, C.Y.; Wang, M.; Han, X.; Wang, S. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J. Med. Chem., 2019, 62(2), 448-466.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00909] [PMID: 30525597]
[114]
Miyazaki, M.; Naito, H.; Sugimoto, Y.; Kawato, H.; Okayama, T.; Shimizu, H.; Miyazaki, M.; Kitagawa, M.; Seki, T.; Fukutake, S.; Aonuma, M.; Soga, T. Lead optimization of novel p53-MDM2 interaction inhibitors possessing dihydroimidazothiazole scaffold. Bioorg. Med. Chem. Lett., 2013, 23(3), 728-732.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.091] [PMID: 23266121]
[115]
Miyazaki, M.; Uoto, K.; Sugimoto, Y.; Naito, H.; Yoshida, K.; Okayama, T.; Kawato, H.; Miyazaki, M.; Kitagawa, M.; Seki, T.; Fukutake, S.; Aonuma, M.; Soga, T. Discovery of DS-5272 as a promising candidate: A potent and orally active p53–MDM2 interaction inhibitor. Bioorg. Med. Chem., 2015, 23(10), 2360-2367.
[http://dx.doi.org/10.1016/j.bmc.2015.03.069] [PMID: 25882531]
[116]
Twarda-Clapa, A.; Krzanik, S.; Kubica, K.; Guzik, K.; Labuzek, B.; Neochoritis, C.G.; Khoury, K.; Kowalska, K.; Czub, M.; Dubin, G.; Dömling, A.; Skalniak, L.; Holak, T.A. 1, 4, 5-trisubstituted imidazole-based p53–MDM2/MDMX antagonists with aliphatic linkers for conjugation with biological carriers. J. Med. Chem., 2017, 60(10), 4234-4244.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00104] [PMID: 28482147]
[117]
Guo, Z.; Zhuang, C.; Zhu, L.; Zhang, Y.; Yao, J.; Dong, G.; Wang, S.; Liu, Y.; Chen, H.; Sheng, C.; Miao, Z.; Zhang, W. Structure–activity relationship and antitumor activity of thio-benzodiazepines as p53–MDM2 protein–protein interaction inhibitors. Eur. J. Med. Chem., 2012, 56, 10-16.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.003] [PMID: 22940704]
[118]
Gonzalez-Lopez de Turiso, F.; Sun, D.; Rew, Y.; Bartberger, M.D.; Beck, H.P.; Canon, J.; Chen, A.; Chow, D.; Correll, T.L.; Huang, X.; Julian, L.D.; Kayser, F.; Lo, M.C.; Long, A.M.; McMinn, D.; Oliner, J.D.; Osgood, T.; Powers, J.P.; Saiki, A.Y.; Schneider, S.; Shaffer, P.; Xiao, S.H.; Yakowec, P.; Yan, X.; Ye, Q.; Yu, D.; Zhao, X.; Zhou, J.; Medina, J.C.; Olson, S.H. Rational design and binding mode duality of MDM2-p53 inhibitors. J. Med. Chem., 2013, 56(10), 4053-4070.
[http://dx.doi.org/10.1021/jm400293z] [PMID: 23597064]
[119]
Xue, X.; Wei, J.L.; Xu, L.L.; Xi, M.Y.; Xu, X.L.; Liu, F.; Guo, X.K.; Wang, L.; Zhang, X.J.; Zhang, M.Y.; Lu, M.C.; Sun, H.P.; You, Q.D. Effective screening strategy using ensembled pharmacophore models combined with cascade docking: application to p53-MDM2 interaction inhibitors. J. Chem. Inf. Model., 2013, 53(10), 2715-2729.
[http://dx.doi.org/10.1021/ci400348f] [PMID: 24050442]
[120]
Yu, Z.; Zhuang, C.; Wu, Y.; Guo, Z.; Li, J.; Dong, G.; Yao, J.; Sheng, C.; Miao, Z.; Zhang, W. Design, synthesis and biological evaluation of sulfamide and triazole benzodiazepines as novel p53-MDM2 inhibitors. Int. J. Mol. Sci., 2014, 15(9), 15741-15753.
[http://dx.doi.org/10.3390/ijms150915741] [PMID: 25198897]
[121]
Pereira, D.; Lima, R.T.; Palmeira, A.; Seca, H.; Soares, J.; Gomes, S.; Raimundo, L.; Maciel, C.; Pinto, M.; Sousa, E.; Helena Vasconcelos, M.; Saraiva, L.; Cidade, H. Design and synthesis of new inhibitors of p53–MDM2 interaction with a chalcone scaffold. Arab. J. Chem., 2019, 12(8), 4150-4161.
[http://dx.doi.org/10.1016/j.arabjc.2016.04.015]
[122]
Chen, S.; Li, X.; Yuan, W.; Zou, Y.; Guo, Z.; Chai, Y.; Lu, W. Rapid identification of dual p53-MDM2/MDMX interaction inhibitors through virtual screening and hit based substructure search. RSC Advances, 2017, 7(16), 9989-9997.
[http://dx.doi.org/10.1039/C7RA00473G]
[123]
Shankar, S.; Faheem, M.M.; Nayak, D.; Wani, N.A.; Farooq, S.; Koul, S.; Goswami, A.; Rai, R. Cyclodipeptide c (orn-pro) conjugate with 4-ethylpiperic acid abrogates cancer cell metastasis through modulating mdm2. Bioconjug. Chem., 2018, 29(1), 164-175.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00670] [PMID: 29216716]
[124]
Oliveira Ribeiro, H.; Cortez, A.P.; Ávila, R.I.; Silva, A.C.G.; Carvalho, F.S.; Menegatti, R.; Lião, L.M.; Valadares, M.C. Small-molecule MDM2 inhibitor LQFM030-induced apoptosis in p53-null K562 chronic myeloid leukemia cells. Fundam. Clin. Pharmacol., 2020, 34(4), 444-457.
[http://dx.doi.org/10.1111/fcp.12540] [PMID: 32011031]
[125]
Wang, Z.; Zhan, Y.; Xu, J.; Wang, Y.; Sun, M.; Chen, J.; Liang, T.; Wu, L.; Xu, K. β-sitosterol reverses multidrug resistance via BCRP suppression by inhibiting the p53–MDM2 interaction in colorectal cancer. J. Agric. Food Chem., 2020, 68(12), 3850-3858.
[http://dx.doi.org/10.1021/acs.jafc.0c00107] [PMID: 32167760]
[126]
Wu, Z.; Gu, L.; Zhang, S.; Liu, T.; Lukka, P.B.; Meibohm, B.; Bollinger, J.C.; Zhou, M.; Li, W. Discovery of N -(3,4-Dimethylphenyl)-4-(4-isobutyrylphenyl)-2,3,3a,4,5,9b-hexahydrofuro[3,2- c ]quinoline-8-sulfonamide as a potent dual MDM2/XIAP inhibitor. J. Med. Chem., 2021, 64(4), 1930-1950.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00932] [PMID: 33556244]
[127]
Chessari, G.; Howard, S.; Buck, I. M.; Cons, B. D.; Johnson, C. N.; Holvey, R. S.; Rees, D. C. Isoindolinone inhibitors of the MDM2-P53 interaction having anticancer activity. Patent US10, 526, 311 B2, 2020.
[128]
Chessari, G.; Howard, S.; Buck, I. M.; Cons, B. D.; Johnson, C. N.; Holvey, R. S.; Rees, D. C. Isoindolinone inhibitors of the MDM2-p53 interaction having anticancer activity. Patent US10, 981, 898 B2, 2021.
[129]
Ramharter, J.; Broeker, J.; Gille, A.; Gollner, A.; Henry, M.; Kerres, N.; Weinstabl, H. Spiro [3H-indole-3, 2′-pyrrolidin]-2 (1H)-one compounds and derivatives as MDM2-p53 inhibitors. Patent US10, 246, 467 B2, 2019.
[130]
Gollner, A.; Broeker, J.; Kerres, N.; Kofink, C.; Ramharter, J.; Weinstabl, H. Spiro [3H-indole-3, 2′-pyrrolidin]-2 (1H)-one compounds and derivatives as MDM2-P53 inhibitors. Patent US10, 144, 739 B2, 2018.
[131]
Gollner, A.; Broeker, J.; Kerres, N.; Kofink, C.; Ramharter, J.; Weinstabl, H.; Gille, A.; Goepper, S.; Henry, M.; Huchler, G. Spiro [3H-indole-3, 2′-pyrrolidin]-2 (1H)-one compounds and derivatives as MDM2-P53 inhibitors. Patent US10, 882, 866 B1, 2021.
[132]
Chessari, G.; Howard, S.; Buck, I. M.; Cons, B. D.; Johnson, C. N.; Holvey, R. S.; Rees, D. C. Isoindolinone inhibitors of the MDM2-p53 interaction having anticancer activity. Patent US10, 544, 132 B2, 2020.
[133]
Gollner, A.; Broeker, J.; Kerres, N.; Kofink, C.; Ramharter, J.; Weinstabl, H.; Gille, A.; Goepper, S.; Henry, M.; Huchler, G. Spiro [3H-indole-3, 2′-pyrrolidin]-2 (1H)-one compounds and derivatives as MDM2-P53 inhibitors. Patent US10, 717, 742 B2, 2020.
[134]
Chen, Y.; Ding, Q. J.; Sun, Y.-S. Spiropyrrolidines as MDM2 inhibitors. Patent US9, 701, 685 B2, 2017.
[135]
Weinstabl, H.; Gollner, A.; Ramharter, J.; Wunberg, T. Spiro [3H-indole-3, 2′-pyrrolidin]-2 (1H)-one compounds and derivatives as MDM2-P53 inhibitors. Patent US 10, 576, 064 B2, 2020.
[136]
Gollner, A.; Kofink, C.; Ramharter, J.; Weinstabl, H.; Wunberg, T. Spiro [3H-indole-3, 2′-pyrrolidin]-2 (1H)-one compounds and derivatives as MDM2-P53 inhibitors. Patent US 10 ,138,251 B2, 2018.
[137]
Ramharter, J.; Broeker, J.; Gille, A.; Gollner, A.; Henry, M. New spiro [3h-indole-3, 2´-pyrrolidin]-2 (1h)-one compounds and derivatives as mdm2-p53 inhibitors. Patent EP 3 183 254 B1, 2019.
[138]
Arora, P. S.; Lao, B. B.; Guarracino, D.; Bonneau, R.; Drew, K. Oxopiperazine helix mimetics as inhibitors of the p53-MDM2 interaction. Patent US 11,180,481 B2, 2021.
[139]
Zhang, R.; Wang, W. Cancer treatment utilizing SP-141 to bind with MDM2 and act as an inhibitor of MDM2 expression. Patent US 10,472,355 B2, 2019.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy