Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Anti-ischemic Effect of Monoterpene Citronellol on Experimental Stroke Models Mediated by Pro-inflammatory Cytokines

Author(s): Xiao Liu, Chunji Zhu and Yong Yin*

Volume 26, Issue 10, 2023

Published on: 22 December, 2022

Page: [1888 - 1899] Pages: 12

DOI: 10.2174/1386207326666221110092715

Price: $65

Abstract

Background: Phytomedicines are proven to treat various chronic diseases as these compounds are cost-effective with few or no side effects. Elucidating the ameliorative effect of phytomedicine on cerebral ischemia may be a potent alternative therapy. Citronellol, a monoterpene alcohol, is one such phyto compound present in the essential oils of Cymbopogon nardus and Pelargonium geraniums and has immense pharmacological properties such as antihyperalgesic, anticonvulsant and antinociceptive.

Objective: In the present work, the anti-ischemic effect of citronellol in both cellular and animal models of stroke was analyzed.

Methods: Citronellol-pretreated SH-SY5Y cells were subjected to oxygen-glucose deprivation and reperfusion. The cells were assessed for cell viability and LDH quantification. Inflammatory cytokines were estimated in the cell lysate of citronellol pretreated OGD-R induced cells. Healthy young SD rats were pretreated with citronellol and induced with MCAO-R. The control group was comprised of sham-operated rats treated with saline. Group II was comprised of MCAO/R-induced untreated rats. Groups III and IV rats were previously treated with 10 mg/kg and 20 mg/kg citronellol, respectively, for 7 consecutive days and induced with MCAO/R. Brain edema was analyzed by quantifying the water content and the percentage of infarct was assessed using the TTC staining technique. Acetylcholinesterase activity and neurological scoring were performed to assess the neuroprotective activity of citronellol. Lipid peroxidation and antioxidant levels were quantified to evaluate the antioxidant activity of citronellol. The anti-inflammatory activity of citronellol was assessed by quantifying proinflammatory cytokines using commercially available ELISA kits.

Results: Citronellol treatment significantly ameliorated neuronal damage in both cellular and animal stroke models. Prior treatment of citronellol significantly decreased the inflammatory cytokines and increased the antioxidants. Citronellol treatment effectively protected the rats from MCAO/R-induced brain edema.

Conclusion: Our results confirm that citronellol is an effective anti-ischemic drug with antioxidant and anti-inflammatory properties.

Keywords: Stroke, oxidative stress, inflammation, anti-ischemic drug, phytomedicine, citronellol.

Graphical Abstract
[1]
Greenberg, S.M.; Ziai, W.C.; Cordonnier, C.; Dowlatshahi, D.; Francis, B.; Goldstein, J.N.; Hemphill, J.C., III; Johnson, R.; Keigher, K.M.; Mack, W.J.; Mocco, J.; Newton, E.J.; Ruff, I.M.; Sansing, L.H.; Schulman, S.; Selim, M.H.; Sheth, K.N.; Sprigg, N.; Sunnerhagen, K.S. 2022 Guideline for the management of patients with spontaneous intracerebral hemorrhage: A guideline from the American Heart Association/American stroke association. Stroke, 2022, 53(7), e282-e361.
[http://dx.doi.org/10.1161/STR.0000000000000407] [PMID: 35579034]
[2]
Wang, H.; Abbas, K.M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; Abolhassani, H.; Abreu, L.G.; Abrigo, M.R.M.; Abushouk, A.I.; Adabi, M.; Adair, T.; Adebayo, O.M.; Adedeji, I.A.; Adekanmbi, V.; Adeoye, A.M.; Adetokunboh, O.O.; Advani, S.M.; Afshin, A.; Aghaali, M.; Agrawal, A.; Ahmadi, K.; Ahmadieh, H.; Ahmed, M.B.; Al-Aly, Z.; Alam, K.; Alam, T.; Alanezi, F.M.; Alanzi, T.M.; Alcalde-Rabanal, J.E.; Ali, M.; Alicandro, G.; Alijanzadeh, M.; Alinia, C.; Alipour, V.; Alizade, H.; Aljunid, S.M.; Allebeck, P.; Almadi, M.A.H.; Almasi-Hashiani, A.; Al-Mekhlafi, H.M.; Altirkawi, K.A.; Alumran, A.K.; Alvis-Guzman, N.; Amini-Rarani, M.; Aminorroaya, A.; Amit, A.M.L.; Ancuceanu, R.; Andrei, C.L.; Androudi, S.; Angus, C.; Anjomshoa, M.; Ansari, F.; Ansari, I.; Ansari-Moghaddam, A.; Antonio, C.A.T.; Antony, C.M.; Anvari, D.; Appiah, S.C.Y.; Arabloo, J.; Arab-Zozani, M.; Aravkin, A.Y.; Aremu, O.; Ärnlöv, J.; Aryal, K.K.; Asadi-Pooya, A.A.; Asgari, S.; Asghari Jafarabadi, M.; Atteraya, M.S.; Ausloos, M.; Avila-Burgos, L.; Avokpaho, E.F.G.A.; Ayala Quintanilla, B.P.; Ayano, G.; Ayanore, M.A.; Azarian, G.; Babaee, E.; Badiye, A.D.; Bagli, E.; Bahrami, M.A.; Bakhtiari, A.; Balassyano, S.; Banach, M.; Banik, P.C.; Barker-Collo, S.L.; Bärnighausen, T.W.; Barzegar, A.; Basu, S.; Baune, B.T.; Bayati, M.; Bazmandegan, G.; Bedi, N.; Bell, M.L.; Bennett, D.A.; Bensenor, I.M.; Berhe, K.; Berman, A.E.; Bertolacci, G.J.; Bhageerathy, R.; Bhala, N.; Bhattacharyya, K.; Bhutta, Z.A.; Bijani, A.; Biondi, A.; Bisanzio, D.; Bisignano, C.; Biswas, R.K.; Bjørge, T.; Bohlouli, S.; Bohluli, M.; Bolla, S.R.R.; Borzì, A.M.; Borzouei, S.; Brady, O.J.; Braithwaite, D.; Brauer, M.; Briko, A.N.; Briko, N.I.; Bumgarner, B.R.; Burugina Nagaraja, S.; Butt, Z.A.; Caetano dos Santos, F.L.; Cai, T.; Callender, C.S.K.H.; Cámera, L.L.A.A.; Campos-Nonato, I.R.; Cárdenas, R.; Carreras, G.; Carrero, J.J.; Carvalho, F.; Castaldelli-Maia, J.M.; Castelpietra, G.; Castro, F.; Catalá-López, F.; Cederroth, C.R.; Cerin, E.; Chattu, V.K.; Chin, K.L.; Chu, D-T.; Ciobanu, L.G.; Cirillo, M.; Comfort, H.; Costa, V.M.; Cowden, R.G.; Cromwell, E.A.; Croneberger, A.J.; Cunningham, M.; Dahlawi, S.M.A.; Damiani, G.; D’Amico, E.; Dandona, L.; Dandona, R.; Dargan, P.I.; Darwesh, A.M.; Daryani, A.; Das Gupta, R. das Neves, J.; Davletov, K.; De Leo, D.; Denova-Gutiérrez, E.; Deribe, K.; Dervenis, N.; Desai, R.; Dhungana, G.P.; Dias da Silva, D.; Diaz, D.; Dippenaar, I.N.; Djalalinia, S.; Do, H.T.; Dokova, K.; Doku, D.T.; Dorostkar, F.; Doshi, C.P.; Doshmangir, L.; Doyle, K.E.; Dubljanin, E.; Duraes, A.R.; Edvardsson, D.; Effiong, A.; El Sayed, I.; El Tantawi, M.; Elbarazi, I.; El-Jaafary, S.I.; Emamian, M.H.; Eskandarieh, S.; Esmaeilzadeh, F.; Estep, K.; Farahmand, M.; Faraj, A.; Fareed, M.; Faridnia, R.; Faro, A.; Farzadfar, F.; Fattahi, N.; Fazaeli, A.A.; Fazlzadeh, M.; Feigin, V.L.; Fereshtehnejad, S-M.; Fernandes, E.; Ferreira, M.L.; Filip, I.; Fischer, F.; Flohr, C.; Foigt, N.A.; Folayan, M.O.; Fomenkov, A.A.; Freitas, M.; Fukumoto, T.; Fuller, J.E.; Furtado, J.M.; Gad, M.M.; Gakidou, E.; Gallus, S.; Gebrehiwot, A.M.; Gebremedhin, K.B.; Gething, P.W.; Ghamari, F.; Ghashghaee, A.; Gholamian, A.; Gilani, S.A.; Gitimoghaddam, M.; Glushkova, E.V.; Gnedovskaya, E.V.; Gopalani, S.V.; Goulart, A.C.; Gugnani, H.C.; Guo, Y.; Gupta, R.; Gupta, S.S.; Haagsma, J.A.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Halvaei, I.; Hamadeh, R.R.; Hamagharib Abdullah, K.; Han, C.; Handiso, D.W.; Hankey, G.J.; Haririan, H.; Haro, J.M.; Hasaballah, A.I.; Hassanipour, S.; Hassankhani, H.; Hay, S.I.; Heibati, B.; Heidari-Soureshjani, R.; Henny, K.; Henry, N.J.; Herteliu, C.; Heydarpour, F.; Hole, M.K.; Hoogar, P.; Hosgood, H.D.; Hossain, N.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Hoy, D.G.; Hu, G.; Huda, T.M.; Ibitoye, S.E.; Ikuta, K.S.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Imani-Nasab, M.H.; Islam, M.M.; Iso, H.; Iwu, C.J.; Jaafari, J.; Jacobsen, K.H.; Jahagirdar, D.; Jahanmehr, N.; Jalali, A.; Jalilian, F.; James, S.L.; Janjani, H.; Jenabi, E.; Jha, R.P.; Jha, V.; Ji, J.S.; Jonas, J.B.; Joukar, F.; Jozwiak, J.J.; Jürisson, M.; Kabir, Z.; Kalani, H.; Kalankesh, L.R.; Kamiab, Z.; Kanchan, T.; Kapoor, N.; Karch, A.; Karimi, S.E.; Karimi, S.A.; Kassebaum, N.J.; Katikireddi, S.V.; Kawakami, N.; Kayode, G.A.; Keiyoro, P.N.; Keller, C.; Khader, Y.S.; Khalid, N.; Khan, E.A.; Khan, M.; Khang, Y-H.; Khater, A.M.; Khater, M.M.; Khazaei, S.; Khazaie, H.; Khodayari, M.T.; Khubchandani, J.; Kianipour, N.; Kim, C.; Kim, Y-E.; Kim, Y.J.; Kinfu, Y.; Kisa, A.; Kisa, S.; Kissimova-Skarbek, K.; Kivimäki, M.; Komaki, H.; Kopec, J.A.; Kosen, S.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.A.; Krishan, K.; Krohn, K.J.; Kuate Defo, B.; Kumar, G.A.; Kumar, M.; Kumar, P.; Kumar, V.; Kusuma, D.; Kyu, H.H.; La Vecchia, C.; Lacey, B.; Lal, D.K.; Lalloo, R.; Lami, F.H.; Lansky, S.; Larson, S.L.; Larsson, A.O.; Lasrado, S.; Lassi, Z.S.; Lazarus, J.V.; Lee, P.H.; Lee, S.W.H.; Leever, A.T.; LeGrand, K.E.; Leonardi, M.; Li, S.; Lim, L-L.; Lim, S.S.; Linn, S.; Lodha, R.; Logroscino, G.; Lopez, A.D.; Lopukhov, P.D.; Lotufo, P.A.; Lozano, R.; Lu, A.; Lunevicius, R.; Madadin, M.; Maddison, E.R.; Magdy Abd El Razek, H.; Magdy Abd El Razek, M.; Mahasha, P.W.; Mahdavi, M.M.; Malekzadeh, R.; Mamun, A.A.; Manafi, N.; Mansour-Ghanaei, F.; Mansouri, B.; Mansournia, M.A.; Mapoma, C.C.; Martini, S.; Martins-Melo, F.R.; Masaka, A.; Mastrogiacomo, C.I.; Mathur, M.R.; May, E.A.; McAlinden, C.; McGrath, J.J.; McKee, M.; Mehndiratta, M.M.; Mehri, F.; Mehta, K.M.; Meitei, W.B.; Memiah, P.T.N.; Mendoza, W.; Menezes, R.G.; Mengesha, E.W.; Mensah, G.A.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Michalek, I.M.; Mihretie, K.M.; Miller, T.R.; Mills, E.J.; Milne, G.J.; Mirrakhimov, E.M.; Mirzaei, H.; Mirzaei, M.; Mirzaei-Alavijeh, M.; Misganaw, A.T.; Moazen, B.; Moghadaszadeh, M.; Mohamadi, E.; Mohammad, D.K.; Mohammad, Y.; Mohammad Gholi Mezerji, N.; Mohammadbeigi, A.; Mohammadian-Hafshejani, A.; Mohammadpourhodki, R.; Mohammed, H.; Mohammed, S.; Mohebi, F.; Mohseni Bandpei, M.A.; Mokari, A.; Mokdad, A.H.; Momen, N.C.; Monasta, L.; Mooney, M.D.; Moradi, G.; Moradi, M.; Moradi-Joo, M.; Moradi-Lakeh, M.; Moradzadeh, R.; Moraga, P.; Moreno Velásquez, I.; Morgado-da-Costa, J.; Morrison, S.D.; Mosser, J.F.; Mouodi, S.; Mousavi, S.M.; Mousavi Khaneghah, A.; Mueller, U.O.; Musa, K.I.; Muthupandian, S.; Nabavizadeh, B.; Naderi, M.; Nagarajan, A.J.; Naghavi, M.; Naghshtabrizi, B.; Naik, G.; Najafi, F.; Nangia, V.; Nansseu, J.R.; Ndwandwe, D.E.; Negoi, I.; Negoi, R.I.; Ngunjiri, J.W.; Nguyen, H.L.T.; Nguyen, T.H.; Nigatu, Y.T.; Nikbakhsh, R.; Nikpoor, A.R.; Nixon, M.R.; Nnaji, C.A.; Nomura, S.; Noubiap, J.J.; Nouraei Motlagh, S.; Nowak, C.; Oţoiu, A.; Odell, C.M.; Oh, I-H.; Oladnabi, M.; Olagunju, A.T.; Olusanya, B.O.; Olusanya, J.O.; Omar Bali, A.; Ong, K.L.; Onwujekwe, O.E.; Ortiz, A.; Otstavnov, N.; Otstavnov, S.S.; Øverland, S.; Owolabi, M.O.; P A, M.; Padubidri, J.R.; Pakshir, K.; Palladino, R.; Pana, A.; Panda-Jonas, S.; Park, J.; Pasupula, D.K.; Patel, J.R.; Patel, S.K.; Patton, G.C.; Paulson, K.R.; Pazoki Toroudi, H.; Pease, S.A.; Peden, A.E.; Pepito, V.C.F.; Peprah, E.K.; Pereira, A.; Pereira, D.M.; Perico, N.; Pigott, D.M.; Pilgrim, T.; Pilz, T.M.; Piradov, M.A.; Pirsaheb, M.; Pokhrel, K.N.; Postma, M.J.; Pourjafar, H.; Pourmalek, F.; Pourshams, A.; Poznańska, A.; Prada, S.I.; Prakash, S.; Preotescu, L.; Quazi Syed, Z.; Rabiee, M.; Rabiee, N.; Radfar, A.; Rafiei, A.; Raggi, A.; Rahman, M.A.; Rajabpour-Sanati, A.; Ram, P.; Ranabhat, C.L.; Rao, S.J.; Rasella, D.; Rashedi, V.; Rastogi, P.; Rathi, P.; Rawal, L.; Remuzzi, G.; Renjith, V.; Renzaho, A.M.N.; Resnikoff, S.; Rezaei, N.; Rezai, M.; Rezapour, A.; Rickard, J.; Roever, L.; Ronfani, L.; Roshandel, G.; Rostamian, M.; Rubagotti, E.; Rwegerera, G.M.; Sabour, S.; Saddik, B.; Sadeghi, E.; Sadeghi, M.; Saeedi Moghaddam, S.; Safari, Y.; Safi, S.; Safiri, S.; Sagar, R.; Sahebkar, A.; Sahraian, M.A.; Sajadi, S.M.; Salahshoor, M.R.; Salama, J.S.; Salamati, P.; Salem, M.R.R.; Salimi, Y.; Salomon, J.A.; Salz, I.; Samad, Z.; Samy, A.M.; Sanabria, J.; Santric-Milicevic, M.M.; Saraswathy, S.Y.I.; Sartorius, B.; Sarveazad, A.; Sathian, B.; Sathish, T.; Sattin, D.; Saylan, M.; Schaeffer, L.E.; Schiavolin, S.; Schwebel, D.C.; Schwendicke, F.; Sekerija, M.; Senbeta, A.M.; Senthilkumaran, S.; Sepanlou, S.G.; Serván-Mori, E.; Shabani, M.; Shahabi, S.; Shahbaz, M.; Shaheen, A.A.; Shaikh, M.A.; Shalash, A.S.; Shams-Beyranvand, M.; Shamsi, M.B.; Shamsizadeh, M.; Shannawaz, M.; Sharafi, K.; Sharafi, Z.; Sharara, F.; Sharma, R.; Shaw, D.H.; Sheikh, A.; Shin, J.I.; Shiri, R.; Shrime, M.G.; Shuval, K.; Siabani, S.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silva, D.A.S.; Simonetti, B.; Simpson, K.E.; Singh, J.A.; Skiadaresi, E.; Skryabin, V.Y.; Soheili, A.; Sokhan, A.; Sorensen, R.J.D.; Soriano, J.B.; Sorrie, M.B.; Soyiri, I.N.; Spurlock, E.E.; Sreeramareddy, C.T.; Stockfelt, L.; Stokes, M.A.; Stubbs, J.L.; Sudaryanto, A.; Sufiyan, M.B.; Suliankatchi Abdulkader, R.; Sykes, B.L.; Tabarés-Seisdedos, R.; Tabb, K.M.; Tadakamadla, S.K.; Taherkhani, A.; Tang, M.; Taveira, N.; Taylor, H.J.; Teagle, W.L.; Tehrani-Banihashemi, A.; Teklehaimanot, B.F.; Tessema, Z.T.; Thankappan, K.R.; Thomas, N.; Thrift, A.G.; Titova, M.V.; Tohidinik, H.R.; Tonelli, M.; Topor-Madry, R.; Topouzis, F.; Tovani-Palone, M.R.R.; Traini, E.; Tran, B.X.; Travillian, R.; Trias-Llimós, S.; Truelsen, T.C.; Tudor Car, L.; Unnikrishnan, B.; Upadhyay, E.; Vacante, M.; Vakilian, A.; Valdez, P.R.; Valli, A.; Vardavas, C.; Vasankari, T.J.; Vasconcelos, A.M.N.; Vasseghian, Y.; Veisani, Y.; Venketasubramanian, N.; Vidale, S.; Violante, F.S.; Vlassov, V.; Vollset, S.E.; Vos, T.; Vujcic, I.S.; Vukovic, A.; Vukovic, R.; Waheed, Y.; Wallin, M.T.; Walters, M.K.; Wang, H.; Wang, Y-P.; Watson, S.; Wei, J.; Weiss, J.; Weldesamuel, G.T.; Werdecker, A.; Westerman, R.; Whiteford, H.A.; Wiangkham, T.; Wiens, K.E.; Wijeratne, T.; Wiysonge, C.S.; Wojtyniak, B.; Wolfe, C.D.A.; Wondmieneh, A.B.; Wool, E.E.; Wu, A-M.; Wu, J.; Xu, G.; Yamada, T.; Yamagishi, K.; Yano, Y.; Yaya, S.; Yazdi-Feyzabadi, V.; Yearwood, J.A.; Yeheyis, T.Y.; Yilgwan, C.S.; Yip, P.; Yonemoto, N.; Yoon, S-J.; Yoosefi Lebni, J.; York, H.W.; Younis, M.Z.; Younker, T.P.; Yousefi, Z.; Yousefinezhadi, T.; Yousuf, A.Y.; Yusefzadeh, H.; Zahirian Moghadam, T.; Zakzuk, J.; Zaman, S.B.; Zamani, M.; Zamanian, M.; Zandian, H.; Zhang, Z-J.; Zheng, P.; Zhou, M.; Ziapour, A.; Murray, C.J.L. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: A comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet, 2020, 396(10258), 1160-1203.
[http://dx.doi.org/10.1016/S0140-6736(20)30977-6] [PMID: 33069325]
[3]
Duong, T.T.H.; Chami, B.; McMahon, A.C.; Fong, G.M.; Dennis, J.M.; Freedman, S.B.; Witting, P.K. Pre-treatment with the synthetic antioxidant T-butyl bisphenol protects cerebral tissues from experimental ischemia reperfusion injury. J. Neurochem., 2014, 130(6), 733-747.
[http://dx.doi.org/10.1111/jnc.12747] [PMID: 24766199]
[4]
Garbuzova-Davis, S.; Haller, E.; Tajiri, N.; Thomson, A.; Barretta, J.; Williams, S.N.; Haim, E.D.; Qin, H.; Frisina-Deyo, A.; Abraham, J.V.; Sanberg, P.R.; Van Loveren, H.; Borlongan, C.V. Blood-spinal cord barrier alterations in subacute and chronic stages of a rat model of focal cerebral ischemia. J. Neuropathol. Exp. Neurol., 2016, 75(7), 673-688.
[http://dx.doi.org/10.1093/jnen/nlw040] [PMID: 27283328]
[5]
Chen, M.; Dai, L.H.; Fei, A.; Pan, S.M.; Wang, H.R. Isoquercetin activates the ERK1/2-Nrf2 pathway and protects against cerebral ischemia-reperfusion injury in vivo and in vitro. Exp. Ther. Med., 2017, 13(4), 1353-1359.
[http://dx.doi.org/10.3892/etm.2017.4093] [PMID: 28413477]
[6]
L, L.; X, W.; Z, Y. Ischemia-reperfusion injury in the brain: Mechanisms and potential therapeutic strategies. Biochem. Pharmacol. (Los Angel.), 2016, 5(4), 213.
[http://dx.doi.org/10.4172/2167-0501.1000213] [PMID: 29888120]
[7]
Girnar, G.A.; Mahajan, H.S. Cerebral ischemic stroke and different approaches for treatment of stroke. Future J. Pharm. Sci., 2021, 7(1), 134.
[http://dx.doi.org/10.1186/s43094-021-00289-1]
[8]
Mies, G. lijima, T.; Hossmann, K.A. Correlation between periinfarct DC shifts and ischaemic neuronal damage in rat. Neuroreport, 1993, 4(6), 709-711.
[http://dx.doi.org/10.1097/00001756-199306000-00027] [PMID: 8347812]
[9]
Wu, C.T.; Chen, M.C.; Liu, S.H.; Yang, T.H.; Long, L.H.; Guan, S.S.; Chen, C.M. Bioactive flavonoids icaritin and icariin protect against cerebral ischemia–reperfusion-associated apoptosis and extracellular matrix accumulation in an ischemic stroke mouse model. Biomedicines, 2021, 9(11), 1719.
[http://dx.doi.org/10.3390/biomedicines9111719] [PMID: 34829948]
[10]
Kempuraj, D.; Thangavel, R.; Selvakumar, G.P.; Zaheer, S.; Ahmed, M.E.; Raikwar, S.P.; Zahoor, H.; Saeed, D.; Natteru, P.A.; Iyer, S.; Zaheer, A. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front. Cell. Neurosci., 2017, 11, 216.
[http://dx.doi.org/10.3389/fncel.2017.00216] [PMID: 28790893]
[11]
Sehajpal, S.; Prasad, D.N.; Singh, R.K. Prodrugs of Non-steroidal Anti-inflammatory Drugs (NSAIDs): A long march towards synthesis of safer NSAIDs. Mini Rev. Med. Chem., 2018, 18(14), 1199-1219.
[http://dx.doi.org/10.2174/1389557518666180330112416] [PMID: 29600762]
[12]
Kumar, S.; Singh, R.K.; Bhardwaj, T.R. Therapeutic role of nitric oxide as emerging molecule. Biomed. Pharmacother., 2017, 85, 182-201.
[http://dx.doi.org/10.1016/j.biopha.2016.11.125] [PMID: 27940398]
[13]
Liu, L.P.; Xu, A.D.; Wong, L.K.S.; Wang, D.Z.; Wang, Y.J. Chinese consensus statement on the evaluation and intervention of collateral circulation for ischemic stroke. CNS Neurosci. Ther., 2014, 20(3), 202-208.
[http://dx.doi.org/10.1111/cns.12226] [PMID: 24495505]
[14]
Durukan, A.; Tatlisumak, T. Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol. Biochem. Behav., 2007, 87(1), 179-197.
[http://dx.doi.org/10.1016/j.pbb.2007.04.015] [PMID: 17521716]
[15]
Marmagkiolis, K.; Hakeem, A.; Cilingiroglu, M.; Gundogdu, B.; Iliescu, C.; Tsitlakidou, D.; Katramados, A. Safety and efficacy of stent retrievers for the management of acute ischemic stroke. JACC Cardiovasc. Interv., 2015, 8(13), 1758-1765.
[http://dx.doi.org/10.1016/j.jcin.2015.07.021] [PMID: 26476611]
[16]
Asdaghi, N.; Romano, J.G. Dual antiplatelet therapy in acute ischemic stroke. Curr. Atheroscler. Rep., 2015, 17(7), 37.
[http://dx.doi.org/10.1007/s11883-015-0515-8] [PMID: 25990661]
[17]
Shaito, A.; Thuan, D.T.B.; Phu, H.T.; Nguyen, T.H.D.; Hasan, H.; Halabi, S.; Abdelhady, S.; Nasrallah, G.K.; Eid, A.H.; Pintus, G. Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety. Front. Pharmacol., 2020, 11, 422.
[http://dx.doi.org/10.3389/fphar.2020.00422] [PMID: 32317975]
[18]
Mehta, S.; Sharma, A.K.; Singh, R.K. Therapeutic Journey of Andrographis paniculata (Burm.f.) Nees from natural to synthetic and nanoformulations. Mini Rev. Med. Chem., 2021, 21(12), 1556-1577.
[http://dx.doi.org/10.2174/1389557521666210315162354] [PMID: 33719961]
[19]
Mehta, S.; Sharma, A.K.; Singh, R.K. Pharmacological activities and molecular mechanisms of pure and crude extract of Andrographis paniculata: An update. Phytomedicine Plus, 2021, 1(4), 100085.
[http://dx.doi.org/10.1016/j.phyplu.2021.100085]
[20]
Mehta, S.; Sharma, A.K.; Singh, R.K. Advances in ethnobotany, synthetic phytochemistry and pharmacology of endangered herb Picrorhiza kurroa (Kutki): A comprehensive review (2010-2020). Mini Rev. Med. Chem., 2021, 21(19), 2976-2995.
[http://dx.doi.org/10.2174/1389557521666210401090028] [PMID: 33797375]
[21]
de Sousa, D.P.; Gonçalves, J.C.R.; Quintans-Júnior, L.; Cruz, J.S.; Araújo, D.A.M.; de Almeida, R.N. Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents. Neurosci. Lett., 2006, 401(3), 231-235.
[http://dx.doi.org/10.1016/j.neulet.2006.03.030] [PMID: 16650577]
[22]
Brito, R.G.; dos Santos, P.L.; Quintans, J.S.S.; de Lucca Júnior, W.; Araújo, A.A.S.; Saravanan, S.; Menezes, I.R.A.; Coutinho, H.D.M.; Quintans-Júnior, L.J. Citronellol, a natural acyclic monoterpene, attenuates mechanical hyperalgesia response in mice: Evidence of the spinal cord lamina I inhibition. Chem. Biol. Interact., 2015, 239, 111-117.
[http://dx.doi.org/10.1016/j.cbi.2015.06.039] [PMID: 26141506]
[23]
Brito, R.G.; Santos, P.L.; Prado, D.S.; Santana, M.T.; Araújo, A.A.S.; Bonjardim, L.R.; Santos, M.R.V.; de Lucca Júnior, W.; Oliveira, A.P.; Quintans-Júnior, L.J. Citronellol reduces orofacial nociceptive behaviour in mice-evidence of involvement of retrosplenial cortex and periaqueductal grey areas. Basic Clin. Pharmacol. Toxicol., 2013, 112(4), 215-221.
[http://dx.doi.org/10.1111/bcpt.12018] [PMID: 23035741]
[24]
Maßberg, D.; Simon, A.; Häussinger, D.; Keitel, V.; Gisselmann, G.; Conrad, H.; Hatt, H. Monoterpene (−)-citronellal affects hepatocarcinoma cell signaling via an olfactory receptor. Arch. Biochem. Biophys., 2015, 566, 100-109.
[http://dx.doi.org/10.1016/j.abb.2014.12.004] [PMID: 25513961]
[25]
de Santana, M.T.; de Oliveira, M.G.B.; Santana, M.F.; De Sousa, D.P.; Santana, D.G.; Camargo, E.A.; de Oliveira, A.P.; Almeida, J.R.G.S.; Quintans-Júnior, L.J., Jr Citronellal, a monoterpene present in Java citronella oil, attenuates mechanical nociception response in mice. Pharm. Biol., 2013, 51(9), 1144-1149.
[http://dx.doi.org/10.3109/13880209.2013.781656] [PMID: 23795810]
[26]
Santos, P.L.; Matos, J.P.S.C.F.; Picot, L.; Almeida, J.R.G.S.; Quintans, J.S.S.; Quintans-Júnior, L.J. Citronellol, a monoterpene alcohol with promising pharmacological activities-A systematic review. Food Chem. Toxicol., 2019, 123, 459-469.
[http://dx.doi.org/10.1016/j.fct.2018.11.030]
[27]
Wang, X.; An, F.; Wang, S.; An, Z.; Wang, S. Orientin attenuates cerebral ischemia/reperfusion injury in rat model through the AQP-4 and TLR4/NF-κB/TNF-α signaling pathway. J. Stroke Cerebrovasc. Dis., 2017, 26(10), 2199-2214.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.05.002] [PMID: 28645524]
[28]
Lin, T.N.; He, Y.Y.; Wu, G.; Khan, M.; Hsu, C.Y. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke, 1993, 24(1), 117-121.
[http://dx.doi.org/10.1161/01.STR.24.1.117] [PMID: 8418534]
[29]
Ansari, S.; Azari, H.; McConnell, D.J.; Afzal, A.; Mocco, J. Intraluminal middle cerebral artery occlusion (MCAO) model for ischemic stroke with laser doppler flowmetry guidance in mice. J. Vis. Exp., 2011, (51), e2879.
[http://dx.doi.org/10.3791/2879] [PMID: 21587164]
[30]
Gu, L.; Xiong, X.; Zhang, H.; Xu, B.; Steinberg, G.K.; Zhao, H. Distinctive effects of T cell subsets in neuronal injury induced by cocultured splenocytes in vitro and by in vivo stroke in mice. Stroke, 2012, 43(7), 1941-1946.
[http://dx.doi.org/10.1161/STROKEAHA.112.656611] [PMID: 22678086]
[31]
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47(3), 469-474.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x] [PMID: 4215654]
[32]
Sinha, A.K. Colorimetric assay of catalase. Anal. Biochem., 1972, 47(2), 389-394.
[http://dx.doi.org/10.1016/0003-2697(72)90132-7] [PMID: 4556490]
[33]
Aykaç, G.; Uysal, M.; Süha Yalçin, A.; Koçak-Toker, N.; Sivas, A.; Öz, H. The effect of chronic ethanol ingestion on hepatic lipid peroxide, glutathione, glutathione peroxidase and glutathione transferase in rats. Toxicology, 1985, 36(1), 71-76.
[http://dx.doi.org/10.1016/0300-483X(85)90008-3] [PMID: 4040665]
[34]
Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 1973, 179(4073), 588-590.
[http://dx.doi.org/10.1126/science.179.4073.588] [PMID: 4686466]
[35]
Devasagayam, T.P.A.; Tarachand, U. Decreased lipid peroxidation in the rat kidney during gestation. Biochem. Biophys. Res. Commun., 1987, 145(1), 134-138.
[http://dx.doi.org/10.1016/0006-291X(87)91297-6] [PMID: 3593335]
[36]
ArunaDevi R.; Ramteke, V.D.; Kumar, S.; Shukla, M.K.; Jaganathan, S.; Kumar, D.; Sharma, A.K.; Tandan, S.K. Neuroprotective effect of s-methylisothiourea in transient focal cerebral ischemia in rat. Nitric Oxide, 2010, 22(1), 1-10.
[http://dx.doi.org/10.1016/j.niox.2009.10.002] [PMID: 19836458]
[37]
Bora, K.S.; Sharma, A. Neuroprotective effect of Artemisia absinthium L. on focal ischemia and reperfusion-induced cerebral injury. J. Ethnopharmacol., 2010, 129(3), 403-409.
[http://dx.doi.org/10.1016/j.jep.2010.04.030] [PMID: 20435123]
[38]
Hankey, G.J. The global and regional burden of stroke. Lancet Glob. Health, 2013, 1(5), e239-e240.
[http://dx.doi.org/10.1016/S2214-109X(13)70095-0] [PMID: 25104481]
[39]
Carvalhal, F.; Cristelo, R.; Resende, D.; Pinto, M.; Sousa, E.; Correia-da-Silva, M. Antithrombotics from the Sea: Polysaccharides and beyond. Mar. Drugs, 2019, 17(3), 170.
[http://dx.doi.org/10.3390/md17030170] [PMID: 30884850]
[40]
Liu, P.; Bai, X.; Zhang, T.; Zhou, L.; Li, J.; Zhang, L. The protective effect of Lonicera japonica polysaccharide on mice with depression by inhibiting NLRP3 inflammasome. Ann. Transl. Med., 2019, 7(24), 811.
[http://dx.doi.org/10.21037/atm.2019.12.64] [PMID: 32042827]
[41]
Xiao, X.Y.; Zhu, Y.X.; Bu, J.Y.; Li, G.W.; Zhou, J.H.; Zhou, S.P. Evaluation of neuroprotective effect of thymoquinone nanoformulation in the rodent cerebral ischemia-reperfusion model. BioMed Res. Int., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/2571060] [PMID: 27725936]
[42]
Ren, H.; Shen, G.; Tang, J.; Qiu, T.; Zhang, Z.; Zhao, W.; Yu, X.; Huang, J.; Liang, D.; Yao, Z.; Yang, Z.; Jiang, X. Promotion effect of extracts from Plastrum testudinis on alendronate against glucocorticoid-induced osteoporosis in rat spine. Sci. Rep., 2017, 7(1), 10617.
[http://dx.doi.org/10.1038/s41598-017-10614-5] [PMID: 28878388]
[43]
Amruta, N.; Rahman, A.A.; Pinteaux, E.; Bix, G. Neuroinflammation and fibrosis in stroke: The good, the bad and the ugly. J. Neuroimmunol., 2020, 346, 577318.
[http://dx.doi.org/10.1016/j.jneuroim.2020.577318] [PMID: 32682140]
[44]
Danielisova, V.; Gottlieb, M.; Bonova, P.; Nemethova, M.; Burda, J. Bradykinin postconditioning ameliorates focal cerebral ischemia in the rat. Neurochem. Int., 2014, 72, 22-29.
[http://dx.doi.org/10.1016/j.neuint.2014.04.005] [PMID: 24747342]
[45]
Leinonen, V.; Vanninen, R.; Rauramaa, T. Raised intracranial pressure and brain edema. Handb. Clin. Neurol., 2018, 145, 25-37.
[http://dx.doi.org/10.1016/B978-0-12-802395-2.00004-3] [PMID: 28987174]
[46]
Wu, S.; Yuan, R.; Wang, Y.; Wei, C.; Zhang, S.; Yang, X.; Wu, B.; Liu, M. Early prediction of malignant brain edema after ischemic stroke. Stroke, 2018, 49(12), 2918-2927.
[http://dx.doi.org/10.1161/STROKEAHA.118.022001] [PMID: 30571414]
[47]
Huttner, H.B.; Schwab, S. Malignant middle cerebral artery infarction: Clinical characteristics, treatment strategies, and future perspectives. Lancet Neurol., 2009, 8(10), 949-958.
[http://dx.doi.org/10.1016/S1474-4422(09)70224-8] [PMID: 19747656]
[48]
Hatashita, S.; Hoff, J.T. Brain edema and cerebrovascular permeability during cerebral ischemia in rats. Stroke, 1990, 21(4), 582-588.
[http://dx.doi.org/10.1161/01.STR.21.4.582] [PMID: 1691534]
[49]
Simard, J.M.; Kent, T.A.; Chen, M.; Tarasov, K.V.; Gerzanich, V. Brain oedema in focal ischaemia: Molecular pathophysiology and theoretical implications. Lancet Neurol., 2007, 6(3), 258-268.
[http://dx.doi.org/10.1016/S1474-4422(07)70055-8] [PMID: 17303532]
[50]
Stokum, J.A.; Gerzanich, V.; Simard, J.M. Molecular pathophysiology of cerebral edema. J. Cereb. Blood Flow Metab., 2016, 36(3), 513-538.
[http://dx.doi.org/10.1177/0271678X15617172] [PMID: 26661240]
[51]
Clément, T.; Rodriguez-Grande, B.; Badaut, J. Aquaporins in brain edema. J. Neurosci. Res., 2020, 98(1), 9-18.
[http://dx.doi.org/10.1002/jnr.24354] [PMID: 30430614]
[52]
Zhang, C.; Jiang, M.; Wang, W.; Zhao, S.; Yin, Y.; Mi, Q.; Yang, M.; Song, Y.; Sun, B.; Zhang, Z. Selective mGluR1 negative allosteric modulator reduces blood–brain barrier permeability and cerebral edema after experimental subarachnoid hemorrhage. Transl. Stroke Res., 2020, 11(4), 799-811.
[http://dx.doi.org/10.1007/s12975-019-00758-z] [PMID: 31833035]
[53]
Nydahl, P.; Bartoszek, G.; Binder, A.; Paschen, L.; Margraf, N.G.; Witt, K.; Ewers, A. Prevalence for delirium in stroke patients: A prospective controlled study. Brain Behav., 2017, 7(8), e00748.
[http://dx.doi.org/10.1002/brb3.748] [PMID: 28828209]
[54]
Mansutti, I.; Saiani, L.; Palese, A. Delirium in patients with ischaemic and haemorrhagic stroke: Findings from a scoping review. Eur. J. Cardiovasc. Nurs., 2019, 18(6), 435-448.
[http://dx.doi.org/10.1177/1474515119846226] [PMID: 31027426]
[55]
Carnahan, R.M.; Lund, B.C.; Perry, P.J.; Pollock, B.G. A critical appraisal of the utility of the serum anticholinergic activity assay in research and clinical practice. Psychopharmacol. Bull., 2002, 36(2), 24-39.
[PMID: 12397838]
[56]
Nakai, M.; Akino, H.; Kaneda, T.; Matsuta, Y.; Shiyama, R.; Tanase, K.; Ito, H.; Aoki, Y.; Oyama, N.; Miwa, Y.; Yokoyama, O. Acetylcholinesterase inhibitor acting on the brain improves detrusor overactivity caused by cerebral infarction in rats. Neuroscience, 2006, 142(2), 475-480.
[http://dx.doi.org/10.1016/j.neuroscience.2006.06.012] [PMID: 16905267]
[57]
Wang, Z.F.; Wang, J.; Zhang, H.Y.; Tang, X.C. Huperzine A exhibits anti-inflammatory and neuroprotective effects in a rat model of transient focal cerebral ischemia. J. Neurochem., 2008, 106(4), 1594-1603.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05504.x] [PMID: 18513368]
[58]
Pratap, R.; Pillai, K.K.; Khanam, R.; Islam, F.; Akhtar, M.; Akhtar, M. Protective effect of irbesartan, an angiotensin II receptor antagonist, alone and in combination with aspirin on middle cerebral artery occlusion model of focal cerebral ischemia in rats. Hum. Exp. Toxicol., 2011, 30(5), 354-362.
[http://dx.doi.org/10.1177/0960327110371257] [PMID: 20488839]
[59]
Nishimura, A.; Ago, T.; Kuroda, J.; Arimura, K.; Tachibana, M.; Nakamura, K.; Wakisaka, Y.; Sadoshima, J.; Iihara, K.; Kitazono, T. Detrimental role of pericyte Nox4 in the acute phase of brain ischemia. J. Cereb. Blood Flow Metab., 2016, 36(6), 1143-1154.
[http://dx.doi.org/10.1177/0271678X15606456] [PMID: 26661159]
[60]
Di Costanzo, A.; Paris, D.; Melck, D.; Angiolillo, A.; Corso, G.; Maniscalco, M.; Motta, A. Blood biomarkers indicate that the preclinical stages of Alzheimer’s disease present overlapping molecular features. Sci. Rep., 2020, 10(1), 15612.
[http://dx.doi.org/10.1038/s41598-020-71832-y] [PMID: 32973179]
[61]
Cheng, X.; Yang, Y.L.; Li, W.H.; Liu, M.; Wang, Y.H.; Du, G.H. Cerebral ischemia-reperfusion aggravated cerebral infarction injury and possible differential genes identified by RNA-Seq in rats. Brain Res. Bull., 2020, 156, 33-42.
[http://dx.doi.org/10.1016/j.brainresbull.2019.12.014] [PMID: 31877338]
[62]
D’amico, R.; Fusco, R.; Gugliandolo, E.; Cordaro, M.; Siracusa, R.; Impellizzeri, D.; Peritore, A.F.; Crupi, R.; Cuzzocrea, S.; Di Paola, R. Effects of a new compound containing Palmitoylethanolamide and Baicalein in myocardial ischaemia/reperfusion injury in vivo. Phytomedicine, 2019, 54, 27-42.
[http://dx.doi.org/10.1016/j.phymed.2018.09.191] [PMID: 30668378]
[63]
Maida, C.D.; Norrito, R.L.; Daidone, M.; Tuttolomondo, A.; Pinto, A. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches. Int. J. Mol. Sci., 2020, 21(18), 6454.
[http://dx.doi.org/10.3390/ijms21186454] [PMID: 32899616]
[64]
Lakhan, S.E.; Kirchgessner, A.; Hofer, M. Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. J. Transl. Med., 2009, 7(1), 97.
[http://dx.doi.org/10.1186/1479-5876-7-97] [PMID: 19919699]
[65]
Kumari, A.; Silakari, O.; Singh, R.K. Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications. Biomed. Pharmacother., 2018, 103, 662-679.
[http://dx.doi.org/10.1016/j.biopha.2018.04.046] [PMID: 29679908]
[66]
Hansel, G.; Tonon, A.C.; Guella, F.L.; Pettenuzzo, L.F.; Duarte, T.; Duarte, M.M.M.F.; Oses, J.P.; Achaval, M.; Souza, D.O. Guanosine protects against cortical focal ischemia. Involvement of inflammatory response. Mol. Neurobiol., 2015, 52(3), 1791-1803.
[http://dx.doi.org/10.1007/s12035-014-8978-0] [PMID: 25394382]
[67]
Zhu, Y.; Chen, X.; Liu, Z.; Peng, Y.P.; Qiu, Y.H. Interleukin-10 protection against lipopolysaccharide-induced neuro-inflammation and neurotoxicity in ventral mesencephalic cultures. Int. J. Mol. Sci., 2015, 17(1), 25.
[http://dx.doi.org/10.3390/ijms17010025] [PMID: 26729090]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy